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ABSTRACT 
CAPTCHAs are challenge-response tests to differentiate hu­
mans from automated agents, with tasks that are easy for 
humans but difficult for computers. The most common 
CAPTCHAs require humans to decipher characters from an 
image and are unsuitable for visually impaired people. As an 
alternative, audio CAPTCHA was proposed, which require 
deciphering spoken digits/letters. However, current audio 
CAPTCHAs suffer from low usability and are insecure against 
Automatic Speech Recognition (ASR) attacks. In this work, 
we propose reCAPGen, a system that uses ASR for generat­
ing secure CAPTCHAs. We evaluated four audio CAPTCHA 
schemes with 60 sighted and 19 visually impaired participants. 
We found that our proposed Last Two Words scheme was the 
most usable with success rate of >78.2% and low response 
time of <14.5s. Furthermore, solving our audio CAPTCHAs 
can transcribe unknown words with >82% accuracy. 

Author Keywords 
CAPTCHA; evaluation; MTurk; blind; visually impaired. 

CCS Concepts 
•Human-centered computing → Accessibility; 

INTRODUCTION 
CAPTCHAs (Completely Automated Public Turing test to 
tell Computers and Humans Apart) [1] are challenge-response 
tests that determine whether a user is human or a computer 
by asking the user to perform a task that computers cannot 
yet perform. They are widely used as security measures to 
prevent automated abuse of online services. A key challenge 
with developing a CAPTCHA scheme is the inherent trade-off 
between usability and security, as the task must be difficult 
for a computer to solve so that it is secure, while also being 
usable, i.e., it can be completed by a human with low effort. 
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Visual CAPTCHAs are widely used, asking users to decipher 
distorted characters in an image. They rely on keen visual per­
ception of humans to discern foreground text from the noisy 
background. This limits their usability in certain scenarios, 
such as for people with visual impairments and on devices 
without a computer screen. Hence, an alternative called au­
dio CAPTCHA was introduced, wherein users identify the 
digits or letters spoken in a garbled audio. Nearly 1% of all 
CAPTCHAs are delivered as audio rather than images [8]. 
However, audio CAPTCHAs have been found to be very diffi­
cult and time-consuming with a success rate of below 52% [4, 
8, 30]. Current audio CAPTCHAs are also not secure, as au­
tomated programs have been able to successfully break more 
than 70% of audio CAPTCHAs [7, 23, 36]. In order to im­
prove Internet’s accessibility to visually impaired users, there 
is a need to develop usable and secure audio CAPTCHAs. 

In addition to accessibility, an important potential use case for 
audio CAPTCHAs is adding a layer of security on devices with 
speech as the primary mode of interaction. The last decade 
has seen rapid growth in speech-based interfaces on a variety 
of mobile and ubiquitous platforms, including smart speakers, 
VR/AR devices, and smartwatches. These devices have seen 
rapid adoption within the visually impaired community as 
well, mainly for accessing the web and navigating unfamiliar 
environments [13]. However, voice assistants are vulnerable to 
potential security threats [9, 20] including simple replay attack 
and attacks by a text-to-speech systems [11]. For instance, in 
the case of a suspicious transaction (“Alexa, transfer a hundred 
dollars to Ryan’s account”), Alexa can ask the user to repeat 
the words in an audio CAPTCHA clip. Such a system would 
block automated agents, e.g., a malicious agent on a phone app 
that impersonates a human by replaying a previously recorded 
human voice command (replay attack) or by generating a 
command with automated text-to-speech. Note: We claim that 
reCAPGen generated audio CAPTCHAs are secure against 
a few common attacks, however we do not claim that audio 
CAPTCHAs can ensure complete security of speech-based 
interfaces, as several other attacks are still feasible on them. 
As audio CAPTCHAs can enhance the security of speech-
based interfaces for all users, we evaluated its usability with 
both sighted and visually-impaired users. 

Solving a CAPTCHA requires human effort, which can be 
channeled to achieve a useful task [39]. Such CAPTCHA 
schemes are called reCAPTCHA. Visual reCAPTCHA pop­
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ulates visual CAPTCHAs with text from old printed books 
that optical character recognition (OCR) have failed to recog­
nize; this helps in the digitization of books [39]. Similarly, 
audio reCAPTCHA was proposed for the transcription of au­
dio clips from old radio programs that ASR systems have 
failed to transcribe [18, 37]. Though secure, word-based au­
dio reCAPTCHA was found to be unusable [18]. The audio 
reCAPTCHA project is no longer active, and details about the 
project are not well-documented. Hence, state-of-the-art audio 
CAPTCHAs comprise of random digits in a garbled audio, 
and do not include the reCAPTCHA component. 

In this work, we propose reCAPGen system to generate audio 
reCAPTCHAS with the following goals: 

1.	 Usability: Usability is measured using two metrics – suc­
cess rate and time taken to solve the CAPTCHA. For visual 
CAPTCHAs, the average time taken is 9.8s and success 
rate is 87.3% [8]. 

2.	 Security: The generated CAPTCHAs need to be secure 
against the previously known common attacks. 

3.	 reCAPTCHA: The human effort in solving a CAPTCHA 
should be channeled to some meaningful purpose. Solving 
audio CAPTCHA can generate audio transcriptions. 

4.	 Auto-generation: For a secure and usable reCAPTCHA to 
work at scale, it must be equipped to auto-generate millions 
of unique audio CAPTCHAs without any human interven­
tion. Moreover, this large database of CAPTCHAs makes 
it more robust against security attacks [4, 36]. 

reCAPGen selects audio clips from old radio programs, pod-
casts, and YouTube lectures, parts of which ASR systems 
fail to transcribe. reCAPGen then adds a calibrated amount 
of noise that would minimally affect the human ability to 
solve the generated audio CAPTCHAs, but further compro­
mises an ASR system’s ability to do so. This ensures that 
the generated audio CAPTCHAs are secure against ASR solv­
ing it. Most of the previous works use ASR attacks to break 
audio CAPTCHAs [29, 5, 25] (Table 2). Moreover, as our 
CAPTCHA involves arbitrary words (not taken from a fixed 
set), it is secure against multi-class classifiers, also known 
as supervised learning techniques. In contrast, current audio 
CAPTCHAs taken from a fixed set of letters/digits are solv­
able by supervised learning with a high success rate of >70% 
[7, 6, 36]. To increase the usability of audio CAPTCHAs, we 
enable users to speak their response, instead of having to type 
it. With this, our system can be used to enhance the security 
of devices with speech as the dominant mode of interaction. 

