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ABSTRACT
Automatic synthesis of web data extraction programs has
been explored in a variety of settings, but in practice there
remain various usability challenges around robustness, the
amount of training effort required, the complexity of pro-
grams synthesized, as well as the ease of interaction in lim-
ited UI environments. In this work we address these chal-
lenges based on a novel program synthesis approach which
combines the benefits of deductive (top-down) and enumer-
ative (bottom-up) synthesis strategies. This yields a semi-
supervised techniquewithwhich concise web data extraction
programs expressible in standard XPath/CSS can be synthe-
sized from a small number of user-provided examples. We
demonstrate the effectiveness of our method in comparison
to existing techniques in terms of overall accuracy, robust
inference from a small number of examples, as well as in-
ference of concise programs comparable to hand-written
selectors. Our method has been deployed as a feature in the
Microsoft Power BI product and released to millions of users.

CCS CONCEPTS
• Information systems→Webmining;Markup languages;
• Software and its engineering → Automatic program-
ming.
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1 INTRODUCTION
Since the early days of the web, the idea of automated syn-
thesis of web data extraction programs from examples (or
wrapper induction) has been explored in various forms to
enable users to extract the semi-structured information avail-
able on the web into a structured format [25]. In the current
age of big data, the emerging persona particularly interested
in this area is that of data scientists, business intelligence
analysts and other knowledge workers who regularly need
to explore and extract information from various websites
and incorporate such actions into their analysis workflows.
Although many specialized automated web extraction

tools and services have become available in recent years (e.g.
WIEN [25], STALKER [31], Lixto [6], Mozenda [22], import.io
[20], SelectorGadget [43]), such technologies have generally
targeted web extraction as an isolated task in specialized
tools and have seen little adoption within the environments
that data analysts commonly work in. In such environments,
web extraction tasks may be interleaved with other data
extraction, cleaning, integration and analysis steps that are
part of workflows that must be flexible (quick and easy ex-
perimentation with data from different sources or websites)
and re-executable on different datasets. Data analysts usu-
ally fall under the persona of users who are not hardcore
programmers, but also not complete novices: they can man-
age lightweight scripting tasks for various data processing
activities, but the more automation that can be provided, the
better. The difficulties they face in web extraction tasks is
evident from numerous online discussions in help forums or
articles, as well as requests made to product teams.
For example, data scientists working in Python environ-

ments (e.g. Pandas dataframes in Jupyter Notebooks) com-
monly resort to using HTML parsing libraries (e.g. Beautiful
Soup or Scrapy) which require them to hand-write code such
as XPath or CSS expressions to extract data from webpages
as part of their analysis scripts. This requires knowledge
of these HTML query languages as well as the time and ef-
fort to examine and experiment with the schema of every
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new website. Moreover, since the website schemas change
frequently, the analysis scripts are also fragile and must be
updated regularly. Figure 1 shows an example of a ques-
tion posted on Stack Overflow where the user would like
to extract information from a car catalog site into a Pandas
dataframe but is unable to specify a correct selection logic
for the data required. Web extraction support is similarly
(if not more) limited in spreadsheet environments, e.g. Mi-
crosoft Excel or Google Spreadsheets limit web extraction to
only explicit HTML tables or lists. Microsoft Power BI is a
more advanced tool targeting business intelligence analysts,
which also provides a spreadsheet-like interface but with
support for automating analysis scripts: as the user performs
various actions such as data extraction or transformation in
the UI, the system automatically develops a program (in the
lightweight “M” programming language) which the user can
re-execute on different datasets and also manually inspect
and edit for more advanced tasks. However, web extraction
support has again been severely limited: Figure 2 illustrates
a YouTube video in which an expert is demonstrating how
to extract information from a web page in Power BI, through
a complex and fragile process of first extracting the HTML
source as text and then performing a long sequence of text
manipulation operations, as seen in the “Applied Steps” sec-
tion of the UI which shows the analysis script being created.

In this work we present a program synthesis approach for
inferring web data extraction programs that addresses the
difficulties faced by analysts in performing web extraction
tasks. Although our approach is not limited to benefiting
only this class of users and we show improvement over exist-
ing synthesis tools in general, it in particular addresses the
features that are especially important in analytics environ-
ments. This includes robust inference from a small number
of examples, learning concise readable programs in standard
web languages, and inference from text-based examples. We
now discuss these goals in more detail, most of which were
identified in discussions with the Power BI product team.

Inference from few examples/robustness. An impor-
tant usability challenge is for the system to make robust
inference from a small number of examples provided by the
user. For example, the webpage in Figure 1 contains 1671 data
records. A user cannot be expected to provide all of these as
examples even on a single webpage instance (as would be re-
quired in some previous wrapper induction approaches [35]).
Instead, we must support robust inference from a handful
of manually provided examples. The number of examples
required should also be as small as possible as this indicates
the robustness of the system and how much burden of veri-
fication/risk there is on the user: making sure that all of the
data has been extracted and to identify any missing items.
Existing approaches not aimed at minimizing examples often
conservatively favour more specific programs [3, 27, 33, 34]

Stack Overflow question:

Target webpage:

Figure 1: Forum question: web extraction in Python

which can overfit and require many examples to sufficiently
generalize. This can lead to significant effort by the user to
identify missing records to provide as additional examples
at each interaction round, which can also be easy to over-
look. For example, it will be difficult for the user to identify
random elements missing from 1671 items in Figure 1. In
general, correct inference from 2 examples for sequence ex-
traction tasks in the majority of cases would help to instill
user confidence in the robustness of the system.

Inferring simple programs in standard, lightweight
languages.Another common requirement in practice is that
the synthesized programs be represented in a standard light-
weight and commonly available language, such as DOM
query languages like XPath or CSS (which are W3C stan-
dards), so that users are likely to be or can easily become
familiar with the language and its syntax and can also under-
stand and manipulate the synthesized programs in common
HTML tools or modern web browsers. In the case of the
Power BI team, they were able to easily incorporate CSS se-
lector expressions into their M language for analysis scripts.
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YouTube demo video:

Target webpage:

Figure 2: Demo video: web extraction in Power BI

This requirement is in contrast to wrapper induction ap-
proaches that often employ more complex extraction models,
such as incorporating visual or semantic features or spe-
cialized treatment of particular verticals [7, 11, 18, 24, 36].
However, even when we consider standard web extraction
languages, the simplicity and readability of the synthesized
programs is also an important requirement. Existing syn-
thesis approaches do not aim for concise programs that are
easy for humans to understand, and their focus on improving
accuracy and generality often yields very complex programs.
For example, existing approaches for inferring XPath data
selectors based on path alignment or least general generaliza-
tions [3, 33, 34, 37, 41] can lead to long path sequences from
the root element or large conjunctions of predicates. Other
approaches that aim to improve recall can lead to a large
number of disjunctive path expressions to guard against over-
fitting [35, 40]. Such expressions can be difficult to interpret
by users and are more complex than the simple selectors that
a human expert may write for the same extraction task.

Text-based examples Many wrapper induction systems
provide a visual interface in which users can select regions
of the webpage using point-and-click actions to give exam-
ples of data items that are of interest. Such visual interfaces
may not always be easily integrated into data analysis en-
vironments that commonly employ text-based interaction

paradigms. For example, data scientists commonly write
Python scripts in IDEs with intellisense or Jupyter Note-
books that employ a REPL (read-eval-print loop) interaction
model, where text-based examples would be more natural.
Other benefits of the text-based interaction paradigm in-
clude: (1) Wide-scale adoption.Web extraction support may
be more easily integrated in different products and services
as the text-based paradigm alleviates the need for heavy UI
investment. (2) Bypassing limitations of visual UIs.Modern
websites often employ dynamic scripts on webpages that
alter the contents or layouts depending on user actions such
as hovering or clicking on regions in the page, which is
an obstacle for visual UIs. Another difficulty is the ambigu-
ity that is often present in the DOM structure itself when
text content is nested inside multiple nodes that visually ap-
pear in the same region. (3) Robustness to changing webpage
schemas/formats. Analysis scripts can be more robust to site
format changes: by maintaining the textual data examples,
if a previously learned extraction program fails due to for-
mat changes then the analysis script can be automatically
refreshed to learn a new program in the updated schema. (4)
Advanced explorations. While not a focus of this work, the
ability to infer extraction programs from purely text-based
examples removes dependence to particular website formats
and opens possibilities for more general explorations, e.g.
integrating a search engine to infer data completions from
arbitrary websites [1].

