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Abstract

Line search methods are very effective in practice for speeding up first-order methods
for minimizing smooth functions. The step size found by a line-search procedure during
each iteration can be regarded as the reciprocal of a local Lipschitz constant. We show that
the convergence speed of first-order methods equipped with a simple line-search procedure
depends on the harmonic mean of the local Lipschitz constants.

1 Introduction

We consider optimization problems of the form

minig}lize F(x):= f(x)+¥Y(x), (1)

where ¥ : RY — R U {+0} is convex and lower semi-continuous, and f is differentiable on an
open set containing dom ¥. In addition, we assume that the gradient of f is Lipschitz continuous,
i.e., there exists a constant Ly > 0 such that

IVFx) =V DIl < Lllx=yll,  Vx,y€dom', 2)

where || - || denotes the standard Euclidean norm. We call Ly the global Lipschitz constant of V f.
Given an initial point x9 € dom ¥, the proximal gradient method computes a sequence of
iterates xi, x, . . . as follows:

Xg+] = arg min {f(xk) + (Vf(xp), x — x) + %Hx —xi|)? + ‘I’(x)}, (3)

xeR”

where L; > 0 is a parameter to be chosen at each iteration (see, e.g., [Nes13, Bec17]). This method
is often written in the more compact form

1
Xi+1 = ProX iy (xk - —Vf(xk)),
Lk Lk
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where the proximal operator is defined as

. 1
proxy(y) = arg min {‘I’(x) + §||x - y||2} )

X

With the definition of the gradient mapping [Nes13]

1
gr(x) = L(x—proxi\{,(x— ZVf(x))), 4)
the proximal gradient method can also be written as
1
Xieet = X = 781, (Xk)- (5)
k

Notice that if W(x) = 0, then gz, (xx) = Vf(xx) for any Ly > 0. Here it is clear that 1/L;
corresponds to the step size.

The proximal gradient method is guaranteed to converge if we choose Ly > Ly for all k. In
practice, however, it is almost always beneficial to find Ly using a line search procedure during each
iteration, even if the global Lipschitz constant Ly is known a priori. A typical line search procedure
starts with a relatively small estimate of L; (a large step size 1/L;) and gradually increases it
(decreases the step size) until some exit condition is satisfied (see, e.g., [Nes13]). One obvious
choice for the exit condition is

Fsk1) < F00) 4 €70, 31 = 30+ - s = el ©

We call Ly a local Lipschitz constant if it satisfies (6). Under the assumption (2), any Ly > Ly
would satisfy (6). But L; often can be much smaller than L, which corresponds to a much larger
step size 1/L; and faster convergence.

We will show that the convergence speed of the proximal gradient method depends on the
harmonic mean of Ly, Ly, ..., L;. In other words, we can replace Ly in the standard convergence

rate results by the harmonic mean Ly, which is defined through

1 1 K1
= = e 7
Ly k+IZL- )

i=0

Since the harmonic mean is smaller than the geometric mean and can be much smaller than the
arithmetic mean, we obtain tighter bounds on the convergence speed.

2 Non-convex case

Without assuming convexity of f, we measure the quality of the iterates x; by ||gz, (xi)||>, which
is the same as ||V £ (x;)||> when ¥ = 0. It is shown in [Nes13, Theorem 3] that for all i > 0,

1

37 gz, C)ll* < F(x:) — F(xi41) - (8)




Summing up these inequalities fori = 0, . . ., k, we obtain

k

1
> 57 gl < Fxo) = Flxrn).
= 2L

Assuming F is bounded below by F, and using the definition of Ly in (7), we get

2
min (x; <
min, gz, ()l

2L (F(x0) — Fy)
k+1 '

3 Convex case
If the function f is convex, then [XZ14, Lemma 3.7] implies that for any y € dom ¥ and any k& > 0,
1 H My
F(y) > F(xg+1) + (8r, (xk), y — xk) + EHng()Ck)H2 + 7f||y - xll? + 7”)’ - xes1ll. Q)

where py and py are the convexity parameters of f and ‘¥ respectively. In this section, we do not
assume strong convexity, therefore ur = py = 0. Suppose x, is a solution to (1), i.e.,

Xy € Argmin {f(x) + lI’()c)}.
X
Then setting y = x, in the inequality (9) with uy = uy = 0 and rearranging terms, we obtain