To evaluate the usability of these CAPTCHAs, we conducted a 
user study with 60 sighted people on the Amazon Mechanical 
Turk platform and with 19 visually impaired people in-person, 
comparing four audio CAPTCHA schemes: (1) Random Dig­
its (RD): the state-of-the-art audio CAPTCHA, (2) Two Words 
(TW): two consecutive words from an audio clip which need to 
be transcribed (similar to [33]), (3) Last Two Words (LTW): 5­
7 words from an audio clip, where only the last two words need 
to be transcribed, and (4) Full Phrase (FP): 5-7 words from 
an audio clip, where the full phrase needs to be transcribed 

(similar to [18, 37]). We propose the novel LTW scheme. In 
LTW, we combine the TW and FP scheme in a way such that it 
reduces the mental demand on the user to memorize and repeat 
a long phrase, while providing context to the last two words 
that needs to be repeated by the user to solve the CAPTCHA. 
Data collected from the user study showed that LTW achieved 
the highest success rate (78.2% with sighted participants and 
81.3% with visually impaired participants) with comparable 
response time (9.6s with sighted participants and 14.5s with 
visually impaired participants), and high usability ratings by 
the participants. Moreover, we found that solving our au­
dio CAPTCHAs led to generation of >82% accurate audio 
transcription. These accurate transcriptions can help making 
media accessible to people with hearing impairments. 

To summarize, the major contributions of our work are: (1) 
A fully automatic system, reCAPGen, to generate usable and 
secure audio reCAPTCHAs (available as an API). (2) A novel 
audio CAPTCHA scheme, Last Two Words, combining the 
benefits of prior proposed audio CAPTCHAs. (3) A user evalu­
ation of generated audio reCAPTCHAs, proving their usability 
for both visually impaired and sighted users, and identifying 
suitability of variations to different use case scenarios. 

RELATED WORK 
In this section we discuss the prior work on audio CAPTCHA. 
We begin by discussing the following metrics: usability and 
security (Table 1). We then provide an overview of audio 
reCAPTCHA, followed by discussing sound-based content 
and different user input modalities. Throughout the section, 
we discuss the accessibility aspect of these audio CAPTCHAs. 

Usability of Audio CAPTCHA 
The most prevalent audio CAPTCHA scheme consists of sev­
eral speakers saying digits at randomly spaced intervals with 
added background noise. The noise not only challenges auto­
mated agents, but also makes the CAPTCHA more difficult 
for humans to solve [37]. In a large-scale evaluation with 
318,000 CAPTCHAs from 21 CAPTCHA schemes (13 visual 
and 8 audio schemes), Bursztein et al. [8] found that sighted 
users achieved an average success rate of 87% with visual 
CAPTCHA, but only 52% with audio CAPTCHA. Moreover, 
users took an average time of 9.8s to solve a visual CAPTCHA, 
compared to 28.4s for audio CAPTCHA. Similarly, Bigham 
and Cavender [4] found that both sighted and blind users had 
a low success rate of 39% and 43%, respectively, with au­
dio CAPTCHA. These evaluations clearly demonstrate that 
state-of-the-art audio CAPTCHAs are unusable for humans. 

Security of Audio CAPTCHA 
The two most common approaches to break audio CAPTCHAs 
are supervised learning approach and ASR (Table 2). Tam 
et al. [36] analyzed the security of audio CAPTCHAs based 
on random digits and letters, and showed that an SVM-based 
approach was able to correctly solve 71% of them. With 
only 10 digits and 26 letters, supervised techniques (such as 
SVM, RLSC) use training data to classify each digit/letter to 
a particular class. DeCAPTCHA [7] broke 75% of eBay’s 
audio CAPTCHAs using an undisclosed supervised technique. 
More recently, random digits audio CAPTCHAs have been 
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Audio CAPTCHA Description Success Time Secure reCAPTCHA AutoGen User Input 
Google, eBay, etc. [4, 7, 8, 36] Random digits 52% 28.4s No No Yes Type 
Meutzner et al. [21] Random 4-6 words ~58% >20s Yes No Yes Type 
Old Radio [18, 37] 6-10 words phrase 46% 35.75s Yes Yes Yes Type 
HIPUU [31, 32] Image & sound 90% 65.64s No No No Type/Click 
SoundsRight [19] Sound 92% 45s Maybe No No Press a key 
Telephone/VOIP [28, 35] Random digits 13.7% 80.25s No No Yes Press keys 
HearSay [33] Two words 75% ~13s No No No Speak 
reCAPGen (Last) Two words 78.2% 9.6s Yes Yes Yes Speak 

Table 1: Prior work related to Audio CAPTCHA (Note: Success Rate and Time Taken are measures of Usability) 

Work Type Method Accuracy 
2008 [36] Google RD, Digg RD&L, RD SVM* 67, 71, 45% 
2009 [7] eBay RD –* 75% 
2011 [6] Authorize RD&L, Digg RD&L, RLSC* 89, 41, 82, 

eBay RD, MS RD, Yahoo RD 49, 45% 
2013 [29] Google RD ASR 52% 
2017 [5] Google RD ASR’s 85.15% 
2017 [25] Google RD ASR >90% 

Table 2: Breaking Audio CAPTCHA work. RD&L: Random 
Digits and Letters. *SVM, RLSC are different multiclass 
classifiers, using supervised learning approach. 

broken using state-of-the-art ASR’s [29, 5, 25]. Interestingly, 
Google CAPTCHAs are solvable using Google ASR with 
a high success rate of >90% [25]. This shows that current 
CAPTCHAs are not secure. Meutzner et al. [21, 22] proposed 
audio CAPTCHAs consisting of 4-6 English words, with noise 
sounds inserted at random positions in the audio. However, 
the English words were taken from 100 high frequency words; 
a CAPTCHA scheme should not select questions (or words, 
in this case) from a fixed set, as it may be easily solvable by 
computers using supervised learning techniques [4, 36]. 

Audio reCAPTCHA 
Ahn et al. proposed visual reCAPTCHA [39] consisting of two 
words: a control word that is correctly recognized by OCR, 
and a suspicious word that is not successfully interpreted by 
OCR. To solve the visual reCAPTCHA, the user must solve 
the control word correctly since its answer is already known to 
the system. By answering the suspicious word, the user helps 
digitize books. To add the reCAPTCHA component to audio 
CAPTCHA, researchers proposed using 6-10 word-long audio 
clips from old radio programs, which ASR systems failed to 
transcribe [18, 37]. It consisted of a few words that validated 
a user to be human, while the other words helped in the audio 
transcription [39]. The rationale behind using long radio clips 
was that the human mind will use the contextual clues in the 
phrase to decipher the distorted audio, thus making this task 
easier for humans, as compared to recognizing random digits. 
However, when evaluated with 10 blind participants, Lazar et 
al. found poor usability with success rate of 46% and average 
time of 35.75s [18]. This may be because remembering and 
typing 6-10 words of a phrase is difficult and time-consuming. 

