Project Petridish:
Efficient Forward

Architecture Search

Layers Output Size DenseNet-121 DenseNet-169 DenseNet-201 DenseNet-264
Convolution 12 x 112 7 x 7 conv, stride 2
Pooling 56 x 56 3 x 3 max pool. stride 2
Dense Block 1 x 1 conv - 1 x 1 conv 1 % 1 conv 1 x1conv |
(1) XD | 3 x 3conv XS _3><3comrrx6 _3x3conv]X6 _3x3conv<x6
Transition Layer | 56 x 56 1 x 1conv
(1) 28 x 28 2 x 2 average pool, stride 2
Dense Block [1 x 1convy [1 x | conv [1 x 1 conv [1 % 1 cony
(2) RN _3><3con\'_Xlz 3x3conv_Xl2 | 3 x 3 conv i _3><3com.-_x12
Transition Layer | 28 x 28 1 x 1 conv
(2) 14 x 14 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv I x I conv I x 1 conv 1 x 1 conv
(3) s h3><3conv_x24 i3><3com'__f><32 _3x3conv_LX48 _3x3conv_x“
Transition Layer 14 x 14 1 x 1 conv
3) TXT 2 x 2 average pool, stride 2
Dense Block 1 x 1 conv | [1 x 1 conv [1 x | conv 1 x 1 conv |
@ Tx7 5 v % 16 %3¢ 3 o x 32 3x3conv]X32 [3x3conv x 48
Classification 1 x1 7 x 7 global average pool
Layer 1000D fully-connected. softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for all the networks is & = 32. Note that each “conv™ layer shown in the
table corresponds the sequence BN-ReLU-Conv.

“I have no idea how to come up with this!” —
John Langford, April 2018

* Model structure design is difficult.
* Human experts have designed most

M Oti\/afo N fo r networks till now.
* Many data-sets without good priors on
\J ellra | network design.

: g * Many models are similar to each other.
Architecture V 0 caen e
* Hyper-parameter tuning is difficult.

Sea [C h * Trying different architectures manually is
difficult.

* Massive talent shortage!

15-minute literature overview

Se a rch * What architectures can be represented?
e * Macro vs. Micro?
SpaCE? e How much human bias goes in search space design?

Neural
Architecture
Search

* How to explore the search space?

Sea rCh » Classical explore-exploit problem
" | » Want to find good architectures quickly.

Stratng? » Want to avoid premature convergence to

suboptimal ones.

o Find architectures that achieve high predictive
performance on unseen data

* How do we estimate this performance?

e Can’t simply perform standard training and validation
(too expensive).

~ ¢ Lots of research goes here.

Figure 3: INlustration of the cell search space. Left: Two different cells, e.g.. a normal cell
(top) and a reduction cell (bottom) (Zoph et al., 2018). Right: an architecture
built by stacking the cells sequentially. Note that cells can also be combined in a
more complex manner, such as in multi-branch spaces, by simply replacing layers
with cells.

Stack cells with predetermined skeletons. (Zoph et al., 2018)
Domain knowledge injection for good skeletons needed.
Our work shows lots of performance left on the table.

Graphic credit: Neural Architecture Search: A Survey, Elsken et al., 2018

output

Figure 2: An illustration of different architecture spaces. Each node in the graphs cor-
responds to a layer in a neural network. e.g., a convolutional or pooling layer.
Different layer types are visualized by different colors. An edge from layer L; to
layer L; denotes that L; receives the output of L; as input. Left: an element of a
chain-structured space. Right: an element of a more complex search space with
additional layer types and multiple branches and skip connections.

General search space.
Little restriction on the kind of architectures that can be realized.
Can be hard to search due to size of space.

Graphic credit: Neural Architecture Search: A Survey, Elsken et al., 2018

A . e Continuously updated list of NAS papers:
utomatic e https://www.ml4aad.org/automl/literature-

ArCh iteCtU re on-neural-architecture-search/

H U nt * Excellent survey article:
 Neural Architecture Search: A Survey,
(AUtO M L) Elsken, Metzen and Hutter, 2018

Neural Architecture
Search with
Reinforcement Learning

(Zoph and Le, 2016)

Sample architecture A
with probability p

[y

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Figure 1: An overview of Neural Architecture Search.