1.1 Key ideas and contributions
In this paper we present an approach to automatic synthesis
of web data extraction programs that addresses the chal-
lenges that we have discussed above. We describe a method
for inferring programs from text-based examples in a domain-
specific language (DSL) that is expressible in XPath and CSS,
and in contrast to existing approaches we demonstrate how
the synthesized programs are simple (comparable to hand-
written selectors) and can be inferred from a small number
of examples. Our approach is based on the following key
technical contributions:

Combination of top-down and bottom-up program
synthesis. Our approach is based in the field of program
synthesis, which has seen rising interest and progress in
recent years [2, 10, 16, 26, 28, 37, 39, 44]. Given a fixed DSL
(domain-specific language) the aim of a supervised program
synthesis system is to find a program in the DSL that satis-
fies input-output examples given by the user. An efficient
way of performing this search is top-down, where examples
constraints are recursively propagated from candidate DSL
operators to their parameters until a satisfying program is
found [21, 27, 37, 40]. Such deductive approaches have the
benefit of efficiently constraining the search to only those
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Figure 3: IMDB movies list page

DSL fragments relevant to the examples provided by the user.
However, recent work has explored a bottom-up approach
[39] for unsupervised program synthesis for web extraction
where extraction programs are inferred without any exam-
ples from the user, e.g. automatically inferring a program
to extract tabular data from a webpage without user exam-
ples. This approach proceeds by enumerating many DSL
programs and then detecting alignment patterns between
node selections produced by these programs, in order to find
prominent data extraction patterns on the webpage without
user-provided examples.
The two approaches have different strengths and weak-

nesses, and in this work we develop an integration of the
bottom-up and top-down strategies. This amounts to a semi-
supervised program synthesis approach that utilises the
bottom-up analysis to improve the top-down inference of
selectors. We illustrate this concept with a practical example
which we shall discuss further as we describe our technique
in more detail. Figure 3 shows a sample from an IMDB page

Figure 4: Simplified source HTML of IMDBmovies list

containing a list of 100 movies, and Figure 4 shows a sim-
plified version of the source HTML markup. In this case a
bottom-up enumeration method was able to detect extrac-
tion programs for all 100 movie records and their various
fields such as the movie year, running time, description, etc.
However, notably the movie title could not be detected as
it required a more complex selector. A purely top-down ap-
proach supported a more expressive DSL in which the title
extraction was supported. However, given the first two ex-
ample titles (“Snow Whilte and the Seven Dwarfs” and “Fan-
tasia”), there are many possible extraction programs that can
satisfy these two examples. The top-down approach yields
a logic of selecting any <b> element that is the 6th child of
its parent when counting from the end. This logic works for
the first two movies, and all other movies except the 12th
one (“Fun & Fancy Free”), because in this case the title is
the 5th child from last since the director field is missing in
this record. In our hybrid approach, we utilise the bottom-
up analysis that detected all 100 movie records and use it
to improve the top-down inference so that it synthesizes a
better program generalizing to all records. This yields an
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improved alternative selection logic that selects all <b> el-
ements that are children of elements of class “.info”. Thus
a global bottom-up document analysis helps disambiguate
between many possible alternative selection logics that may
satisfy a small number of examples. To our knowledge, ours
is the first semi-supervised approach to synthesis of XPath-
style programs for web data extraction.

Predicate inference beyond least general conjunc-
tions. The choice of which node selection logic to infer from
a small set of example nodes is a key challenge in program
synthesis methods. This is because there can be many prop-
erties that a small number of example nodes may share, and
any conjunction of a subset of these properties (from the
exponential possible subsets) can be a valid generalization
of the examples. Common approaches usually adopt heuris-
tic predicate preferences or favour largest conjunctions of
all the common properties (least general generalizations)
[3, 27, 34, 37, 41]. Apart from creating syntactically complex
programs, these largest conjunctions easily cause overfit-
ting by constraining to too many shared properties of the
examples, and hence require many examples to infer correct
programs. Apart from utilizing the bottom-up analysis to
infer predicates that are consistent with global structure, we
also describe a method to address such overfitting based on
soft negative examples, which are nodes that are less likely
to be part of the target selection (e.g. occurring outside com-
mon ancestors of example nodes). We show how concise
predicate conjunctions can be inferred using a maximal set
cover approach avoiding such negative examples.

Text-to-node disambiguation. For cases where node-
based examples cannot be provided, our algorithm supports
inference from text-only examples. In general there is no
unique correspondence between a set of text examples and
nodes in the webpage DOM, e.g. a flight search results page
may contain the same airline name or flight times in many
flight options or journey legs, or product search pages may
contain the same price/brand names/date values for multiple
products in the list. A set of a few text examples can combina-
torially lead to hundreds of matching node combinations. In
this work we address the text-to-node disambiguation prob-
lem by ranking possible node combinations using a number
of structural features (e.g. common node attributes, topolog-
ical similarities, and uniform node distances), as well as the
global bottom-up document analysis.

2 WEB EXTRACTION LANGUAGE
In this section we describe the domain specific language
(DSL) that we use for data extraction from webpages. Apart
from the design consideration of programs being express-
ible in standard webpage query languages, another technical

start Node[] f := Filter(p, s) | Disj(f , ..., f )
Node[] s := AllNodes()

| ChildrenOf (f )
| DescendantsOf (f ) | RightSiblingsOf (f ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Node→Bool p := Tag(t) | Class(t) | Id(t) | ItemProp(t)
| NthChild(k) | NthLastChild(k)
| IdSub(t) | Style(t, t) | Attr(t, t)
| Conjunction(p, p)

input DomTree inp string t int k

Figure 5: The DSL L for HTML node selection

trade-off in the DSL design in any program synthesis ap-
proach is between expressivity of the language and tractabil-
ity of the synthesis algorithm, as too much expressivity can
severely affect the performance of synthesis. Figure 5 shows
the context-free grammar of the DSL L that we use for ex-
tracting nodes from an HTML document. It defines programs
that are based on path expressions and filter predicates, and
can be directly translated to common DOM query languages
including both XPath and CSS selectors (we define the DSL
independently of the syntax of these languages to keep the
synthesis formulation generic and permissive of DSL vari-
ations). The terminal input symbol inp indicates the input
to a program which is the DOM tree of the entire HTML
document. The start symbol f of the grammar indicates the
output of any complete program, which is a sequence of
nodes selected from the input tree.
A complete program can either be a simple filter expres-

sion Filter(p, s) or a disjunction Disj(f , ..., f ) of any num-
ber of filter expressions (disjunction is equivalent to the
union operator “|” in XPath or “,” in CSS). A simple filter
expression Filter(p, s) applies a filtering condition p on a
selection of nodes s. The selection s can be all the nodes
in the document (AllNodes) or obtained as the immediate
children (ChildrenOf), any descendants (DescendantsOf), or
right siblings (RightSiblingsOf) of a set of nodes obtained
from a previous filter operation. The condition p used for
filtering is a boolean function on nodes that is either an
atomic predicate or conjunction Conjunction(p, p) of any
number of atomic predicates. Atomic predicates include
checks for the tag type of the node (Tag), its class (Class),
ID (full match Id or substring match IdSub), item property
frommicrodata (ItemProp), sibling index (NthChild from left
or NthLastChild from right), as well as arbitrary key-value
checks on styles (Style) and attributes (Attr).
In principle, our approach is independent of which par-

ticular atomic node-level predicates to include, and these
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can be added/removed to adapt to different environments
(e.g. some attributes such as text content may be expressible
in XPath but not in CSS, and we also avoid other attributes
that may cause overfitting such as href). As an example, a
program to select any node of class “c1” that is the second
child of any “DIV” element that occurs under the node with
ID “mydata” is given as:

Filter(Conjunction(Class(“c1”),NthChild(2)),ChildrenOf(Filter(
Tag(“DIV”),DescendantsOf (Filter(AllNodes(), Id(“mydata”))))))

An inductive translation exists for any program in our DSL
to the CSS or XPath languages. The above program directly
translates to the CSS selector “#mydata DIV > .c1:nth-child(2)”.