Sound-based Audio CAPTCHA 
Apart from numbers, letters, and words for audio CAPTCHA, 
sound-based approaches have also been proposed. HIPUU 
(Human Interaction Proof, Universally Usable) [14, 30, 31, 

32] presents an image with a corresponding sound-based audio 
clip, such as a bird image with bird chirping audio, to make 
the CAPTCHAs accessible to blind users. The user can view 
the image and/or listen to the sound to identify the content 
and solve the CAPTCHA. SoundsRight audio CAPTCHA 
[19] asks the user to identify a specific sound (e.g., sound 
of a bell) in an audio and press space button each time it 
occurs. Although both HIPUU and SoundsRight usability 
evaluation results were promising with above 90% success 
rate for blind users, there are security concerns as the images 
can be recognized by automated tools, and the number of 
human recognizable sounds that can be used in SoundsRight 
is very limited, which can jeopardize its security [4, 36]. 

Modalities for Answering Audio CAPTCHAs 
Apart from typing, other modalities for answering audio 
CAPTCHAs have been proposed, including pressing buttons 
[19, 28, 35] and speaking [33]. To use digit-based audio 
CAPTCHAs for telephony systems [28, 35], instead of typ­
ing the response, the user presses the numeric buttons on the 
phone [35]. In an evaluation with 90 sighted participants, the 
average success rate was found to be 13.7% with average time 
of 80.25s [28] . Shahreza et al. [33] proposed HearSay, in 
which users say the solution to a two-word audio CAPTCHA 
aloud. The two words were randomly selected from 100 most 
frequent words, making it susceptible to supervised learning 
attacks. Sighted participants in their study achieved a suc­
cess rate of 75% (compared to 61% with typing). For audio 
transcription (not related to security/CAPTCHA), Vashistha 
et al. proposed Respeak [38], a voice-based, crowd-powered 
system that uses ASR to transcribe audio files. The Respeak 
and HearSay evaluations [33, 38] showed that using speaking 
skills, rather than typing skills, helps to reduce error rate and 
response time. 

In this work, we use speaking to solve CAPTCHAs generated 
from audio on which ASR have failed, thus achieving auto-
generated usable and secure audio reCAPTCHA. 

reCAPGen SYSTEM DESIGN 
In this section, we step through our system to automatically 
generate audio CAPTCHAs from input audio files (Figure 1). 

Audio Source and its Chunking 
We used audio from old radio programs [2], podcasts [3], 
and YouTube lectures (in history, psychology, and computer 
science) as input. We avoided songs and movie dialogues as 
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Radio, podcast, YouTube 
lectures (3-120 mins)

Source

Audio 
Chunks

25 sec 
long

Filters Loudness 
CorrectionTranscription

Using IBM ASR, which 
provides word-level 

confidence score, and 
start and end time of 
each word, along with 

transcription

Confidence 
Score Analyzer

Find two consecutive 
words such that one has 

high confidence score 
(control word) and other 

has low confidence score 
(suspicious word)

Clip Extractor
Crop audio clip consisting 

of the: (a) two words, 
(b) two words with 3-5 
words added in front, 
(c) two words with 1-3 

words added on both the 
sides, such that the 

phrase is of 5-7 words

Noise 
Adder
Add noise

Checker
Transcribe the 
noise-added 

audio clip 
using IBM 

Watson and 
Google Speech

+ offensive word
+ multi-speaker
+ small word
+ non-English word
+ short/long clip
+ second ASR

Adjust the 
loudness

If control word is part of 
the transcribed text

If control word is not part of the transcribed 
text, add this audio clip to the final dataset

Figure 1: Audio reCAPTCHA automatic generation system, reCAPGen. 

audio sources (unlike [38]), because song lyrics and movie 
subtitles are easily available on the Internet and hence are 
susceptible to automated attacks. The audio source length 
ranged from 3 minutes to 2 hours. As transcribing large-sized 
audio file usually takes a long time, reCAPGen splits the 
source audio file into 25s chunks and transcribes each chunk 
separately. To generate the audio transcription, reCAPGen 
used IBM Watson Speech-To-Text (STT) API service [15], 
which is an ASR system. We selected IBM ASR because: (1) 
it provides a word-level confidence score for the predicted 
transcription, and (2) it outputs the start and end time of each 
word in the audio clip. Most other ASR services, including 
Google Speech [10], only outputs the phrase-level confidence 
score along with the transcription, and do not provide the start 
and end time of each word. 

Analyze Transcription to Get Candidate CAPTCHAs 
reCAPGen analyzes the obtained transcription of each audio 
chunk to find two consecutive words, such that one word 
has a high transcription confidence score (of above 0.85), 
while the other has a low transcription confidence score (of 
below 0.5); these form the control word and the suspicious 
word, respectively. The control word is used for authenticating 
the human user, while the suspicious word is used for audio 
transcription. We chose the threshold values (of 0.85 and 0.5) 
after experimenting with several values. In our audio chunks, 
93.1% of the identified words had a confidence score of above 
0.75. Using manually generated ground truth transcription 
data, we found that 97.5% of the words with a confidence 
score of above 0.85 were correctly transcribed, and 89% of the 
words with a confidence score of below 0.5 were incorrectly 
transcribed. 

reCAPGen then extracts an audio clip of these two words 
using the start and end time of the words, to form candidate 
audio CAPTCHA clips. Wherever possible, for the audio clip 
extraction, reCAPGen uses the end time of the word before 
the first word, and the start time of the word after the second 
word. This increases the probability that the start of the first 
word and the end of the second word is not cut abruptly. 

Audio Clip Filters 
Each candidate clip passes through several filters. Filters were 
added based on results and feedback obtained from two lab-
based pilot studies with 4 participants each. In each study, we 

asked participants to listen to 30 different audio clips and ver­
bally transcribe it. After that, we obtained subjective feedback 
related to the audio clips. 

1.	 reCAPGen excludes audio clips wherein the control word 
is rude or offensive, as per IBM ASR’s profanity filter. 

2.	 Using IBM ASR’s speaker detection, reCAPGen removes 
audio clips that have more than one speaker for the two 
words. The sudden change of the speaker between the two 
words was found to be disturbing for our pilot users. 

3.	 reCAPGen checks the number of characters in the control 
word and discards audio clips with a small word as the 
control word. The first pilot study found that small words 
(3 or fewer characters) are usually difficult for the users to 
identify correctly (with 18.3% success rate). 

4.	 The control word should be present in the English dictio­
nary. If the control word is neither found in the Python 
Natural Language Toolkit (NLTK) [26] nor in the WordNet 
dictionary [24], reCAPGen discards the audio clip. 

5.	 reCAPGen checks that the length of the audio clip con­
taining only two words is between 0.5-1.5s. We found 
that longer audio clips usually have a long pause, laughter 
sound, or musical gaps, which can be distracting for users. 
Also, very short audio clips may have words spoken very 
quickly, which can be hard for the users to understand. 

6.	 reCAPGen transcribes the audio clip using additional ASRs 
(e.g., Google Speech [10]), and if the control word is not 
found in the transcription, the audio clip is removed. This 
step filters out audio clips for which the control word is in­
correctly transcribed by IBM ASR, even with a confidence 
score of above 0.85. 

