michael kearns + aaron roth ### MICROSOFT RESEARCH AI NOVEMBER 12, 2019 the ethical ethical algorithm the science of socially aware algorithm design # ETHICAL ALGORITHMS? # ETHICAL ALGORITHMS? | THE RESERVE AND THE PARTY | 100 100 | |---|--------------------| | A 74-00 177 540 198 100 240 208 538 538 538 538 | | | A 100 FFF STA 110 100 100 210 210 100 100 100 100 | the Notes | | A 1240 FM 207 104 105 20 230 437 207 208 100 | 217 1180 | | A 1400 170 340 170 400 180 180 200 200 200 100 100 100 100 100 100 10 | 146 160 | | A 1500 100 100 100 100 100 100 100 100 10 | 100 700 | | A 162 128 246 162 162 167 158 158 158 158 158 | 100 1000 | | A 150 /FW 158 152 085 108 208 208 108 108 409 108 A 150 EM 207 104 00 30 108 00 42 20 208 00 108 A 150 EM 207 104 00 105 00 00 00 00 00 00 00 00 00 00 00 00 0 | 136 1381 | | A 15-06 EM 507 MA 001 30 SAN AZ 207 MA 000 000 000 000 000 000 000 000 000 | 196 1985 | | A 100 10 107 10 W 30 100 100 100 100 100 100 100 100 100 | SEC VINE | | A 128 19 19 W M 20 20 10 10 10 10 | 100 1040 | | A 100 CH 50 TO THE | EST THE | | A 100 CO | DAL COR | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 3.90 1000 | | 1 2 22 12 12 12 12 12 12 12 12 12 12 12 | 28 108
275 1186 | | A 1000 100 200 10 100 10 200 100 100 10 10 10 | 6 1400 | | A 1000 100 200 10 100 100 100 100 100 100 | 100 100 | | 1 2 10 10 10 10 10 10 10 10 10 10 10 10 10 | 100 100 | | A 1981 10° 886 St. 10° 10° 10° 14 10° 16 10° | 100 | | A 1980 189 237 10 10 28 280 180 180 180 180 120 180 180 180 180 180 180 180 180 180 18 | 110 | | 2 100 17 100 101 100 10 100 100 100 100 1 | 100 | # NEED TO EMBED SOCIAL VALUES IN ALGORITHMS - Requires being precise about definitions, developing their consequences. - Privacy - Fairness - Accountability - Interpretability - Morality # "ANONYMIZED DATA ISN'T" | Name | Age | Gender | Zip Code | Smoker | Diagnosis | |------|-------|--------|----------|--------|--------------------| | * | 60-70 | Male | 191** | Y | Heart disease | | * | 60-70 | Female | 191** | N | Arthritis | | * | 60-70 | Male | 191** | Y | Lung cancer | | * | 60-70 | Female | 191** | N | Crohn's Disease | | * | 60-70 | Male | 191** | Y | Lung Cancer | | * | 50-60 | Female | 191** | N | HIV | | * | 50-60 | Male | 191** | Y | Lyme Disease | | * | 50-60 | Male | 191** | Y | Seasonal Allergies | | * | 50-60 | Female | 191** | N | Ulcerative Colitis | | Name | Age | Gender | Zip Code | Diagnosis | |------|-------|--------|----------|--------------------| | * | 50-60 | Female | 191** | HIV | | * | 50-60 | Female | 191** | Lupus | | * | 50-60 | Female | 191** | Hip Fracture | | * | 60-70 | Male | 191** | Pancreatic Cancer | | * | 60-70 | Male | 191** | Ulcerative Colitis | | * | 60-70 | Male | 191** | Flu Like Symptoms | ### BRITISH MEDICAL JOURNAL LONDON SATURDAY SEPTEMBER 30 1950 ### SMOKING AND CARCINOMA OF THE LUNG PRELIMINARY REPORT BY ### RICHARD DOLL, M.D., M.R.C.P. Member of the Statistical Research Unit of the Medical Research Council AND #### A. BRADFORD HILL, Ph.D., D.Sc. Professor of Medical Statistics, London School of Hygiene and Tropical Medicine; Honorary Director of the Statistical Research Unit of the Medical Research Council In England and Wales the phenomenal increase in the number of deaths attributed to cancer of the lung provides one of the most striking changes in the pattern of mortality recorded by the Registrar-General. For example, in the quarter of a century between 1922 and 1947 the annual number of deaths recorded increased from 612 to 9,287, or roughly fifteenfold. This remarkable increase is, of course, out of all proportion to the increase of population-both in total and, particularly, in its older age groups. Stocks (1947), using standardized death rates to allow for these population changes, shows the following trend: rate per 100,000 in 1901-20, males 1.1, females 0.7; rate per 100,000 in 1936-9, males 10.6, females 2.5. The rise seems to have been particularly rapid since the end of the first world war; between 1921-30 and 1940-4 the death rate of men at ages 45 and over increased sixfold and of women of the same ages approximately threefold. This increase is still continuing. It has occurred, too, in Switzerland, Denmark, the U.S.A., Canada, and Australia, and has been reported from Turkey and Japan. Many writers have studied these changes, considering whether they denote a real increase in the incidence of the disease or are due merely to improved standards of diagnosis. Some believe that the latter factor can be regarded as wholly, or at least mainly, responsible-for example. Willis (1948), Clemmesen and Busk (1947), and Steiner (1944). On the other hand, Kennaway and Kennaway (1947) and Stocks (1947) have given good reasons for believing that the rise is at least partly real. The latter, for instance, has pointed out that "the increase of certified respiratory cancer mortality during the past 20 years has been as rapid in country districts as in the cities with the best diagnostic facilities, a fact which does not support the view that such increase merely reflects improved diagnosis of cases previously certified as bronchitis or other respiratory affections." He also draws attention to differences in mortality between some of the large cities of England and Wales, differences which it is difficult to explain in terms of diagnostic standards. The large and continued increase in the recorded deaths even within the last five years, both in the national figures and in those from teaching hospitals, also makes it hard to believe that improved diagnosis is entirely responsible. In short, there is sufficient reason to reject that factor as the whole explanation, although no one would deny that it may well have been contributory. As a corollary, it is right