In Figure 5, we have distinguished two notable fragments
of the DSL. We refer to as L𝑡 the fragment that excludes the
operators with a dotted underline, and L𝑏 as the fragment
that excludes operators with full underline. These fragments
are notable in the way they are better suited to different syn-
thesis strategies. L𝑏 is a very limited language with fewer
predicate operators, and is thus better suited to efficient
bottom-up enumeration of programs, as shown in [39]. Also,
given the program size limits in the bounded enumeration,
the descendant operator in L𝑏 allows a bottom-up search
to explore more expressive logics rather than the localized
neighborhoods of nodes accessible to the direct child opera-
tor. On the other hand, L𝑡 uses only the direct child operator,
as this is better suited to top-down deductive inference be-
cause constraints can be more tractably propagated through
the node levels (in contrast to the combinatorial number of
possibilities encountered for the descendent operator, which
is why top-down synthesis approaches commonly avoid or
strongly limit its use [21, 37, 40]). In this work our full DSL
L supports both kinds of operators as it includes both L𝑡

and L𝑏 . This richness in the language enables the inference
of more concise programs (e.g. a single descendant expres-
sion rather than a long sequence of child steps) as well as
the handling of tasks that may not otherwise be expressible
in either approach. As we describe in the next section, our
combined synthesis approach utilizes the benefits of the two
language fragments in different ways.

3 PROGRAM SYNTHESIS ALGORITHM
In this section we describe the algorithm for synthesizing
programs in the DSL L given a web document and examples
specification provided by the user. An examples specification
provides a sequence of text values from the webpage that is
a prefix of some long sequence of data that the user would
like to extract from the webpage. If available, the example
specification may also include the precise nodes on the web-
page which contain each of the text values. Given such a
specification, the algorithm synthesizes a DSL program such
that when this program is applied to the webpage DOM it

1: function SynthProg(𝑑, 𝐸)
2: 𝑃 ← SynthFilterProg(𝑑, 𝐸)
3: if 𝑃 ≠ null return 𝑃

4: 𝐸1 ← Max({𝐸 ′ | 𝐸 ′ ⊆ 𝐸∧SynthFilterProg(𝑑, 𝐸 ′) ≠ null})
5: 𝑃1 ← SynthFilterProg(𝑑, 𝐸1)
6: 𝑃2 ← SynthProg(𝑑, 𝐸\𝐸1)
7: return Disj(𝑃1, 𝑃2)
1: function SynthFilterProg(𝑑, 𝐸)
2: E ← EnumerateBottomUp(𝑑)
3: G ← TopAlignmentGroups(E)
4: N ← TopNodeCombinations(𝑑, 𝐸,G)
5: for each 𝑁 ∈ N until max iterations bound do
6: 𝑃𝑡 ← SynthTopDown(𝑑, 𝑁 , null)
7: if 𝑃𝑡 ≠ null then
8: 𝑃ℎ ← SynthHybrid(𝑑, 𝑁 ,G, 𝑃𝑡 )
9: if 𝑃ℎ ≠ null return 𝑃ℎ else return 𝑃𝑡

10: return SynthBottomUp(𝑑, 𝐸,G, E)

Figure 6: Program synthesis algorithm

returns a sequence of nodes that satisfy all of the given exam-
ples. If node information is missing, the algorithm performs
additional inference to attempt to infer the correct nodes
from the text-only specification.
For instance, Figure 3 shows a sample of an IMDB page

containing 100 movies, which are formatted in arbitrary DIV
elements rather than table or list tags. To extract all the
movie names the user can provide the first two examples:

[(“Snow White and the Seven Dwarfs”, 𝑛1), (“Fantasia”, 𝑛2)]

where 𝑛1 and 𝑛2 can be null if examples are text-only, or
they may be the nodes in the webpage that contain those
text values, if such nodes can be detected using a visual point-
and-click UI for instance. Given this specification, with or
without node information, the algorithm generates a pro-
gram represented by the CSS selector “.info > B > A” which
extracts all 100 movie names from the page. Formally, for
a given web document 𝑑 and example specification 𝐸 =

[(𝑡1, 𝑛1), . . . , (𝑡𝑘 , 𝑛𝑘 )], the algorithm learns a DSL program
𝑃 ∈ L such that J𝑃K(𝑑) = [𝑛′1, ..., 𝑛′𝑘 , ..., 𝑛

′
𝑠 ], where 𝑛′𝑖 .Text =

𝑡𝑖 and if 𝑛𝑖 ≠ null then 𝑛𝑖 = 𝑛′𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . We write
Satisfies(𝑃, 𝐸, 𝑑) when a program 𝑃 satisfies an example spec-
ification 𝐸 on a document 𝑑 in this way.

In summary, the algorithm implements a semi-supervised
combination of top-down and bottom-up program synthesis.
It uses bottom-up exploration in an unsupervised manner
to infer programs aligned with the global structure on the
webpage, independent of any user-provided examples. This
global analysis is used as a bias to improve the supervised
top-down synthesis in order to favour those programs whose
results align with the inferred webpage structure. We first
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give a general outline of the algorithm and then describe
particular features in detail.
The top-level algorithm is shown in Figure 6. The main

function SynthProg(𝑑, 𝐸) returns a program in L that sat-
isfies examples 𝐸 on document 𝑑 . This function attempts
to synthesize a simple filter program that satisfies the ex-
amples (lines 2-3), and if no such program is found then it
returns a minimal disjunction of simple filter expressions
that satisfies all the examples, using a greedy approach to
compute maximal example satisfaction sets (lines 4-7). The
function SynthFilterProg(𝑑, 𝐸) synthesizes filter expressions
using our hybrid approach. It starts by performing an unsu-
pervised analysis of the web document independently of the
examples provided by the user. This is done by the bottom-up
enumeration of a large number of programs and obtaining
groups of highly aligned programs from this set (lines 2-3).
This information is used in various ways in the remainder
of the algorithm. We next infer the node combinations that
match the text-based examples if node examples are not
given (line 4). We then try each of the node combinations
until a valid program can be found using top-down synthesis
(line 6). If the top-down inference is successful on a node com-
bination, then we perform the hybrid synthesis that checks
if top-down inference can be improved with the bottom-up
analysis and return the better program (lines 7-9). Finally, if
no satisfying programs could be found in this way, then we
fall back to a purely bottom-up synthesis (line 10). Before
describing each of these steps in more detail, we first state
some simple definitions. For nodes 𝑛, 𝑛′ in a document, we
say IsAnc(𝑛, 𝑛′) when 𝑛′ is an ancestor of 𝑛. For a sequence
of nodes 𝑁 we define LCA(𝑁 ) to be the node in the docu-
ment that is the lowest common ancestor of all nodes in 𝑁 .
For node sequences 𝑁, 𝑁 ′ we say 𝑁 ′ is an ancestor sequence
of 𝑁 , stated IsAncSeq(𝑁, 𝑁 ′), iff 𝑁 = [𝑛1, . . . , 𝑛𝑘 ] and there
exists a subsequence [𝑛′1, . . . , 𝑛′𝑘 ] of 𝑁

′ such that each 𝑛′𝑖 is
an ancestor of 𝑛𝑖 .