Applying the filters removes a large number of candidate clips. 
Yet there are sufficient generated candidate clips for scalable 
automatic generation. For a 10-minute audio source, 24 audio 
chunks are created. Of these, on average 10.3 (sd=3.1) audio 
clips have consecutive words with high and low confidence 
scores. All the filters together discard 78.1% of the candidate 
clips, thus for a 10-minute source audio clip, on average 2.3 
(sd=1.8) CAPTCHA clips are generated. 

Audio Loudness Correction 
In the first pilot study, participants found a few clips to be too 
loud such that it was “jarring” for them, or too soft in volume 
that it was hard to hear. reCAPGen increases or decreases 
the mean sound level of the clip to -15.93 dBFS. We use this 
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dBFS value because it is the mean for a large dataset of audio 
files from different sources [2, 3] (m=-15.93 dBFS, sd=4.5). 

Background Noise Addition 
To ensure that an ASR system would not be able to solve the 
generated candidate audio CAPTCHA by correctly identifying 
the control word, reCAPGen adds random background noise 
to the audio clip. For each clip, reCAPGen calculates the 
minimum noise that needs to be added such that both IBM 
and Google ASR fails to identify the control word correctly. 
More ASR’s can be added to this stage. reCAPGen uses a 
variation of binary search algorithm to calculate the minimum 
noise required, thereby ensuring that the human usability is 
not affected more than is required for security considerations. 
As ASRs with improved accuracy are designed in future, this 
step ensures that reCAPGen can dynamically adapt to make 
the right trade-off between usability and security. 

In the second pilot study, we compared the transcription of 
audio clips with the noise added only over the control word, 
versus addition of noise over the complete audio clip. We 
found that sudden changes in the background noise distracted 
participants and reduced their success rate. Thus, reCAPGen 
adds noise to the complete audio clip. Clips that are correctly 
solved by either IBM or Google ASR, even after adding the 
upper threshold of noise, were discarded. We chose the noise 
threshold to be 70% of the mean sound level of the audio clip. 
The average noise level added among all the audio clips was 
-10.8±2.9 dBFS. 

AUDIO RECAPTCHA EVALUATION 
To evaluate the usability of generated audio reCAPTCHAs, 
we conducted two studies: with sighted users on Amazon 
Mechanical Turk [16], and with visually impaired users in-
person. We chose to study the two populations, because audio 
CAPTCHAs have been traditionally used as an alternative to 
visual CAPTCHAs for people with visual impairments, while 
recently with the growth of speech-based interfaces, audio 
CAPTCHAs will be relevant for sighted users as well. 

Types of audio CAPTCHAs Evaluated 
We evaluated these – one CAPTCHA (RD) and three re-
CAPTCHA (TW, LTW and FP) – schemes: 

(1) Random Digits (RD): For RD, we used the state-of-the­
art audio CAPTCHA from Google. Each CAPTCHA audio 
file consisted of 10 random digits in a sequence, spoken by 
different speakers over different lengths of time with different 
background noises. For the validation, we manually generated 
the correct solution to the downloaded CAPTCHAs. 

(2) Two Words (TW): In TW, the audio clip only consisted 
of the control word and the suspicious word. This is similar 
to HearSay [33], though in their system, the two words were 
randomly selected from the 100 most frequent words, and 
hence those CAPTCHAs were not secure. 

(3) Last Two Words (LTW): LTW used an audio containing a 
5-7 word long phrase, with only the last two words need to be 
transcribed. Compared to TW, we included extra words at the 
beginning to provide context to the user, in order to aid them 

in solving the CAPTCHA. To generate LTW CAPTCHAs, the 
Clip Extractor module (Figure 1) included 3-5 words before 
the two words to form the audio clip. The average number of 
words per LTW file was 5.9±1.3. This extra context in LTW 
requires more background noise (1.78 dBFS) to be added, 
compared to TW. 

(4) Full Phrase (FP): FP used 5-7 word long phrase and the 
user must transcribe the whole phrase. The FP scheme is simi­
lar to the 6-10 word long audio CAPTCHAs generated from 
old radio programs [18, 37]. We selected 5-7 words because it 
has been found that humans can transcribe up to 7 words at a 
time [21, 38]. The number of words per FP file was 6.0±0.9. 
To generate FP CAPTCHAs, reCAPGen randomly added 1-3 
words of audio before and after the audio clip generated for 
TW, ensuring a total of 5-7 words. Similar to LTW, the FP 
audio clip also provided context to the user. Additionally, 
the system ensured that the audio clip length was not more 
than 4s long (based on previous results [38]), for both LTW 
and FP. In the future, FP audio clips can be generated such 
that the control and suspicious word are maximally separated 
by 5 words between them. (Note: Consecutive control and 
suspicious word is a requirement only for TW and LTW.) 

For a fair comparison between the last three reCAPTCHA 
schemes, we use the audio reCAPTCHA dataset generated 
for TW, to generate audio CAPTCHAs for LTW by prepend­
ing 3-5 words, and for FP by prepending and appending 1-3 
words. For instance, TW: “have taken”, LTW: “and some 
biographers have taken”, and FP: “some biographers have 
taken the position”. We chose these four CAPTCHA schemes, 
mainly because RD is the state-of-the-art system, and TW and 
FP have been previously proposed with high usability score 
and are similar to our proposed novel LTW scheme. 

Participant Demographics 

Sighted MTurkers 
Sixty participants (32 male, 28 female), with a mean age of 
36.8 years (sd=9.1, 18-62 years) participated in the study. We 
actually collected data from 65 people; however, five of them 
used offensive language in their responses and achieved a 
success rate of below 30%, hence their data was excluded 
from the analysis. The majority of the participants were from 
the United States (45); the remaining were from India (12), 
Canada (2), and Jamaica (1). Twenty-six participants had a 
high school education, thirty had a Bachelor’s degree, and four 
had a Master’s degree. All participants reported that they were 
able to understand and speak English fluently. Forty-eight 
participants stated that English was their first language, while 
the remaining twelve reported Hindi (8) and Tamil (4) being 
their first language. All participants had previous experience 
with visual CAPTCHAs, and 38 of them rated them to be 
frustrating. With respect to audio CAPTCHAs, 40 partici­
pants knew about them, but only three had experience using 
them. None of the participants reported any hearing or speech 
impairments. 

Visually Impaired people 
Nineteen participants (13 male, 6 female), with a mean age of 
29.2 years (sd=4.4, 21-42 years) participated in the study. As 
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it is hard to recruit visually impaired participants on crowd-
sourcing platforms, our participants were recruited from three 
vocational training centers for blind people, located in India. 
Ten of the participants were completely blind (i.e., 100% vi­
sually impaired); on an average, they self-reported being 90% 
visually impaired (sd=11.2%, min=70%). None of them can 
read any text on the computer screen visually, and relied on 
audio-based screen readers. All of them were proficient in 
using computers with the help of JAWS screen reader [17]. 
Eleven participants stated that Kannada was their first lan­
guage, the remaining reported Telugu (3), Marathi (3) and 
Urdu (2) as their first language. All of them reported that they 
were able to understand and speak English fluently. Three 
participants were computer teachers at these centers, while 
remaining were students. Thirteen participants had a Bach­
elor’s degree, three had a Master’s degree, and three had a 
high school education. All participants had previous experi­
ence with audio CAPTCHAs, and all of them rated them to 
be frustrating. None of them reported any hearing or speech 
impairments. 