and proper to seek for other causes. #### Possible Causes of the Increase Two main causes have from time to time been put forward: (1) a general atmospheric pollution from the exhaust fumes of cars, from the surface dust of tarred roads, and from gas-works, industrial plants, and coal fires; and (2) the smoking of tobacco. Some characteristics of the former have certainly become more prevalent in the last 50 years, and there is also no doubt that the smoking of cigarettes has greatly increased. Such associated changes in time can, however, be no more than suggestive, and until recently there has been singularly little more direct evidence. That evidence, based upon clinical experience and records, relates mainly to the use of tobacco. For instance, in Germany, Müller (1939) found that only 3 out of 86 male patients with cancer of the lung were non-smokers, while 56 were heavy smokers, and, in contrast, among 86 "healthy men of the same age groups" there were 14 nonsmokers and only 31 heavy smokers. Similarly, in America, Schrek and his co-workers (1950) reported that 14.6% of 82 male patients with cancer of the lung were non-smokers, against 23.9% of 522 male patients admitted with cancer of sites other than the upper respiratory and digestive tracts. In this country, Thelwall Jones (1949-personal communication) found 8 non-smokers in 82 patients with proved carcinoma of the lung, compared with 11 in a corresponding group of patients with diseases other than cancer; this difference is slight, but it is more striking that there were 28 heavy smokers in the cancer group, against 14 in the comparative group. Clearly none of these small-scale inquiries can be accepted as conclusive, but they all point in the same direction. Their evidence has now been borne out by the results of a large-scale inquiry undertaken in the U.S.A. by Wynder and Graham (1950). Wynder and Graham found that of 605 men with epidermoid, undifferentiated, or histologically unclassified types of bronchial carcinoma only 1.3% were "nonsmokers"—that is, had averaged less than one cigarette a day for the last 20 years—whereas 51.2% of them had smoked more than 20 cigarettes a day over the same 468 # DIFFERENTIAL PRIVACY ### TheUpshot # To Reduce Privacy Risks, the Census Plans to Report Less Accurate Data Guaranteeing people's confidentiality has become more of a challenge, but some scholars worry that the new system will impede research. A 2018 census test letter mailed to a resident in Providence, R.I. The nation's test run of the 2020 Census is in Rhode Island. Michelle R. Smith/Associated Press ### FAIRNESS: A WORK IN PROGRESS - Don't agree on the definitions. - Only beginning to understand tradeoffs between different kinds of fairness, and between fairness and accuracy. ### FAIRNESS: A WORK IN PROGRESS - Don't agree on the definitions. - Only beginning to understand tradeoffs between different kinds of fairness, and between fairness and accuracy. # Why might machine learning be "unfair"? New York Regulator Probes UnitedHealth Algorithm for Racial Bias Bloomberg Business ### Viral Tweet About Apple Card Leads to Goldman Sachs Probe By Sridhar Natarajan and Shahjen Nasiripour November 9, 2019, 3:52 PM EST Updated on November 9, 2019, 8:53 PM EST - Tech entrepreneur alleged inherent bias in algorithms for card The card is part of Goldman's new main street business lines with IT infrastru powered by ### **EFFICIENT FRONTIERS** Examples of Pareto frontiers of error (x axis) and an unfairness measure (y axis) for three different real data sets. The curves differ in their shapes and the actual numeric values on the error and fairness axes, thus presenting different trade-offs. ### **EFFICIENT FRONTIERS** Examples of Pareto frontiers of error (x axis) and an unfairness measure (y axis) for three different real data sets. The curves differ in their shapes and the actual numeric values on the error and fairness axes, thus presenting different trade-offs. ## OTHER TOPICS Games People Play (with Algorithms) Games Scientists Play (with Data) Interpretability, Accountability, Morality.... The Singularity ## FRONTIERS OF FAIRNESS: FROM GROUPS TO INDIVIDUALS ### TYPES OF FAIRNESS DEFINITIONS ### Group Fairness - E.g. equality of error or false negative rates across gender, racial groups, etc. - Strong theory, practical implementations (e.g. fairness regularization) - But no guarantees to individuals ### Individual Fairness - E.g. metric fairness ("fairness through awareness"), meritocratic fairness - Binds at the individual level - But strong assumptions required (e.g. realizability) have prevented practical implementations ## A FRAMEWORK FOR FAIR ML - · Begin by expressing training as a (linear or convex) constrained optimization problem - E.g. minimize error subject to various fairness constraints - In interesting cases, model space of learning algo and number of constraints may be exponential/infinite - Want to avoid explicit enumeration - Use LP duality to pass to Lagrangian and recast as two-player, zero-sum game - Learner/Primal: wants to minimize error subject to constraints so far - Regulator/Dual: presents learner with violated constraints - Nash equilibrium is solution to constrained optimization problem - If we can: - Formulate best responses as instances of cost-sensitive classification - Implement at least one player as a no-regret algorithm w.r.t. their strategy space ... then algorithm provably converges in polynomial time given access to a standard learning heuristic - Directly implement on top of your favorite "unfair" learning algorithm - Applications: - Preventing "fairness gerrymandering" - Subjective individual fairness - Average individual fairness ## **AVERAGE INDIVIDUAL FAIRNESS**