3.1 Bottom-up synthesis
The bottom-up synthesis provides an unsupervised anal-
ysis of the webpage that is used in various parts of the
algorithm, including text-node disambiguation, improving
the top-down inference as well as resorting to a purely
bottom-up search in the final step. The bottom-up synthe-
sis method we use is based on [39], where an unsupervised
analysis aims to automatically extract tabular information
(a sequence of records with various fields) that may be rep-
resented in arbitrary formatting patterns on the page. This
is done by enumerating numerous programs in the DSL up
to a bounded size, and then finding a group of these pro-
grams that exhibit strong alignment patterns that indicate
that each program in the group may extract a particular

field of a record sequence. The program enumeration is done
by the method EnumerateBottomUp(𝑑) in Figure 6, which
returns a set of states E, where each state is a pair (𝑃, 𝑁 )
of a program and the sequence of nodes it selects from the
document, that is J𝑃K(𝑑) = 𝑁 . We perform an efficient enu-
meration in the DSL fragment L𝑏 by following the approach
of [39] to recursively apply the rules of the grammar start-
ing from terminal states using lifting functions and other
optimizations such as semantic equivalence. After enumer-
ation, the TopAlignmentGroups(E) function is used to find
the list G of the top ranked alignment groups of programs.
An alignment group is of the form (𝑃𝑎, (𝑃1, . . . , 𝑃𝑛)), where
for J𝑃𝑎K(𝑑) = 𝑁𝑎 and J𝑃𝑖K(𝑑) = 𝑁𝑖 we have 𝑁𝑎 and all 𝑁𝑖 are
minimal sequences of nodes in the sense that no node in the
sequence is an ancestor of any other node in the sequence,
and for each 𝑁𝑖 , we have |𝑁𝑖 | = |𝑁𝑎 | and IsAncSeq(𝑁𝑖 , 𝑁𝑎).
We refer to 𝑃𝑎 as the common ancestor program for the
alignment group, and the other programs as field programs.
We compute alignment groups by performing a pairwise
quadratic-time comparison of the enumerated states E with
each other to check interleaving, and then ranking states
by the highest number of interleavings to find the largest
alignment groups. This notion of alignment is similar to
[39], except we do the additional step of finding an ances-
tor state from E for each alignment group. Considering the
IMDB example from Figures 3 and 4, the enumeration and
alignment analysis yields a highly ranked alignment group
with ancestor program “.list_item” that selects the 100 DIV
elements that contain all the information about a movie. The
field programs extract various properties such as the movie
year (“.year_type”), the running time (“.item_desc SPAN”), etc.
However, not all fields are captured in the restricted DSL, e.g.
the movie title requires a selector “.info > B > A” which lies
outside the bottom-up DSL L𝑏 . In section 3.4 we show how
detecting this alignment group helps to infer the title using
our hybrid synthesis approach.

Supervised bottom-up. Although the bottom-up syn-
thesis is mainly used for an unsupervised analysis of the
webpage, in the final step of the main algorithm (Figure 6)
we resort to purely bottom-up search for a program that sat-
isfies the text-based examples if no such program is found in
the top-down DSL. The function SynthBottomUp(𝑑, 𝐸,G, E)
searches for such a program first within the top-ranked align-
ment groups 𝑎𝑙𝑖𝑔𝑛𝐺𝑟𝑜𝑢𝑝𝑠 , and then all remaining enumer-
ated states E.

3.2 Text-node disambiguation
In this sectionwe describe ourmethod for determiningwhich
nodes in the webpage correspond to the text-based examples,
in the case where node information is not provided in the
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1: function TopNodeCombinations(𝑑, 𝐸,G)
2: let 𝐸 = [(𝑡1, 𝑛1), ..., (𝑡𝑘 , 𝑛𝑘 )]
3: if 𝑛𝑖 ≠ null for all 𝑖 = 1 . . . 𝑘 then
4: 𝑁 ← [𝑛1, ..., 𝑛𝑘 ]
5: return [𝑁 ]
6: let 𝑇 = [𝑡1, ..., 𝑡𝑘 ]
7: let [𝑆1, ..., 𝑆𝑘 ] such that 𝑆𝑖 = {𝑛 ∈ 𝑑 | 𝑛.Text = 𝑡𝑖 }
8: N ← 𝑆1 × . . . × 𝑆𝑘
9: return N where 𝑁 ∈ N are ordered lexically by
10: BottomUpAlignment(𝑁,G),
11: UniformTags(𝑁,𝑑),
12: ExtremalNodes(𝑁,𝑑),
13: UniqueCommonAncestor(𝑁,𝑑),
14: UniformTagClassHierarchy(𝑁,𝑑),
15: NodeDistanceDeviation(𝑁,𝑑)

Figure 7: Node combinations from text specification

examples specification. As there can bemany valid node com-
binations matching a given set of text values, we need to rank
the combinations and can only consider a top few: in practice
a bound of at most 4 iterations of the loop at line 5 in Figure
6 kept within acceptable performance limits. Figure 7 shows
the function for ranking node combinations which returns a
ranked listN , where each𝑁 ∈ N is a sequence of nodes such
that |𝑁 | = |𝑇 | and 𝑁 [𝑘] .Text = 𝑇 [𝑘] for all 𝑘 . If the node in-
formation is already provided in the examples specification,
then we simply return it. Otherwise, we infer combinations
matching the text examples by performing a cartesian prod-
uct over the sets of all matching nodes for each text value, and
then ranking them using a number of features based on both
the bottom-up analysis as well as structural properties of
the document. The first feature BottomUpAlignment prefers
node combinations that are consistent with any of the align-
ment groups created by the bottom-up analysis. Formally, we
have BottomUpAlignment(𝑁,G, 𝑑) if and only if there exists
some (𝑃𝑎, (𝑃1, . . . , 𝑃𝑛)) ∈ G such that IsAncSeq(𝑁, J𝑃𝑎K(𝑑)).
This is a powerful feature that utilises consistency with re-
spect to the global unsupervised page analysis. The remain-
ing features are based on uniformity of node attributes and
structural properties of the nodes in the document. These
include UniformTags (all nodes in the combination have the
same tag), ExtremalNodes (nodes are either all maximal or
all minimal in ancestor hierarchy),UniqueCommonAncestor
(any common ancestor of 2 or more nodes is a common an-
cestor of all nodes), UniformTagClassHierarchy (all nodes
have same pattern of tags and class names in their ancestor
hierarchy), and NodeDistanceDeviation (the nodes occur at
uniform distances between each other, in terms of their doc-
ument order position). In our evaluations we found a simple

1: function SynthTopDown(𝑑, 𝑁𝑒 , 𝑁𝑎)
2: 𝑁𝑝 ← {𝑛 ∈ 𝑑 | 𝑛 is parent of some 𝑛′ ∈ 𝑁𝑒 }
3: 𝑃𝑝 ← SynthTopDown(𝑑, 𝑁𝑝 , 𝑁𝑎)
4: P𝑠 = { ChildrenOf (𝑃𝑝 ), AllNodes() }
5: P ← ∅
6: for each 𝑃𝑠 ∈ P𝑠 do
7: 𝑁𝑠 ← J𝑃𝑠K(𝑑)
8: 𝑃𝑐 ← SynthPredicate(𝑑, 𝑁𝑠 , 𝑁𝑒 , 𝑁𝑎)
9: 𝑃 = Filter(𝑃𝑐 , 𝑃𝑠 )
10: if 𝑁𝑎 = null ∨ SatisfiesAncSeq(J𝑃K(𝑑), 𝑁𝑒 , 𝑁𝑎) then
11: P ← P ∪ {𝑃}
12: return ArgMin

𝑃 ∈P
( |J𝑃K(𝑑) |, Size(𝑝))

1: function SatisfiesAncSeq(𝑁, 𝑁𝑒 , 𝑁𝑎)
2: if 𝑁𝑎 is an ancestor sequence of 𝑁𝑒 then
3: return ∀𝑛 ∈ 𝑁 .∃𝑛′ ∈ 𝑁𝑎 . IsAnc(𝑛, 𝑛′)
4: else
5: return ∀𝑛 ∈ 𝑁𝑎 .∃𝑛′ ∈ 𝑁 . IsAnc(𝑛, 𝑛′)

Figure 8: Top-down synthesis

lexical preference over these features to produce effective re-
sults, though it may also be interesting to explore statistical
techniques with weighted combinations of features.
As an example, one of the pages in our test scenarios

was a Kayak flight search results page, where the airline
name “United” appears 44 times in different regions of the
page: in many onward/return journey legs, under the price
in the second result, and even before the main search results
in the left margin of the page. Despite such ambiguity, for
the task of extracting the onward flight name for each flight
result, from just the first 2 examples [“United”, “United”] (both
happened to be the same airline in this case), using the above
features our method matches the correct nodes required to
infer the program for extracting airline names.