Numbe‘rl Filter | Filter Stride | | Stride | |Number Filter |
» |of Filters|, | Height |\ | Width Height || Width [\ |of Filters|. | Height |\

DT T T T

v
-

—{ = = = =l =l = =
“! :4 “\ ,4 "!‘ 14 “\ :4 "s '04 ‘.\‘ 04 ‘.!~ 04 .“ 04
. > < - . - . > <«
Layer N-1 Layer N Layer N+1

Figure 2: How our controller recurrent neural network samples a simple convolutional network. It
predicts filter height, filter width, stride height, stride width, and number of filters for one layer and
repeats. Every prediction is carried out by a softmax classifier and then fed into the next time step
as input.

Efficient Neural
Architecture Search via
Parameter Sharing

(Pham et al, 2018)

ENAS

®@ © 3

S /
On CIFAR-10 achieves a test error of On Penn Treebank achieves In all experiments used a single
2.89% perplexity of 55.8 (NAS had 62.4) Nvidia 1080Ti GPU

Search takes less than 16 hours
Compared to NAS >1000x reduction in search time

The main contribution of this work is to improve the efficiency
of NAS by forcing all child models to share weights to eschew
training each child model from scratch to convergence.

Figure 2. The graph represents the entire search space while the
red arrows define a model in the search space, which 1s decided

by a controller. Here, node 1 1s the input to the model whereas
nodes 3 and 6 are the model’s outputs.

Recurrent cell sampling

» - o » >

tanh

A @) ANyl : ok
lhit-1) \\tanh “sitanh| * “»RelU| WRetyl -
(4)

<@ » - » a4

¢t—p < > < » <
Node 1 Node 2 Node 3 Node 4

Y

RelU| [ReLU tanh}. . |ReLu}. . |ReLu}. . |tanh
P N
’ ' x[t] / \ 5 : ¥ : % :

»

Figure 1. An example of a recurrent cell in our search space with 4 computational nodes. Left: The computational DAG that corresponds
to the recurrent cell. The red edges represent the flow of information in the graph. Middle: The recurrent cell. Right: The outputs of the

controller RNN that result in the cell in the middle and the DAG on the left. Note that nodes 3 and 4 are never sampled by the RNN, so
their results are averaged and are treated as the cell’s output.

sep A
2 2 5x5 d 3 1 3x3 3x3
index: ‘findex: : i op : i op i iindex: iindex: i | op : i op &
A B A B A B K i

v
A4
v

v
v

Convolutional cell sampling &4

Block for node 3

v

v
\

Block for node 4

Layer i+l

= 2 1 8 9
3 o Q a2 n O n 2 n O o
o o 9 "o 5 o S "o § o S "o 5 ~-§’
Q 1=3 =9 1=23 i3 1=2 - >
3 2 5 e
x x x
= = =

Figure 4. Connecting 3 blocks, each with /N convolution cells and
1 reduction cell, to make the final network.

Figure 5. An example run of the controller for our search space
over convolutional cells. Top: the controller’s outputs. In our
search space for convolutional cells, node 1 and node 2 are the
cell’s inputs, so the controller only has to design node 3 and node
4. Bottom Left: The corresponding DAG, where red edges repre-
sent the activated connections. Bottom Right: the convolutional
cell according to the controller’s sample.

Times Params Error
Yiethod GPUS (days) (million) (%)
DenseNet-BC (Huang et al., 2016) — - 25.6 3.46
DenseNet + Shake-Shake (Gastaldi, 2016) - — 26.2 2.86
DenseNet + CutOut (DeVries & Taylor, 2017) — — 26.2 2.56
Budgeted Super Nets (Veniat & Denoyer, 2017) - — — 9.21
ConvFabrics (Saxena & Verbeek, 2016) — — 2).2 7.43
Macro NAS + Q-Learning (Baker et al., 2017a) 10 8-10 11.2 6.92
Net Transformation (Cai et al., 2018) 5 2 19.7 5.70
FractalNet (Larsson et al., 2017) — — 38.6 4.60
SMASH (Brock et al., 2018) 1 1.5 16.0 4.03
NAS (Zoph & Le, 2017) 800 21-28 7.1 4.47
NAS + more filters (Zoph & Le, 2017) 800 21-28 37.4 3.65
ENAS + macro search space l 0.32 21.3 4.23
ENAS + macro search space + more channels I 0.32 38.0 3.87
Hierarchical NAS (Liu et al., 2018) 200 1.5 61.3 3.63
Micro NAS + Q-Learning (Zhong et al., 2018) 32 3 — 3.60
Progressive NAS (Liu et al., 2017) 100 15 3.2 3.63
NASNet-A (Zoph et al., 2018) 450 3-4 3.3 3.41
NASNet-A + CutOut (Zoph et al., 2018) 450 3-4 3.3 2.65
ENAS + micro search space I 0.45 4.6 3.54
ENAS + micro search space + CutOut 1 0.45 4.6 2.89