Procedure 
To evaluate the four audio CAPTCHA schemes, we performed 
a comparative evaluation. On MTurk (during Aug 2017), 
after reading a short description of the audio CAPTCHA task, 
anyone can opt to participate in the study by clicking on the 
user study link. On the other hand, to recruit visually impaired 
participants, two researchers visited three vocational training 
centers for blind people (in Nov 2017), and recruited people 
who were available to participate. 

We instructed participants to listen to the short audio clips 
(0.5-4 seconds long) and speak its transcription aloud into the 
microphone. We gained explicit permissions from the par­
ticipants to record and store their responses. We instructed 
participants to use a headphone with a microphone for the 
study in order to record high quality audio. We used the 
Google Webkit Speech Recognition API [34] to transcribe 
participants’ responses. As this API is only available on the 
Chrome browser, we required participants to use the Chrome 
browser on a computer or laptop. To ensure that the participant 
was not suffering from any hearing or speech impairment, and 
that the participant could understand and speak English, only 
individuals who could correctly transcribe two out of the five 
trial CAPTCHAs were eligible to participate. After the screen­
ing page, the demographic questionnaire was administered. 
The language code for Google Webkit API was set based on 
the country selected in the demographic questionnaire. E.g., 
for Indian participants, the code en-IN was used; whereas for 
Americans, en-US was used. 

After demography, the audio CAPTCHA task began. The 
order of the four audio CAPTCHA schemes was random to 
counter for any order effects. In each of the four schemes, 
participants must first practice on two audio CAPTCHAs. Par­
ticipants were allowed to skip any number of CAPTCHAs, 
but were required to attempt fifteen CAPTCHAs per scheme. 
Participants could attempt twice to solve each CAPTCHA 
question. Though existing real-world CAPTCHAs do not al­
low a second attempt, we allowed it in the user study to gain 

Play/Pause button
[Shortcut: Spacebar] 

Start Recording /Stop Recording button
[Shortcut: Shift]

Skip/Continue button
[Shortcut: Enter]

Figure 2: User Interface used for the audio CAPTCHA study 

further insights (similar to [4]). The study design ensured 
that a particular audio CAPTCHA question consisting of a 
control-suspicious word pair was not repeated across the three 
schemes (TW, LTW and FP). At the end of each scheme, we 
asked participants to rate that scheme on a 5-point Likert scale 
with respect to mental demand, frustration, effort required, 
and perceived success from NASA-TLX scale [12], along 
with providing subjective feedback. At the end of the study, 
participants ranked the four audio CAPTCHA schemes, and 
provided subjective feedback. All participants’ quotes in the 
following sections, are taken from this written feedback. Note: 
For the visually impaired participants, one of the study facili­
tators filled the demographic, rating and ranking questionnaire 
based on the participants’ inputs. 

Participants took ~45 minutes to complete the study and were 
paid $4 USD. In a real-world scenario, users have an in­
centive (e.g., buy a ticket, register for a website, etc.) to 
solve CAPTCHAs. Similarly, we tried to mirror that in the 
crowdsourcing setting with an additional performance-based 
bonus component, to motivate the participants to answer the 
CAPTCHA questions as quickly and as accurately as possible. 
If the participant was among the top-third of the participants 
in terms of accuracy, he/she received a bonus of $2; partic­
ipants in the middle-third received a bonus of $1, and the 
bottom-third earned no bonus. Similarly, the fastest third of 
the participants received $2 as bonus, the middle-third received 
$1, and the slowest-third earned no bonus. For calculating 
the bonus, MTurkers and visually impaired participants were 
evaluated separately. This study protocol has been approved 
by the ethics review board of an academic institute. 

User Interface of the User Study 
We used reCAPGen offline to generate 250 audio clips in each 
of the three reCAPTCHA conditions. We developed a front-
end browser-based user interface (UI) connected to a web 
server to conduct the study. We kept the UI of the CAPTCHA 
question page to a minimal design with only three buttons: a 
Play/Pause button, a Start Recording/Stop Recording button, 
and a Skip/Continue button (Figure 2). Participants could 
listen to the audio file using the Play/Pause button. Partici­
pants may listen to the audio clip any number of times. To 
provide the answer, the participant needs to click the Start 
Recording button, speak the answer aloud after a beep sound, 
and then click the Stop Recording button. When there is a 
long pause of 1.5s or more, Stop Recording would get auto­
matically triggered. We provide participants written and audio 

Paper Session 7: LWeb Warriors: Web & Media Accessibility ASSETS '19, October 28–30, 2019, Pittsburgh, PA, USA

360



feedback about whether the transcription recorded was the 
correct answer or not. A Levenshtein edit distance [27] of 1 or 
less between the control word and the participants’ response, 
was taken as a correct answer (similar to [31]). If the partici­
pant’s answer was correct, a Continue button appears; clicking 
this button would take the participant to the next question. 
In the case of a wrong answer, the participant could either 
attempt to transcribe it again or Skip the question. After two 
attempts (successful or not), participants can only Continue to 
the next question. The UI also supported keyboard shortcuts 
– ‘Spacebar’ for Play/Pause, ‘Shift’ for Start Recording/Stop 
Recording, and ‘Enter’ for Skip/Continue (Figure 2) – based 
on prior work [4]. All user clicks and audio recordings are 
logged at the server. 

RESULTS 
We present the findings from the analysis of the logs, ratings 
and feedback provided. Note: P1-60 refers to sighted MTurk 
participants, and P61-79 refers to visually impaired participants. 
None of the participants failed the screening test. 

In total, participants completed 4,740 audio CAPTCHAs (= 
79 participants × 4 schemes × 15 audio CAPTCHAs/scheme). 
The average success rate with the three CAPTCHA schemes – 
TW, LTW and FP – was 75.7% for sighted users and 77.2% for 
visually impaired users, in the first attempt. Although partici­
pants were given up to two attempts to solve each CAPTCHA, 
we focus on evaluating their ability to solve a CAPTCHA on 
the first attempt, as most state-of-the-art CAPTCHAs only 
allow a single attempt. We conducted a mixed-model analysis 
of variance (ANOVA) – on the success rate of solving the 
audio CAPTCHA, the time taken to solve it, and the number 
of times the audio file was played – treating the four schemes 
as a fixed effect and participant as a random effect, for each 
of the two participants groups. We do not report comparative 
statistics between sighted and visually impaired participants, 
as that is not the aim of this paper. 