3.3 Top-down & predicate inference
Given the ranked list of candidate node combinations, the
synthesis algorithm attempts to infer a program from a node-
based examples specification (line 6 of SynthFilterProg func-
tion in Figure 6). This is done using a top-down program syn-
thesis technique which can explore the richer fragment L𝑡

of the full DSL that includes the more expressive operators re-
quired formost practical tasks. The SynthTopDown(𝑑, 𝑁𝑒 , 𝑁𝑎)
function in Figure 8 returns a program 𝑃 in L𝑡 such that
J𝑃K(𝑑) = 𝑁 ′ where 𝑁𝑒 is a prefix subsequence of 𝑁 ′. The
parameter 𝑁𝑎 to the function imposes an optional ances-
tor constraint on 𝑁 ′ that ∀𝑛 ∈ 𝑁𝑎 .∃𝑛′ ∈ 𝑁 ′.IsAnc(𝑛′, 𝑛).
This parameter is optional (ignored by passing 𝑁𝑎 = null),
and we make use of it in the hybrid synthesis described in
the next section. Following standard top-down approaches
[21, 37, 40], the function follows the DSL structure assuming



Web data extraction using hybrid program synthesis: a combination of top-down and bottom-up inferenceConference’17, July 2017, Washington, DC, USA

1: function SynthPredicate(𝑑, 𝑁𝑠 , 𝑁𝑒 , 𝑁𝑎)
2: Patm ← InferAtomicPredicates(𝑁𝑒 )
3: 𝑁n ←{𝑛 ∈𝑁𝑠\𝑁𝑒 | ¬IsAnc(𝑛,LCA(𝑁𝑒 )) ∨ ∃𝑛′ ∈𝑁𝑒 .𝑛 < 𝑛′}
4: P𝑟 ← ∅
5: while |Patm | > 0 do
6: Pmin ← {𝑃 ∈Patm | has minimal |J𝑃K(𝑁n) |}
7: for each 𝑃𝑚 ∈ Pmin do
8: 𝑃𝑐 ← 𝑃𝑚
9: while |J𝑃𝑐K(𝑁n) | > 0 do
10: 𝑁𝑐 ← J𝑃𝑐K(𝑁n)
11: P ← {𝑃 ∈ Patm | 𝑃 ∉ 𝑃𝑐 }
12: if 𝑁𝑎 ≠ null then
13: for each 𝑃 ∈ P do
14: 𝑁 ← JConjunction(𝑃𝑐 , 𝑃)K(𝑑)
15: if¬∀𝑛 ∈ 𝑁𝑎 .∃𝑛′ ∈ 𝑁 .IsAnc(𝑛,𝑛′) then
16: P ← P − {𝑃}
17: 𝑃𝑝 ← ArgMin

𝑃 ∈P
|J𝑃K(𝑁𝑐 ) |

18: 𝑃𝑐 ← Conjunction(𝑃𝑐 , 𝑃𝑝 )
19: P𝑟 ← P𝑟 ∪ {𝑃𝑐 }
20: Patm ← Patm − {𝑃 | ∀𝑃 ′ ∈ P𝑟 . 𝑃 ∉ 𝑃 ′}
21: if ∃𝑃 ∈ P𝑟 . |J𝑃K(𝑁n) | = 0 then
22: P𝑟 ← {𝑃 ∈ P𝑟 | |J𝑃K(𝑁n) | = 0}
23: return ArgMin

𝑃 ∈P𝑟
Size(𝑝)

Figure 9: Predicate inference in top-down synthesis

the final program will be of the form Filter(𝑃𝑐 , 𝑃𝑠 ) and pro-
ceeds by inferring constraints for each of the parameters for
the predicate condition and the set. For the set parameter 𝑃𝑠 ,
the two options provided by the DSL are either AllNodes or a
ChildrenOf expression synthesized by a recursive call on the
parent nodes of the example nodes (lines 2-3). Correspond-
ing predicate conditions for each of these set expressions
are synthesized by calling the predicate synthesis (lines 7-8),
and the generated filter program is added it to the set of
possible programs if it satisfies the ancestor constraint. The
final ranking criteria is to return the program that selects
fewer nodes and is smaller in size (line 12).

Predicate inference. Unlike previous techniques, we use
a novel predicate inference method that alleviates overfitting
and improves learning from fewer examples. The function
SynthPredicate(𝑑, 𝑁𝑠 , 𝑁𝑒 , 𝑁𝑎) in Figure 9 infers a predicate
𝑃 that is true for all the example nodes 𝑁𝑒 from a set of
nodes 𝑁𝑠 . The first step at line 2 is to synthesize all the
atomic predicates satisfied by all examples, which is done
by a simple analysis of all common attributes of nodes in
𝑁𝑒 . At this point, the key question is what combination of
these predicates to choose, as any conjunction of a subset of
these atomic predicates is a valid predicate that generalizes
over the examples but selects different nodes from 𝑁𝑠 . One

1: function SynthHybrid(𝑑, 𝑁 ,G, 𝑃𝑡 )
2: 𝑁𝑡 ← J𝑃𝑡 K(𝑑)
3: N𝑎 ← ∅
4: for each (𝑃𝑎, (𝑃1, ..., 𝑃𝑘 )) ∈ G do
5: 𝑁𝑎 ← J𝑃𝑎K(𝑑)
6: if IsAncSeq(𝑁𝑡 , 𝑁𝑎) ∧ LCA(𝑁𝑡 ) = LCA(𝑁𝑎) then
7: for 𝑖 = 1...𝑘 do
8: 𝑁𝑖 ← J𝑃𝑖K(𝑑)
9: if ∀𝑗 = 1...|𝑁 |. 𝑁𝑖 [ 𝑗] = 𝑁 [ 𝑗] return 𝑃𝑖

10: N𝑎 ← N𝑎 ∪ {𝑁𝑎}
11: for each 𝑁𝑎 ∈ N𝑎 do
12: 𝑃ℎ ← SynthTopDown(𝑑, 𝑁 , 𝑁𝑎)
13: if 𝑃ℎ ≠ null return 𝑃ℎ

14: return null

Figure 10: Hybrid program synthesis

approach that is often taken is to infer the least general gener-
alization which is simply to return the conjunction of all the
atomic predicates. Apart from creating syntactically complex
programs, these largest conjunctions easily cause overfitting
and require many examples to infer correct programs. The
approach we use here is to formulate the predicate inference
as a minimal set cover problem in which we aim to find the
smallest set of predicates that satisfy as many negative node
examples as possible. The implicit negative examples we
choose to avoid is a heuristic choice: all the nodes that lie
outside the LCA of the example nodes (we assume general-
ization to within the LCA) and those that occur before any of
the example nodes (since the example nodes are a prefix of
the desired sequence). Note that this heuristic imposes only
a preference bias to avoid as many of the negative example
nodes as possible, and is as such a soft constraint. Having
computed the soft negative examples set 𝑁n at line 3, the
remainder of the algorithm implements a greedy approxi-
mation algorithm to the set cover problem [8], as this is an
NP-complete problem. This produces smallest conjunctions
by incrementally adding atomic predicates that cover the
largest number of negative examples that have so far not
been covered by the conjunction. The one additional check
we make is to exclude any predicates that do not satisfy the
ancestor constraint 𝑁𝑎 if one is provided (lines 12 to 16).

3.4 Hybrid synthesis
Top-down synthesis is a purely supervised approach that
aims to synthesize a program in a rich DSL guided only by
the few examples provided by the user. It is hence prone
to overfitting. On the other hand, the bottom-up approach
provides a global unsupervised analysis of the webpage that
yields maximal alignment patterns on the page, but it is
limited by the very restricted DSL. In this section we describe
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our hybrid synthesis approach which improves the top down
inference by combining it with the bottom-up analysis.

In the main synthesis algorithm SynthFilterProg in Figure
6, if the top-down synthesis succeeds on a particular node
combination, then we attempt to improve this program using
the hybrid approach (line 8). The SynthHybrid(𝑑, 𝑁 ,G, 𝑃𝑡 )
function returns a program that satisfies the node specifi-
cation 𝑁 . The function synthesizes this program using the
top-ranked alignment groups G created by the bottom-up
synthesis and the top-ranked program 𝑃𝑡 created by the
top-down synthesis. The key idea underlying the hybrid
approach is that whenever the top-down program 𝑃𝑡 pro-
duces results that are consistent with any of the alignment
groups in G, then we try to ensure the alignment is com-
pletely satisfied: that 𝑃𝑡 is not missing some of the records of
the alignment group by overfitting to the examples. Hence,
in the main loop at line 4, for each alignment group we check
if the ancestor program of the group is also an ancestor pro-
gram for the top-down result and they share a common LCA.
If so, then the first preference is to simply prefer any program
in the alignment group if it directly satisfies the examples,
since this program satisfies the full alignment group and the
examples and is also within the simpler DSL L𝑏 (lines 7-9).
But such a program may not exist in the alignment group
because of the restricted bottom-up language. In this case we
collect the ancestor programs for all the satisfying groups in
N𝑎 (line 11). We then try each of these ancestor programs
𝑁𝑎 ∈ N𝑎 as an ancestor constraint in a top-down synthesis
in order to find a program that can generalize to all of the
records of the alignment group (lines 12 to 14).