Table 2. Classification errors of ENAS and baselines on CIFAR-10. In this table, the first block presents DenseNet, one of the state-of-
the-art architectures designed by human experts. The second block presents approaches that design the entire network. The last block
presents techniques that design modular cells which are combined to build the final network.

nduy

Figure 7. ENAS’s discovered network from the macro search space for image classification.

hli+1)

sep d sep id 'a\,rg' sep| [sep| |avg| |sep| |avg
3x3 S5x5 3x3 3x3 3x3 3x3 5x5 3x3
\ ;
; - M7 A
Convolution Cell
hii+1)

Reduction Cell

Figure 8. ENAS cells discovered in the micro search space.

DARTS: Differentiable
Architecture Search
(Liu et al. 2018)

™ ,\’\ | .) C
U_/j z”LJ\ [’?\ T ~-}

No controllers!

No performance prediction!
Outperforms ENAS, PNAS.
Cell-based (micro).

Achieves 2.83% error on CIFAR-10.

Uses 1000x less computation than Regularized
Evolution.

y
1 7 l
R T
? [2 2 :
N M 1/
3 | 2 i 2|
(a) (b) (c (d)

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c¢) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

ProxylessNas: Direct
Neural Architecture
Search on Target Task

and Hardware
(Cai et al. 2018)

Weight _
Parameters

-—

® <«—— Architecture Parameters —>x

0 < Binary Gate (O:prune, 1:keep) — €
A
OUTPUT

OUTPUT

) fmap in memory
(1) Update weight parameters © fmapnotinmemory (2) Update architecture parameters

Fixes the memory problems in DARTS

37

} o E[Latency] = o X F(conv_3x3)+
| B x F(conv_5x5)+
o x F(identity)+

Learnable Block
1 -1

¢ X F(pool-3x3)
E[latency| = Z E[latency;]

Learnable Block
y R | - | i
‘ eesreavasesas o SO A A s Loss = LO.S‘.SCE -+ /\1||w||§ . E)\QIE[lat(*ncy]

Figure 3: Making latency differentiable by introducing latency regularization loss.

38

Background: Neural Architecture Search

Tutorial on Neural Architecture Search at Microsoft Machine Learning Day (October 17, 2018):
Neural Architecture Search: State-of-the-art Overview (Youtube), Debadeepta Dey

[? l
T
7| 2 2
b |
"y '.,,__/
-* EN
(a) (b) (c) (d)

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c¢) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

Background: Neural Architecture Search

Tutorial on Neural Architecture Search at Microsoft Machine Learning Day (October 17, 2018):
Neural Architecture Search: State-of-the-art Overview (Youtube), Debadeepta Dey

40

Project Petridish:
Efficient Forward

Architecture Search

Paper: https://arxiv.org/abs/1905.13360v1 (NeurlPS 2019)
Code: https://github.com/microsoft/petridishnn (TensorFlow currently,)

Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz, Debadeepta Dey

Motivation for Growing Networks

* Fully general method!
* Cell-search not feasible when you don’t know good outer skeleton!

* Lifelong learning models.
* New task/extra or changing data can be naturally incorporated.

42

Motivation for Growing Networks

* Fully general method!
* Cell-search not feasible when you don’t know good outer skeleton!

* Lifelong learning models.
* New task/extra or changing data can be naturally incorporated.
* Can accommodate larger models.