Success Rate 
Success rate is calculated as the ratio of the total number of 
CAPTCHAs solved correctly using control word validation by 
the total number of CAPTCHAs attempted (ignoring skipped 
CAPTCHAs). Considering only the CAPTCHAs solved in the 
first attempt, the ANOVA test showed a significant main ef­
fect of the type of audio CAPTCHA presented on the success 
rate (F3,177=15.7, p<0.001 for the sighted participants and 
F3,54=27.4, p<0.001 for the visually impaired participants) 
(Table 3). This prompted us to investigate pairwise differences. 
We employed Tukey’s HSD procedure to address the increased 
risk of Type I error. We found that for sighted participants, the 
success rate of RD (89.0±7.7%) to be significantly higher than 
all the other three schemes (p<0.001). This result is in sharp 
contrast to previous works [8, 4], because our sighted partici­
pants noted the random digits using pen and paper before an­
swering. On the other hand, for visually impaired participants, 
we found the success rate of RD (26.7±8.1%) to be signifi­
cantly lower than all the other three schemes (p<0.001), as 
visually impaired users had to memorize the whole sequence 
of 10 random digits to answer. 

Our results are not too surprising, as previous work HearSay 
[33] achieved 75% success rate with a two-word audio 
CAPTCHA scheme, with situationally impaired users. In 
our case, TW achieved 75.1% success rate with visually im­
paired users. With added context in LTW, visually impaired 
users performed the best with 81.3% success rate. Moreover, 
FP saw the highest improvement in success rate compared to 
prior work [37, 18], which can be attributed to two reasons: 
reduction of the phrase length to 5-7 words and using speech 
to solve the CAPTCHA instead of typing 6-10 words. 

Taking the second attempt also into account, the results related 
to the main effect and pairwise comparisons remain the same, 
though the success rate across all three reCAPTCHA schemes 
increased to above 85% with both sighted participants and 
visually impaired participants. 

As the three reCAPTCHA schemes used the same set of 
control-suspicious word pairs, we conducted further analyses 
to understand whether certain word pairs were more successful 
in one scheme than another. We found them to be not highly 
correlated – Pearson correlation values were 0.37 between TW 
and LTW, 0.17 between TW and FP, and 0.18 between LTW 
and FP. Moreover, we found that for each control-suspicious 
word pair, at least one scheme had a success rate of above 90% 
in the first attempt. This indicates that there was variability 
across the three reCAPTCHA schemes, and for a given audio 
file, one scheme may lead to a higher success rate than the 
other. Identifying which of the three schemes is best suited 
for a particular audio clip requires more data and is part of our 
future work. 

Finally, using Google Webkit Speech Recognition API for 
transcribing user’s speech input might have lead to additional 
errors. We performed a manual verification of 10% (474 
randomly chosen recordings) of user’s audio responses, and 
found Google Webkit’s transcription error to be below 3%. 

Time Taken 
For each audio CAPTCHA question, start-time is the time 
when the Play button was pressed for the first time for that 
question, and end-time is the time when the Stop Recording 
button was pressed. Time Taken is calculated as the difference 
between the start-time and the end-time. For CAPTCHAs 
that were correctly solved by participants in their first attempt, 
the ANOVA test showed a significant main effect of the audio 
CAPTCHA scheme on the time taken (F3,177=691.1, p<0.0001 
for the sighted participants, and F3,54=983.7, p<0.0001 for 
the visually impaired participants) (Table 3). Pairwise compar­
isons showed a significant difference between all four schemes, 
with p<0.01 (Table 3). This may be attributed to the fact that 
the audio file length in each of the four schemes varied – RD: 
18.6±1.6s, TW: 1.6±0.4s, LTW: 3.4±0.5s, and FP: 3.6±0.3s. 
Considering both attempts, results related to the main effect 
and pairwise comparisons of time taken were the same. 

Number of Plays 
ANOVA showed a significant main effect of the CAPTCHA 
scheme on the number of times the Play button was pressed 
(F3,177=26.3, p<0.0001 for the sighted participants, and 
F3,54=35.2, p<0.0001 for the visually impaired participants). 
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Scheme Success Rate (%) Time Taken (s) # Plays # Skips 
Random Digits RD 
Two words TW 
Last Two Words LTW 
Full Phrase FP 

89.0 7.7 

74.2 9.2 

78.2 10.1 

74.7 10.8 

26.7 8.1 

75.1 7.7 

81.3 8.3 

75.3 7.8 

33.3 35.4 

7.4 5.9 

9.6 6.2 

12.5 21.3 

73.6 41.1 

12.6 4.2 

14.5 3.9 

19.4 4.3 

1.1 0.3 

1.5 1.4 

1.2 0.7 

1.7 1.5 

3.8 3.3 

2.0 2.2 

1.3 0.6 

3.1 3.7 

0.2 0.6 

0.9 1.1 

0.7 1.0 

1.1 1.1 

0.1 0.1 

0.2 0.1 

0.1 0.1 

0.2 0.2 

Table 3: Results in the format: mean std for MTurkers, mean std for visually impaired users. 
Pairwise comparisons showed that for sighted participants, 
the RD and LTW schemes to be significantly better than the 
TW and FP schemes, and for visually impaired participants, 
the TW and LTW schemes to be significantly better than the 
RD and FP schemes, with p<0.001 (Table 3). In RD, sighted 
participants mentioned writing the numbers down using pen 
and paper, resulting in the fewest number of audio plays, while 
visually impaired participants tried to memorize the 10-digits 
sequence by listening and repeating it multiple times. For 
LTW, both sighted and visually impaired participants men­
tioned being “attentive” to listen for the last two words, re­
quiring very few replays. The TW clips were the shortest, so 
participants listened to those clips again, “just to be sure” ­
P67 before submitting their response. In FP, participants stated 
that it was “hard to remember long phrases” - P79, hence the 
audio was played multiple times. 

Number of Skips 
The number of skipped questions also showed main effect 
on the audio CAPTCHA scheme being used (F3,177=12.4, 
p<0.0001), only with the sighted participants (Table 3). Vi­
sually impaired participants rarely skipped questions, which 
may be because three of them mentioned that skipping ques­
tions showed weakness: “Why should I skip questions? I can 
do all of them.” - P68, or because skipping requires pressing 
more keys. In a similar manner, visually impaired participants 
rarely used the Stop Recording option. They preferred being 
silent after providing their response to auto-submit their an­
swer. This reduces the total number of controls they need 
to use to two keys in the best-case scenario: Spacebar once 
to play the audio clip, and Shift key once to Start recording. 
Sighted participants skipped significantly fewer CAPTCHAs 
in RD (0.2±0.6) compared to the other three schemes, with 
p<0.01. In TW, LTW, and FP, questions were skipped mostly 
because the first and/or the last word was “cut off weirdly” ­
P34, i.e., the audio “started or ended with half words” - P70. 
For extracting audio clips, we used the word-specific start and 
end time obtained from the IBM ASR, hence this issue will 
become less severe in future as the ASR improves. In a real-
world implementation, any audio CAPTCHA that is skipped 
or incorrectly answered by 3 or more users should be removed 
from the dataset (similar to [39]). 