We illustrate the hybrid approachwith the examplemovies
page in Figure 3 and the corresponding simplified HTML
source in Figure 4. In section 3.1 we described how the
bottom-up analysis detects the correct alignment group with
all 100 result records, and some fields such as movie runtimes,
years, etc. However, the movie title field was not detected in
this limited DSL. To extract the movie titles, if we provide
the first 2 examples to the purely top-down algorithm we get
the program “B:nth-last-child(6) > A”. This extracts 99 of the
100 titles: all except the 12th one, which is different because
it is missing one of the fields (the director) as observed by the
missing DIV element in Figure 4. Hence the nth-last-child
logic fails in this case. However, considering our hybrid syn-
thesis approach, this program is consistent with the correct
alignment group with 100 records. Since none of the field
programs in the group directly satisfy the examples, we re-
perform the top-down synthesis using the group ancestor
program as the ancestor constraint. This forces a general-
ization to all records in the group and gives the improved
program “.info > B > A” which is expressible in the top-down
DSL and correctly extracts all 100 movie titles.

4 EVALUATION
In this section we describe an evaluation of our method with
respect to different aspects of quality. We first demonstrate
improvement in overall accuracy (precision/recall) of our sys-
tem in comparison to the current state-of-the-art approaches,
using labelled training sets of documents and measuring ac-
curacy on different documents in the test set. This is one
indication of the inference power of a system, but it does not
address the important usability aspect which is the number
of examples per document the user would need to give in
practice, as it assumes the user must provide all of the de-
sired nodes from a document when training the system. We
demonstrate how our system requires the fewest number
of examples for task completion per document as compared
to other similar systems. We also evaluate two other impor-
tant usability aspects of our system: the low complexity of
the programs it synthesizes and the ability to learn from
ambiguous text-based examples.

4.1 Overall accuracy across documents
We compared the overall accuracy of an implementation
of our hybrid synthesis approach (HYB) with existing ap-
proaches for program synthesis as well model-based ap-
proaches. These include the recent work [35] on synthesis
of forgiving data extractors (FX), their corresponding non-
forgiving synthesis method (NFX), the C4.5 classifier of [38]
(C4.5), a naive bayes classifier [23] (NB), XPath alignment-
based synthesis method [34] (XA), and synthesis using least
general generalizations [27, 37] (LGG). The particular imple-
mentations we used for FX, NFX, C4.5, NB, and XA were
from [35] (some using Weka [17]), and LGG is from [37].1.

Datasets.We evaluated the systems using three datasets
which contain extraction tasks over a broad range of verticals,
websites and attributes (all our datasets are available from:
https://app.box.com/s/vi4c976afptq39524y1pofz7fw995qf9).
We used the DS1 dataset from [35] which contains 166 man-
ually annotated pages from 30 websites ranging over 4 verti-
cals (books, shopping, hotels and movies), with 2-3 attributes
per vertical (e.g. title, author or price from book pages, or the
title, genre or list of actors from movie pages). For each web-
page, ground truth is given as nodes that are annotated in
the page (marked with “userselected” attribute in the HTML).
However, the labels in the DS1 dataset include significant
redundancy in terms of multiple labelled nodes representing
the same attribute value: e.g. if the title of the book occurs in
multiple nodes in different regions of a book webpage, then
all of these nodes aremarked as the ground truth. Such redun-
dant extraction is often not the case in practice: one would
expect to extract a single data item representing the title from
a book page, or a list of actors from a movie page without
1many thanks to the authors for providing these

https://app.box.com/s/vi4c976afptq39524y1pofz7fw995qf9
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duplicate occurrences of the same actor. For this reason, we
created the dataset DS1-b, which uses the same webpages
from DS1 but where corresponding extraction tasks do not
contain such redundancy. To consider a wider range of ver-
ticals and websites, we used another bigger dataset SWDE
which consists of 626 annotated webpages from 80 websites
ranging over 8 verticals (auto, book, camera, job, movie, NBA
player, restaurant, university), with 3-5 attributes per ver-
tical and 10 websites for each vertical. We obtained SWDE
as a subset of the structured web data extraction dataset
from [18] which contains many more webpage instances but
where the ground truth is only given as text values rather
than node locations in the webpage. Hence we needed to
manually annotate the ground truth nodes as there were
multiple matching node occurrences in many cases. Given
the manual effort involved in such annotation, we annotated
the first two pages for each (vertical, site, attribute) com-
bination in the original dataset where the attribute values
were non-null. Hence SWDE maintains the same variety of
(vertical, site, attribute) combinations as the original dataset
(only smaller in terms of the number of webpage instances
per combination), and is therefore useful for a comparative
evaluation of the systems over different domains.

Experiments. We performed experiments on each sys-
tem using the three datasets DS1, DS1-b and SWDE. In each
case, we trained the system on the webpages and the desired
ground truth nodes from the training set, and then tested the
accuracy of the synthesized extractor (or classifier) on the
webpages and ground truth from the test set. In our experi-
ments we used standard precision, recall and F1 calculations
based only on the set of ground truth nodes (e.g. we do not
consider children or other nodes as permissible in precision
calculations as in [35]). The results of our experiments are
shown in Figure 11, where we show for each system the pre-
cision, recall and F-measure averaged across all tasks, and for
each metric we also include the 95% confidence interval (CI).
The main result is that over all datasets combined (top table),
our system HYB was the best performer with the highest
average F1 score of 0.86 and this is a statistically significant
improvement over all other systems at the 95% confidence
level (there is no overlap between the CIs). The same is also
true for the precision of our system which was also highest
with statistical significance (average of 0.86 with no overlap
in CIs from other systems). For recall, FX and NB were sig-
nificantly higher but they were the lowest ranking systems
overall, while NFX had slightly higher recall than HYB but
with overlapping CIs.

On dataset DS1, the best performing systems were HYB,
FX and NFX, but with large overlap in the CIs. Forgiving
selectors are highly disjunctive in nature, which may ex-
plain the better performance of FX on the dataset that has
more redundancy in the outputs. On dataset DS1-b which

All
datasets

Precision Recall F1
HYB 0.86 ± 0.03 0.87 ± 0.03 0.86 ± 0.03
FX 0.21 ± 0.03 0.97 ± 0.01 0.25 ± 0.03
NFX 0.77 ± 0.03 0.89 ± 0.03 0.78 ± 0.03
C4.5 0.61 ± 0.04 0.86 ± 0.03 0.65 ± 0.04
NB 0.32 ± 0.03 0.97 ± 0.01 0.38 ± 0.03
XA 0.73 ± 0.04 0.76 ± 0.04 0.73 ± 0.04
LGG 0.74 ± 0.04 0.75 ± 0.04 0.74 ± 0.04

DS1

HYB 0.85 ± 0.07 0.88 ± 0.07 0.85 ± 0.07
FX 0.84 ± 0.07 0.93 ± 0.05 0.85 ± 0.06
NFX 0.83 ± 0.07 0.88 ± 0.07 0.84 ± 0.07
C4.5 0.74 ± 0.08 0.85 ± 0.07 0.76 ± 0.07
NB 0.40 ± 0.08 0.92 ± 0.06 0.47 ± 0.08
XA 0.49 ± 0.11 0.51 ± 0.11 0.48 ± 0.10
LGG 0.73 ± 0.09 0.75 ± 0.09 0.73 ± 0.09

DS1-b

HYB 0.92 ± 0.05 0.95 ± 0.05 0.93 ± 0.05
FX 0.11 ± 0.03 1.00 ± 0.00 0.18 ± 0.04
NFX 0.92 ± 0.05 0.95 ± 0.05 0.93 ± 0.05
C4.5 0.75 ± 0.08 0.87 ± 0.07 0.78 ± 0.08
NB 0.43 ± 0.08 0.95 ± 0.04 0.49 ± 0.08
XA 0.56 ± 0.11 0.57 ± 0.11 0.56 ± 0.11
LGG 0.73 ± 0.09 0.74 ± 0.09 0.73 ± 0.09