* Exploit prior knowledge when available.
* Explore a forest of models.
* Warm start from existing models.
* Universal post-processing for human-designed models!
* Exploit information from similar models during search.

42

Project Petridish

* Method
* Warm start
* |nspired by gradient boosting.

* Expand the search tree:
* Focus on the most cost-effective ones.
* Directly search the pareto-frontier.

* Predict performance.
» Utilizing model initialization to select children to train.

The Cascade-Correlation Learning Architecture

Scott E. Fahlman and Christian Lebiere
August 29, 1991
CMU-CS-90-100

Abstract

.cmcmmmmmmmmmmwr«mmm
Instead of just adjusting the weights in a network of fixed topology, Cascade-Correlation begins with a
minimal network, then automatically trains and adds new hidden units one by one, creating a multi-layer
structure. Once a new hidden unit has been added to the network, its input-side weights are frozen, This unit
then becomes a permanent feature~detector in the network, available for producing outputs or for creating
other, more complex feature detectors. The Cascade-Correlation architecture has several advantages over
existing algorithms: it leams very quickly, the network determines its own size and topology, it retains the

‘structures it has built even if the training set changes, and quwuwb‘ckwmofmsm
through the connections of the network.

+1

‘Figure 1: The Cascade architecture, initial state and after adding two hidden units. 'lbmtieulhmm
all incoming activation. Boxed connections are frozen, X coanections are trained repeatedly.

Incremental Training

Model

Phase O
Original model

Incremental Training

Model Model

—il
—il

Phase O Phase 1
Original model Initialize candidates,
but do not allow candidates
to affect the original model.

45

Incremental Training

Model

Phase O
Original model

Model

—il
—i

Phase 1
Initialize candidates,
but do not allow candidates
to affect the original model.

Phase 2
Officially add an
candidate to model.
Now the candidate can
affect the original.

Incremental Training

&

input

Original model

Forward = zero
Backward = identity

Forward = identity
Backward = zero

Regular edge:
Forward = identity
Backward = identity

46

Incremental Training

I

input

Original model

C
Sum
| Candidate
= ____.--‘7
-— - 7
- 7
B //
H 7’
//
AT
input

Initialize candidate

Forward = zero
Backward = identity

Forward = identity
Backward = zero

Regular edge:
Forward = identity
Backward = identity

46

Incremental Training

I

input

Original model

Candidate accumulates VgLoss

—~

C
Sum
- Candidate
____.--'7
e e 7
- 7
B //
1 /’
//
S ¢
input

Initialize candidate

Forward = zero
Backward = identity

Forward = identity
Backward = zero

Regular edge:
Forward = identity
Backward = identity

46

Incremental Training

C

b g

input

Initialize candidate

&

Sum

| Candidate

_ ==
7

~—

Sum

input

. 4

Candidate

Officially add candidate to model

Scale the input.

Initial scale=1

Scale the input.

Initial scale =0

47

Incremental Training (Summary)

>

>

Xout

1 scale |

Opl °©sg

0p2 ° 59

QP1

Xin,1

QPZ

48

Incremental Training (Choice of Candidates)

4

Xout
A

4

Xout | sf
A

Xin1
A

sf Xe
op1°sg |/

X in,2
A

(b)

Opz YY)

& —

Xin1 OP11| [OP,
~ = =
-

s9 S9
Xin,2
+]
(b’)

49

Incremental Training (Choice of Candidates)

f £
7 T
Xout < sf X Xout K Sf X¢
T > B R
select select
’ i a8 : — v —v
Kz " / Xin,1 Q lOPLk 0P| -
T y Y h - v v)
' 0D, © S
Lol sg sg
o A /
Ky A

o]

(b) (b’)

Incremental training during search

Consider a path of models in the
search tree.
Want to know their performance.

51

Incremental training during search

Consider a path of models in the
search tree.
Want to know their performance.