Transcription Accuracy - reCAPTCHA 
One of the goals of our CAPTCHA scheme is reCAPTCHA, 
i.e., leveraging the human effort of solving the CAPTCHA 
for a meaningful task. In our case, crowd-source the tran­
scription of words which receive a low confidence score from 
ASR systems. Accurate audio transcriptions can highly ben­
efit the hearing impaired community, by making the media 
accessible to them. In the case of visual reCAPTCHA [39], if 
50% of the users have the matching response for a suspicious 
word, it is taken as the correct digitization of that text. In our 

study, as the three reCAPTCHA schemes used the same set 
of control-suspicious word pairs, we analyzed the transcrip­
tions obtained across participants to find the similarity in the 
guessed suspicious word. We found that for 83.8% of the 
total 244 audio clips (occurring 3 or more times) across the 
three schemes with visually impaired participants, more than 
50% of the responses for suspicious words were same. This 
can be interpreted as the accuracy of audio transcription for 
the suspicious word. The transcription accuracy for sighted 
users was 82.0% for 775 audio reCAPTCHAs. There was no 
significant difference between the three schemes. 

Ratings and Preferences 
Participants rated the four audio CAPTCHA schemes on a 
5-point Likert scale (Figure 3), selected their two preferred 
CAPTCHA schemes, and wrote reasonings. Analyzing this 
data showed main effect for: 

Mental Demand (F3,177=21.2, p<0.001 for sighted, and 
F3,54=28.9, p<0.001 for visually impaired), 

Frustration (F3,177=7.8, p<0.001 for sighted, and F3,54=15.7, 
p<0.001 for visually impaired), 

Effort Required (F3,177=10.7, p<0.001 for sighted, and 
F3,54=15.2, p<0.001 for visually impaired), and 

Perceived Success (F3,177=7.5, p<0.01 for sighted, and 
F3,54=18.0, p<0.001 for visually impaired). 

Note that a lower score is better for all metrics, except for 
Perceived Success. Ranking-wise, for sighted participants, TW 
was one of the two most preferred schemes for 51 participants, 
RD for 33 participants and LTW for 27 participants, while for 
visually impaired participants, LTW was one of the two most 
preferred schemes for 17 participants, TW for 14 participants 
and FP for 5 participants. 

For sighted users, with respect to Mental Demand, FP was 
found to be significantly worse than all the other schemes 
(p<0.01). Sighted participants mentioned that FP was the 
most challenging (P22), the most difficult (P5) and the most 
frustrating (P43). In contrast, visually impaired participants 
perceived RD to be the most mentally demanding (p<0.01), 
followed by FP (p<0.01). Only two visually impaired par­
ticipant praised RD stating “helps to concentrate... helps to 
increase my mental ability” - P73, while all others complained 
about the high mental demand of memorizing 10 random 
digits. Moreover, LTW was found to be significantly more 
mentally demanding than TW for sighted participants, with 
p<0.01, whereas visually impaired participants did not show 
any significant difference between them. Sighted participants 
complained that they were not sure about which words would 
be the last two words. Hence, they had to focus on the entire 
clip, resulting in high mental demand (P33). On the other hand, 
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visually impaired participants appreciated LTW as it “has less 
issues of chopped words (compared to TW)”-P70. 

For Frustration and Effort Required, RD and TW were rated 
significantly better than FP by sighted users, and TW and 
LTW were rated significantly better than RD and FP by visu­
ally impaired users, with p<0.001 (Figure 3). Thirty sighted 
participants mentioned RD being easy, mainly because “there 
was much less background noise” - P18, and “could write the 
numbers down and speak them” - P37 (similar to [30]). On the 
other hand, visually impaired participants found RD to be frus­
trating as “there are lots of numbers” - P72 and “numbers are 
spoken very very slowly” - P64. Four of them asked for “an op­
tion to increase the speed of the (RD) audio clip” - P78, which 
is one of the features in the JAWS screen reader. Forty-five 
sighted and 11 visually impaired participants appreciated TW 
as it was easy and fast: “easy to remember only 2 words” - P34, 
“least mentally demanding” - P30, and “fastest... as quickly 
repeat two words” - P58,P76. Similar to TW, both sighted 
and visually impaired participants praised LTW as “the two 
words had a context provided by the words preceding them” ­
P2. Only five sighted and two visually impaired participants 
praised FP as it was a full phrase with context: “More words 
makes it easier to guess the sentence, even if 1-2 words were 
not clear they can be guessed with the help of others” - P9, “I 
like them (RD and FP) because only these two used my mind, 
rest were too easy” - P75. Although clips in FP were restricted 
to 7 words, most participants complained that it had too many 
words, making it complicated (P10) and hard to remember 
(P48,P61). 

Finally, sighted participants believed that they were signifi­
cantly more successful with RD compared to FP, while vi­
sually impaired participants perceived to be more successful 
with TW and LTW compared to FP and RD, with p<0.01. 
However, sighted participants complained that RD was slow 
(P13,P20), tedious (P33) and “annoyingly long” - P43. P36 men­
tioned: “There were so many numbers I had to write them 
down... which seems like it might make things more difficult 
for the (blind) people who need to use audio captchas.”, which 
was exactly the case with the visually impaired participants. 

Security Evaluations 
The design of reCAPGen prioritizes security with an adversary-
in-the-loop model. During the generation of CAPTCHAs, we 
use state-of-the-art ASRs from Google and IBM in the Checker 
module (Figure 1) to verify that the noise-augmented clip is 
not correctly transcribed. As ASRs evolve or new ones emerge, 
these can be added to the Checker module to enhance security. 

Existing work on breaking CAPTCHAs (Table 2) either use 
ASRs [25, 5, 29] or use supervised learning attacks customized 
to a given CAPTCHA generating engine [6, 7, 36]. First, 
we used state-of-the-art ASRs from Microsoft and Amazon. 
Note that these ASRs are not used in the Checker module 
and thus expose the system to generalization vulnerabilities 
across ASRs. We found that not a single clip was correctly 
transcribed. We then added a pre-processing step of denoising 
the clip using time-frequency block thresholding as described 
in [40]. With this, we achieved a very low success rate of 

0.7%. Note that previous audio CAPTCHAs have been bro­
ken using standard ASRs [25, 5]. This demonstrates that the 
CAPTCHAs generated by reCAPGen are secure against ASR 
attacks. Second, we attempted an attack with an SVM-based 
supervised learning model as demonstrated in [6, 7, 36]. It 
failed to break our TW CAPTCHAs as it had a success rate of 
below 0.1%. This is explained by the large variability in the 
control words: The words are randomly sampled from a large 
English vocabulary as used in a wide variety of videos from 
old radio programs, podcasts and YouTube lectures on variety 
of topics. In contrast, previous works generated CAPTCHAs 
from small sets, such as the set of 10 digits [8], 100 most 
frequent words [33, 21], or 20 sounds [19]. These made them 
vulnerable to machine learning attacks which could be suc­
cessfully trained on the small corpus. 