Fan) — F(xe) < (g1, (6, 3 — xa) — ingmk)nz

= o | e = xll” = |l = L—kng(xk) — Xx
Ly
= 2 (Il = a2 = o = 2 l?)
where the last equality is due to (5). Summing up the above inequality fori =0, 1,.. ., k, we get
k
1 1 1 1
_(F(xi+1 - F(x*)) < =llxo = x*”Z — =l xks1 — x*llz < =llxo = X*||2~
= L 2 2 2
From (8), we conclude that { F(x¢)} is a decreasing sequence. Therefore,
L L | 1 5
(F(xk+1 - F(x*)) Z T < Z Z(F(xiﬂ - F(x*)) < EHXO — X,
i=0 ~ =0 M

which, combined with the definition of Zk in (7), yields

Ll xo = x«|?

F(xp1) = F(xy) < 2k + 1)



4 Strongly convex case

In this section, we assume uy + py > 0in (9), i.e., at leas one of f and ¥ is strongly convex. In

this case, let x, be the unique solution to (1). Using the update formula (5), we have
2

1

X, — — X — X
k Lkng(k) *

2
=|[Xk+1 — % ==
2” k+1 *“ 2

1 , 1 ! )
= §||Xk = X7 = L—k<ng(xk), Xk = Xu) + Z_LI%”ng(xk)” :

Meanwhile, setting y = x, in (9) yields

1 H My
—(8, (X )s Xk — X) + Ellng(Xk)ll2 < F(xy) = Fxge1) — 7f||Xk — xl|* - = %t = .

Combining the two inequalities above, we obtain

FOu) = FO%t) BT 1P = 2y — P
I 2L Pk X oL et = Xl

Multiplying both sides by L; and rearranging terms, we get

1 1
§||Xk+1 - x*”Z < Enxk - X*HZ +

Li + iy Li—p
Flu) = Fx) + =S5 e =l < =5 =
Since F(xx+1) — F(xx) > 0, we have for all £ > 0,
Ly — py KLi-py
2 2 2
- < - = - )
lxks1 = xlI” < Lk+,u\y”xk Xoe| (!:0[ Li+ [0 — 2|

From the two inequalities above, we obtain

Ly + py Li— uy 2 Lk + py k Li—py 2
F -F < . - < - .
(er) = Floxe) < =50 Pl =l < S5 [T 7 o =l

Using the arithmetic-geometric means inequality, we get

koL — k + L P
e uf:l—[(l_uf H‘P)S - Zﬂf g
i=0 L,'+,u\11 i=0 Li+/1\11 k+1 =0 L,‘+/1lp

Finally, by defining the shifted harmonic mean Ly through the equality
11 &
Zk"‘/l‘l’ k+1i:0Li+ﬂ‘{”

we have

2
llx0 = x|

k
_/Jf+uw) Ly+ py

F(xp) = F(xy) < (1 -
Ly + py 2

Notice that Ly > Ly and the equality holds if py = 0. In any case, it can be much smaller than L.

4



S Accelerated proximal gradient methods

When f is smooth and convex, we can apply the results of [HRX18, Theorem 5] (which considers
the more general setting of relative smoothness) to the Euclidean case, and obtain the following
accelerated convergence rate,

L lxo = x4lI?

F(xp+1)—F(x,) < — )
(k +1) = FOu) < -

where A; satisfies

k k
AL 1 1 1 1 1) 1 1
>Z 1/2 _E(Z 1/2 2t s _52 172

+
T A A =L Lo, L

where we used the definition L_; = Ly. Let Ll/2 be the harmonic mean of Ll/2 L(l)/z, e Lé/z, i.e.,
11 Zk] 1
I:Z/'z k+2 44 L1/2
Then we obtain -
) o war?

Flvi) = F() € G- (10)
Notice that (LA{/2 )2 is smaller than the geometric and arithmetic means of L_1, Ly, .. ., Ly, i.e.,

1/2 1/(k+2) |

( ) (UIL) k+2l§L<Lf

Therefore, the convergence rate in (10) is slightly tighter than the result of [HRX18, Theorem 5],
which used the geometric mean.

When f is also strongly convex, similar improvement of accelerated linear convergence rate
can also be established. Here we omit the details.
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