Option 1 (From-scratch) : Option 2 (Incremental) :
* Train models independently. * Start from parent; initialize children
300 epochs per model * 40 epochs per model

Incremental Training (Choice of Candidates)

4

Xout

0p; °© 59

Xin1

Op2°Sg

X in,2

(b)

4

Xout sf

select

Xin,1 Q,i lopl,k OPsg] = @
sg Sg

Xin,2 /

o

(b”) 49

Search on distributed systems

S e o "~ S (e ~ il i ~
4 X 47 % & \
(| { - | { |
I | | | | I
| o | Vodel | | | Model |
| | | I | | |
I | | | | I
| o | | |
ase 0 Phase 1 Phase 2
| Original model | Initialize candidates, I Officially add candidate |
I | | but do not allow candidates | | to model. |
| | | toaffect the original model. | | Now the candidate can |
AN /7 \ / N\ affectthe original. /
e —— ——— — — — — e e — — — — — — N —— — — — — — —
Q_parent: :I Q_candidate: ﬁﬂ' Q_child:
Pool of parent models Queue of model with ~ 7| Queue of models to train
T candidates to initialize —

e e —
e o e ——— a et i -

Search on distributed systems

* Q_ parent: explore-exploit a diverse set of good models to extend.
* Q_candidate: initialize promising candidates
* Q_children: train promising children

* How do we know a model is good?

Expanding the Most Cost-efficient Models

1.75 - E ¥ 4 . »
® » o ©° o
1.50 - -
® o o) e
® @ (<]
o u @ @
» ® R TR o L I
2 1.00 A @ 7 ®
o ¢ & ® o o
— ° 3 @
0.75 - i ® »
@ ® @ o
P '.. # @ ‘
0.50 - * L ® s
o o8
0.25 1 2
3
0.00 +—, X : ‘ , '
0.0 0.2 0.4 0.6 0.8 1.0
Cost (flops)

This figure is for
illustration only

Expanding the Most Cost-efficient Models

* Epsilon- convex hull

1.75 -

Loss

1.50 T

34 Jl

1.00 A

0.75

0.50 A1

0.25 1

0.00 -

0.0 0.2 0.4 0.6 0.8 1.0

Cost (flops)

Key advantage:

Method naturally produces a
‘gallery’ of models which are nearly-
optimal for every serving time
budget need.

This is critical to production serving
needs.

Results

Reproducibility and fair comparison crisis!

* Nearly impossible to compare algorithms due to differences in
* Search spaces
* Training routine used (does it have all the tips and tricks?)
* Hardware used (TPU vs. GPU vs. driver version vs. cuda version vs.....)
* Stochasticity in training on gpus.

* Multi-objective optimization problem (flops, memory, latency, accuracy)

* Community working to establish standard benchmark
* NASBench-101

* Cannot evaluate weight-sharing, DARTS-like search spaces
* More benchmarks are coming soon ;-)

Table 1: Comparison against state-of-the-art recognition results on CIFAR-10. Results marked with
T are not trained with cutout. The first block represents approaches for macro-search. The second
block represents approaches for cell-search. We report Petridish results in the format of “best | mean
+ standard deviation™ among five repetitions of the final training.

params Search Test Error
Method (mil) (GPU-Days) (%)
Zoph & Le (2017)' 7.1 1680+ 4.47
Zoph & Le (2017) + more filters' 37.4 1680+ 3.65
Real et al. (2017)f 54 2500 54
ENAS macro (Pham et al., 2018)' 21.3 0.32 4.23
ENAS macro + more filters 38 0.32 3.87
Lemonade I (Elsken et al., 2018a) 8.9 56 3.37
Petridish initial model (N = 6, F' = 32) 0.4 - 4.6
Petridish initial model (N = 12, F’' = 64) 3.1 - 3.06 +0.12
Petridish macro 2.2 5 2.83[2.85+0.12
NasNet-A (Zoph et al., 2018) 33 1800 2.65
AmoebaNet-B (Real et al., 2018) 2.8 3150 2.55 + 0.05
PNAS (Liu et al., 2017)f 3.2 225 3.41 + 0.09
ENAS cell (Pham et al., 2018) 4.6 0.45 2.89
Lemonade II (Elsken et al., 2018a) 3.98 56 3.50
DARTS (Liu et al., 2019) 34 4 2.76 + 0.09
SNAS (Xie et al., 2019) 2.8 1.5 2.85 +0.02
Luo et al. (2018)! 3.3 0.4 3.53
PARSEC (Casale et al., 2019) 3.7 1 2.81 £+ 0.03
DARTS random (Liu et al., 2019) 3.1 - 3.29 + 0.15
16 Random Models in Petridish space 221 £ 015 - 3.324:0.15
Petridish cell w/o feature selection 2.50 + 0.28 - 3.26 +0.10
~ Petridish cell 2.5 5 2.61 [2.87 £0.13
Petridish cell more filters (F=37) 3.2 5 2.51 |2.754+.0.21

Table 2: The performance of the best CIFAR model transferred to ILSVRC. Variance is from multiple
training of the same model from scratch. | These searches start from PyramidNet(Han et al., 2017).