SWDE

HYB 0.85 ± 0.04 0.85 ± 0.04 0.84 ± 0.04
FX 0.07 ± 0.01 0.97 ± 0.02 0.12 ± 0.01
NFX 0.71 ± 0.05 0.88 ± 0.03 0.73 ± 0.04
C4.5 0.54 ± 0.05 0.87 ± 0.04 0.58 ± 0.05
NB 0.27 ± 0.04 0.98 ± 0.01 0.34 ± 0.04
XA 0.84 ± 0.04 0.88 ± 0.03 0.84 ± 0.04
LGG 0.75 ± 0.05 0.75 ± 0.05 0.74 ± 0.05

Figure 11: Precision, recall & F1 with 95% C.I.

has less redundancy, HYB and NFX were the best performers
while FX degraded severely in precision and its recall hit
maximum. On the large dataset SWDE, the best performers
were HYB and XA with statistical significance, while NFX
degraded considerably mainly due to precision. As SWDE
mostly contains tasks with very few extractions per page,
most baselines suffered on precision here likely due to over-
generalization, while XA performed well on this dataset
but worse on others likely due to insufficient generalization.
Though never among the top performers, we note that LGG
was the third-best performing system overall after HYB and
NFX, and showed very stable metrics with averages of 0.73-
0.75 in all of the datasets. Overall, HYB was the only system
that was among the best performers in each of the datasets
individually, and it was the single best performer overall
with statistical significance.
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4.2 Number of examples per document
Measuring the overall accuracy across documents using train-
ing/test sets assumes the user must provide all of the desired
nodes from each document when training the system. This
may not be difficult for extraction from details pages where a
single or small number of nodes are desired from a document
(e.g. extracting the title or authors from a webpage about
a particular book), but it can be a significant challenge for
list pages where a single document may contain hundreds
of nodes to extract (e.g. getting titles or prices of all books
listed on a search result page). The number of examples
required from the user is an important usability aspect as
giving numerous examples can be error-prone and difficult.
Inferring correct inferences from fewer examples indicates
the robustness of the system and lessens the risk and burden
of verification for the user. This issue can be addressed by
supporting the ability to learn from partial examples specifi-
cations: the user need only give a small subset of the desired
selection of nodes in a document, e.g. providing the titles of
the first two or three books from a search result page and
the system can infer the correct program to extract all titles.
In this section we provide an evaluation of our approach
compared with other systems supporting partial examples
specifications. Given a document from which there are 𝑁
nodes to extract, the goal of our evaluation is to find out how
many examples are required to give to the system before
it can learn a program that extracts all 𝑁 nodes from the
document. Since such evaluation is not appropriate for tasks
where 𝑁 itself is very small (showing inference from few
examples would be trivial), we only consider extraction tasks
where there are 5 or more nodes to extract from a document.

Datasets. The first dataset we use is EX1, which consists
of all the tasks from the datasets DS1, DS1-b and SWDE
where there are 5 or more nodes to extract from the webpage.
This gave a total of 93 tasks (48 from DS1, 43 from DS1-b
and 2 from SWDE). As most of the tasks in these datasets
were for attribute extraction from details pages, the number
of tasks in EX1 is small and the average number of nodes to
extract per task is 12.8. We therefore used a bigger dataset
EX2 that targeted list extraction tasks. This consists of 225
tasks from 66 webpages, with an average of 56.9 nodes to
extract per task. These scenarios were mostly provided by
the Power BI product team as their representative customer
scenarios, as well as real use cases we collected from online
help forums or videos where users describe their real world
web scraping tasks (we have included with our dataset the
links to the original online sources for the webpages used
in these scenarios). Unlike EX1, webpages in EX2 generally
contain large amounts of tabular information in arbitrary
formats, from sites in different domains, e.g. Amazon, eBay,
Kayak, Craigslist, Ikea, IMDB and other lesser known sites.

Figure 12: Number of examples for tasks in EX1

Figure 13: Number of examples for tasks in EX2

Experiments. Using datasets EX1 and EX2, we compared
our system with the other baseline systems supporting par-
tial examples specifications. FX, NFX, C4.5 and NB do not
support partial examples by design, because they implicitly
assign all of the nodes in a document that are not annotated
by the user as negative examples. For empirical verification,
when we applied NFX (the best performing baseline from the
last section) to tasks in EX1, only 6 out of the 93 tasks could
be completed with partial examples. All other tasks required
all nodes from the page to learn the correct extraction, or else
they were over-fitting to the partial examples (we speculate
that the 6 cases succeeded with partial examples probably
because a selector could not be found that generalized only
to the given examples). Since it is not sensible to compare
against these systems, in our experiments we considered the
two baselines LGG and XA that do support partial exam-
ples. We also compared with another baseline system TDSN,
which is our top-down system using the greedy set cover
heuristic with soft negative examples but not using the hy-
brid approach. For each task, given a document and sequence
of nodes to extract, we provided examples to the system in-
crementally in prefix order over the target node sequence,
until the complete sequence could be extracted by the system.
Figures 12 and 13 show the number of examples that were
required for task completion in EX1 and EX2. The top line
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HYB .b_algo CITE
TDSN .b_algo > .b_caption > .b_attribution > CITE
LGG LI.b_algo > DIV.b_caption:nth-child(2):nth-last-child(1)

> DIV.b_attribution:nth-child(1) > CITE:nth-child(1)

HYB .a-size-small + .a-size-small
TDSN .a-col-right > .a-spacing-small > .a-row > :nth-child(2)
LGG DIV.a-fxd-lft-grd-col.a-col-rht[style*="float left"][style*="padding-left 2%"]:nth-child(2)

:nth-last-child(1) > DIV.a-row.a-spacing-small:nth-last-child(2) > DIV.a-row.a-spacing-
none:nth-last-child(1) > SPAN.a-size-small.a-color-second:nth-child(2):nth-last-child(1)

HYB .above-button .price
TDSN .Theme-featured > A.booking-link[id*="-booking-link"][tabindex="0"]

[role="option"][target="_blank"]:nth-child(1):nth-last-child(1) > .price
LGG DIV.Common-Booking-MultiBookProvider.featured-provider.Theme-featured

.multi-row[id*="-price-mb-aE"][aria-hidden="false"]:nth-child(1):nth-last-child(1)
> A.booking-link[id*="-booking-link"][tabindex="0"][role="option"][target="_blank"]
:nth-child(1):nth-last-child(1) > SPAN.price.option-text:nth-child(1):nth-last-child(2)

Figure 14: CSS selectors created for 3 sample tasks

indicates the number of cases where the correct node selec-
tion could not be inferred even with all examples. The main
result is that for both datasets, our system HYB completed
the highest number of tasks with 2 examples or less. The
relative performance of all the systems followed a similar
pattern in both datasets: the percentage of tasks completed
with under 2 examples in EX1 was XA (45.2%), LGG (44.1%),
TDSN (53.8%), HYB (65.6%), while for EX2 it was XA (63.1%),
LGG (62.7%), TDSN (72.0%), HYB (85.8%). We observe that
in general a higher number of examples was required by all
systems for tasks in EX1. This is explained by the high redun-
dancy in tasks in DS1, as duplicate occurrences of text values
in different regions of the webpage require more examples
(all tasks requiring more than 5 examples or failing for HYB
in EX1 were from DS1). Overall, XA and LGG performed
similarly but XA had significantly more failing cases. The
improvement in TDSN over LGG or XA (∼9%) indicates the
gain in robustness obtained by using the greedy set cover
heuristic (for predicate inference using soft-negative exam-
ples) over the least general generalization or path alignment
approaches. The more significant improvement in HYB over
TDSN (∼13%) illustrates the greater benefits obtained with
our hybrid approach that utilizes the bottom-up analysis.
To compare against the purely unsupervised bottom-up ap-
proach that works without examples: the top table from such
a system [39] failed on 68.8% of tasks in EX1 and 31.6% for
EX2.