Another possible security concern is speaking aloud the re­
sponse to the CAPTCHA. This does not pose any privacy or 
security risk as the content of the CAPTCHA contains no sen­
sitive information. Also, a new CAPTCHA is generated on 
every try. Finally, more sophisticated attacks may be designed. 
For instance, if one or many devices listened to a large number 
of audio CAPTCHAs and their responses, could they train a 
deep neural network model to break reCAPGen CAPTCHAs? 
The feasibility and success of such an attack remains to be 
verified, and we plan to do that as part of future work. 

DISCUSSION 
To summarize, TW and LTW were the best performing 
schemes, achieving high success rate, low time taken, and 
high ratings from both the sighted and visually impaired par­
ticipants. Visual CAPTCHAs success rate is 87% and takes 
9.8s to solve [8]; TW and LTW achieved a comparable suc­
cess rate and time taken to visual CAPTCHA. Thus they are 
usable and accessible enough to be considered for real-world 
CAPTCHA, especially for visually impaired users, and either 
of them can be chosen based on the application needs. 

Finally, our proposed system, reCAPGen, has several parame­
ters that can be tuned to further increase the usability and/or 
security of the generated CAPTCHAs. 

Design Implications 
CAPTCHAs Adaptable to Future Attacks: All CAPTCHAs, 
including visual and audio CAPTCHAs, must evolve in re­
sponse to increasing strength of automated adversaries, specifi­
cally with advances in machine learning. Visual reCAPTCHA 
system [39] uses the images of words on which OCR failed. 
Similarly, in our proposed reCAPGen system, we added the 
Checker module (Figure 1) to filter out candidate audio clips 
that are solvable by state-of-the-art ASR systems after adding 
the calibrated amount of noise. More ASR systems can be 
added to that module, to further strengthen the ‘adversary-in­
the-loop’ generation method of CAPTCHAs. 

Say No to RD: RD is the most widely used state-of-the-art 
scheme and achieves high success rate with sighted users. 
However security is a major concern [7, 36]. The long time 
required by both sighted and visually impaired users to answer 
RD audio CAPTCHA, and the low success rate by visually 
impaired users, makes this approach unusable. Moreover RD 
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Figure 3: Likert-scale rating by the participants (with standard deviation shown as error bars) 

does not provide the reCAPTCHA benefits. Therefore, we 
believe that RD should be avoided in any secure application. 

Addition of Noise: A calibrated amount of noise needs to be 
added such that other ASR systems fail to break the generated 
audio CAPTCHAs by identifying the control word correctly. 
Due to the extra context in LTW and FP, they are prone to 
better recognition by ASRs, which results in more background 
noise being added to them compared to TW. This in certain 
CAPTCHAs can make LTW harder to solve than TW for 
humans. From a security perspective, adding noise only to the 
control word portion of the audio file suffices. However, we 
found that adding the noise to the whole audio clip increases 
its usability. Moreover, it must be ensured that the added 
noise is not greatly affecting the usability for humans to solve 
the CAPTCHA. If the success rate of solving CAPTCHAs 
by humans is low, the noise threshold can be reduced. This 
will result in generation of fewer, but more usable, audio 
CAPTCHAs from an input audio file. 

Accessibility: In this work, we enabled users to speak their 
response, instead of having to type it. Visually impaired users 
have been found to prefer speech input over keyboard-based 
text entry [4]. This may be a reason for high acceptance. How­
ever, in real-world use, there can be situations (like public 
space) where text entry may be preferred over speech. For 
such situations, an optional text input mode must be present 
along with the speech mode. Moreover, from a usability per­
spective, LTW should be preferred to add CAPTCHAs to 
speech-based interfaces, as the number of times the audio file 
was played was close to 1. Replaying the audio would require 
a longer interaction with the device (for security purposes), 
which may not be suited for visually impaired users. Fewer 
replays with LTW was a result of the context provided by the 
words preceding the control and suspicious word. 

Applicability of Different Schemes: We found that certain audio 
clips are more usable for humans in one CAPTCHA scheme, 
compared to others. Example-1: a few of the TW and LTW 
audio CAPTCHAs have the ending word being chopped off, 
as IBM ASR was not able to accurately find the end time of the 
last word. However for those audios, FP can work better as the 
control and suspicious word won’t get chopped off. Example­
2: for a few LTW CAPTCHAs, participants were unsure of 
the ‘last two words’. For such audios, TW might outperform 

LTW as the participants just have to repeat the whole audio 
clip, instead of identifying the last few words. In the future, 
the system should be able to understand such behaviors, and 
identify the correct scheme for a particular audio CAPTCHA. 

Limitations 
First, the sample size was relatively small at 79 participants, 
compared to a few previous studies with more than 150 par­
ticipants [4, 8]. However, due to our within-subject design, in 
total, a large number of audio CAPTCHAs (4740) were solved 
by our participants. Second, sighted and visually impaired par­
ticipants were from different demographies. Amongst our 60 
MTurkers, 45 were Americans, while all visually impaired par­
ticipants were Indians. This may have influenced our results, 
as the source audio files were taken randomly. As native speak­
ers are found to be more accurate than non-native speakers 
for transcription task [21], in the future, demographic specific 
audio CAPTCHAs can be presented to further increase its 
usability. Third, our security evaluation was limited to past 
known attacks. reCAPGen generated audio reCAPTCHAs 
resilience against new future attacks is unknown. Finally, 
we should have ideally compared our proposed system with 
the previous radio-clip based audio reCAPTCHA system [18, 
37]. However, that audio reCAPTCHA project is no longer 
active, and the technical details about the project are not well-
documented. Thus, we are unable to replicate their approach. 

CONCLUSION 
In this work, we propose reCAPGen, a system that automati­
cally generates usable and secure audio reCAPTCHAs. It uses 
audio files that ASR systems fail to transcribe with high confi­
dence. To evaluate the usability of generated CAPTCHAs, we 
conducted studies with sighted and visually impaired users, as 
audio CAPTCHAs were proposed to make the Internet acces­
sible to visually impaired people and with the recent growth 
of speech-based interfaces, audio CAPTCHAs have potential 
usage for the general population as well. Our proposed LTW 
scheme exhibits a good trade-off between usability and secu­
rity, achieving a success rate of >78% with sighted users and 
>81% with visually impaired users, and an average response 
time of <15s. Also, these CAPTCHAs exploit the human effort 
to generate transcriptions for audio files with a high accuracy. 
To conclude, we hope that others will use our proposed system 
to generate audio CAPTCHAs for several applications. 
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