Method # params # multi-add Search top-1 Test Error
(mil.) (mil.) (GPU-Days) (%)
Inception-v1 (Szegedy et al., 2015) 6.6 1448 - 30.2
MobileNetV2 (Sandler et al., 2018) 6.9 585 - 28.0
NASNet-A (Zoph et al., 2017) 53 564 1800 26.0
AmoebaNet-A (Real et al., 2018) 5.1 555 3150 25.5
PNAS (Liu et al., 2017a) 5.1 588 225 25.8
DARTS (Liu et al., 2019) 49 595 4 26.9
SNAS (Xie et al., 2019) 4.3 522 1.6 273
T f t Proxyless (Han Cai, 2019)t 7.1 465 8.3 249
ra n S e r O Path-level (Cai et al., 2018)7 - 588 8.3 25.5
PARSEC (Casale et al., 2019) 5.6 - 1 26.0
Petridish macro (N=6,F=44) 4.3 511 5 28.5|28.7 £ 0.15

| a g e N et Petridish cell (N=6F=44) 48 508 3 6.0 263 £0.20

No domain-knowledge injection in
architecture design at all!

60

Language Modeling

Table 9: Comparison against state-of-the-art language modeling results on PTB. We report Petridish
results in the format of “best | mean + standard deviation™ from 10 repetitions of the search with
different random seeds. * From Table 2 in (Li & Talwalkar, 2019). 1 (L1 & Talwalkar, 2019) report
being unable to reproduce the DARTS results and this entry represents the results of DARTS (second
order) as obtained via their deterministic implementation. ** (L1 & Talwalkar, 2019) report being
unable to reproduce ENAS results from original source code. " ENAS results as reproduced via
DARTS source code.

Method # params Search Test Err_ur
(M) (GPU-Days) (perplexity)
" Dants (first order) (Liv et al., 20197 23 1.5 57.6
Darts (second order) (L et al.. 2019)* 23 2 55.7
Darts (second order) (Liu et al., 2019)* | 23 2 55.9
ENAS (Pham et al.. 2018)*° 24 0.5 56.3
ENAS (Pham et al., 2018)*** 24 0.5 58.6
Random scarch basehne (L1 & Talwalkar, 2019)* 23 2 59.4
Random search WS (Li & Talwalkar, 2019)" 23 1.25 55.5
Petridish 23 55.857156.391 .38

Note that since random search is essentially state-of-the-art search algorithm on PTB, we caution
the community to not use PTB as a benchmark for comparing search algorithms for RNNs. The

merits of any particular algorithm are difficult to compare at least on this particular dataset and task
pairing. More research along the lines of Ying et al. (2019) is needed on 1. whether the nature of

the search space for RNNs specific to language modeling is particularly amenable to random search
and or 2. whether it is the specific nature of RNNs by itself such that random search is competitive

on any task which uses RNNs as the hypothesis space. We are presenting the resuits on PTB for the

sake of completion since it has become one of the default benchmarks but ourselves don’t derive any
particular signal either way in spite of competitive performance.

p Still lots of domain knowledge injection into the process.

@ Tricks and tips needed for vision datasets are completely different from language or speech datasets (to be
O
SOTA).

. Need better benchmarks and more rigorous reporting.
7! All papers currently report on CIFAR10/100, ImageNet, PennTree Bank.

Hyperparameters are set to magic constants.

No fully general solution yet but
Jseful successes!

Moving

Forward.

= Patent filed Dec 7, 2018.

Compute and Platform for AzureML Service.

e Currently all development done on Philly.
e Migrating to Azure AML.

Datasets

e Can we get access to high business impact large scale 1P
datasets?

e Larger vision and language datasets?

64