4.3 Other usability aspects
Program complexity. The complexity of the programs that
are synthesized is another important usability aspect, as it
affects how easily the user can understand or manipulate
the synthesized program if required. This can be difficult if
synthesized programs have a large number of expressions,
and thus we take the program size as a quantitative indica-
tor of complexity. We examined the number of operators
used in the CSS selectors synthesized by our system HYB,
and compared with the other systems that also synthesize

Figure 15: Number of text examples for EX1 & EX2

CSS selectors (LGG and TDSN). We found that across all
datasets, 13.4% of programs synthesized by LGG had three
operators or fewer, while this increased to 68.4% for pro-
grams synthesized by HYB. The average program sizes for
the three approaches were: LGG (7.9), TDSN (3.8), HYB (3.6).
This shows the reduction in complexity gained by the infer-
ence of minimal predicate conjunctions, as well as the use
of more expressive operators such as descendants and sib-
lings in the bottom-up DSL L𝑏 used by our hybrid synthesis
approach. From experience, CSS selectors with about 3 to 4
operators is around the number one would expect to write
by hand for most extraction tasks, making the complexity of
programs synthesized by our system comparable to human-
written programs. For some qualitative illustration, we show
examples of the CSS selectors synthesized by the different
systems for sample tasks in Figure 14. This shows the drastic
reduction in complexity in selectors produced by HYB (using
descendant and sibling operators) as compared to the other
baselines.

Since other previous approaches have focussed on XPath
rather than CSS synthesis, we cannot directly compare num-
ber of operators as different operators are used in the two lan-
guages. But for approximate comparison we give the string
size (number of characters) of synthesized expressions. NFX
and FX were running out of memory on EX2, but on EX1 the
average string sizes were HYB: 129, TDSN: 155, LGG: 345,
XA: 272, NFX: 227, FX: 1010. Particularly long and verbose
expressions were created by FX (containing many disjuncts)
and XA (containing very long paths).

Program complexity is an interesting area which we have
begun to explore here using methods such as minimal set
cover, ranking by size and using expressive DSL operators.
Though the problem is more general than program equiva-
lence (a simpler unequivalent program may be preferable if
it satisfies the examples), reduction based on full equivalence
may yield further benefits.

Text-based examples. Another novel aspect of our ap-
proach is the ability to synthesize programs from text-based
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examples when node-based examples cannot be given. As
previous approaches have not addressed this problem, we
present a comparison with a naive baseline in which we use
our system but simply accept the first nodes in the document
that match the text examples in document order (HYB-T1).
We compare this against our complete text-node disambigua-
tion system (HYB-T2). Figure 15 shows the results of pro-
viding these two systems with the text-only examples for
all the tasks in datasets EX1 and EX2. We observe the over-
all improvement in the number of examples gained with
our text-disambiguation approach, which succeeded with at
most 2 examples in 76.4% of tasks, as compared to 70.1% for
the naive baseline. The baseline also failed altogether in 9.1%
of tasks as compared to 3.8% for our approach.

Deployment. Our approach has been deployed as a fea-
ture in the Microsoft Power BI product used by business
intelligence analysts. The Power BI team integrated our ap-
proach in their spreadsheet-based UI, in which the user can
type in examples and the system infers a CSS selector to
complete the task and auto-fills the table. The inferred pro-
gram becomes part of the analysis script which the user can
edit manually or re-execute in the future to refresh the data.
The feature is under active development, with a version of
the TDSN system currently released for general audience,
and development is ongoing to incorporate our complete
system. It has been well-received by users as seen in online
forums and videos (see the online sources for some of the
tasks in our EX2 dataset). One example sentiment: “I got so
excited about this the day of release! I’ve managed to get so
many obscure things working!”

5 RELATEDWORK
Supervisedweb extraction. Supervised approaches to web
data extraction have mainly centered around wrapper induc-
tion [25], where the goal is to learn extraction rules from
HTML pages given sample annotations. Early work in this
area mainly focused on string or token-based approaches
[19, 25, 31], where the document is viewed as a sequence of
characters or tokens, and extraction is based around delim-
iter patterns. This is in contrast to HTML-aware systems,
which exploit the tree-structure of HTML explicitly. This be-
gan with some interactive programming approaches where
the user provided various structural constraints [6, 32, 42],
and since then there has been greater focus on learning wrap-
pers from examples in widely used standard HTML query
languages such as XPath or CSS [3, 13, 33–35, 37, 46], which
has also been our focus in this work. Approaches based on
XPath alignment [33, 34] work by aligning the steps within
the XPaths of sample nodes based on edit distances, and
merging them to a single generalized XPath. In [46], a record-
level wrapper system is proposed which generates complete

tag-paths from the root node. Approaches based on least
general generalizations [37] produce largest conjunctions
of all the properties that example nodes have in common.
Such approaches based on alignment or largest conjunctions
lead to long path expressions or numerous predicates, which
are complex to understand and over-fit on the examples, as
shown in our evaluation. Some approaches such as forgiving
XPaths (FX) [35] attempt to improve the recall and learn
cross-site selectors by using multiple disjuncts in the gener-
ated selectors, but we show in our evaluation how this leads
to severe loss in precision. Machine learning techniques have
also been explored such as naive-bayes classifiers [13] and
decision trees (NFX system [35]), and we have also shown
improvement in robustness over such approaches with our
hybrid synthesis method. Other related work has gone be-
yond the use of standard HTML languages and explored
arbitrarily more sophisticated extraction models, such as
using visual or semantic features or specialized handling
for particular vertical domains [7, 11, 18, 24, 36]. Though
beneficial in many scenarios, such approaches are not de-
signed to generate simple selector expressions that users
can understand, manipulate, and execute in standard HTML
tools. To make an analogy with text extraction, users that
require simple regular expressions for common everyday
text manipulation tasks will not be served well by complex
extraction techniques or deep semantic analyses. Thus in
this respect, our problem definition is more specialized than
arbitrary wrapper induction or information extraction, as
it includes the requirement of inferring concise, readable
programs in standard lightweight languages.

Unsupervised, KB-based& distant supervision. Fully
automated web extraction approaches attempt to mine re-
curring patterns in the DOM structure of web pages without
any annotated examples [4, 9, 39, 45], and some include gen-
eration of wrappers in standard languages, e.g. [39]. These
approaches are generally good at finding prominent patterns,
but cannot guarantee that all kinds of information desired
by different users will be extracted, for which supervised ap-
proaches are better-suited. However, in our semi-supervised
hybrid approach we have shown how to incorporate such un-
supervised analysis which can be very beneficial to quickly
converge to the desired extraction. Another interesting area
of research has been to leverage existing knowledge bases
(KB) and distant supervision to align attribute values in KB
to text values on webpages for learning wrappers [12, 14, 29].
Such approaches workwell for cases where relevant KBsmay
exist, but this is not the case in general such as for dynamic
web pages, private webpages or other parts of the deep web.
However, for scenarios where KBs are applicable, these tech-
niques may be used in place of purely unsupervised methods
to further improve our hybrid synthesis approach.
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Program synthesis from examples. Programming by
example (PBE) has seen significant interest and progress
in recent years [2, 5, 10, 15, 16, 26, 28, 30, 37, 39, 44], with
notable commercial successes such as the Flash Fill feature
in Microsoft Excel for automating string transformations
[15]. Given a domain-specific language (DSL) and an ex-
amples specification, PBE systems aim to find a program
in the DSL that satisfies the examples. Approaches can be
broadly classed as either bottom-up approaches that enu-
merate programs following the syntax of the DSL [2, 39], or
top-down approaches [16, 37] where examples constraints
are recursively propagated through the DSL from the given
specification. In this work we have presented the first hy-
brid approach which combines the benefits of the two ap-
proaches into a semi-supervised synthesis system. Although
this work has focused specifically in the web domain, the
fundamental concepts can be more generally applicable to
different document domains if we consider other selection
DSLs, e.g. regex-based selectors for plain text documents, or
spatial/position based selections for PDF documents, which
will be interesting explorations for future work.

6 CONCLUSION
We have described a novel hybrid program synthesis ap-
proach for inference of web data extraction programs from
examples, which provides inference of concise programs
expressible in common languages from a small number of
examples, as well as the ability to learn from text-only exam-
ples. We have addressed these challenges with three novel
ideas: a semi-supervised program synthesis approach effec-
tively combining top-down and bottom-up synthesis method-
ologies, inferring concise predicates based on soft negative
examples and resolving text-node disambiguation based on
structural document features. Our evaluation illustrates the
effectiveness of our approach in dealing with the usability
challenges on real-world datasets, and meets the high bar
for shipping in the mass-market Power BI product.
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