Collaborative Machine Learning Markets with Data-Replication-Robust Payments

Olga Ohrimenko

Shruti Tople

Sebastian Tschiatschek

Microsoft Research
{oohrim,t-shtopl,setschia} @microsoft.com

Abstract

We study the problem of collaborative machine learning mar-
kets where multiple parties can achieve improved perfor-
mance on their machine learning tasks by combining their
training data. We discuss desired properties for these ma-
chine learning markets in terms of fair revenue distribution
and potential threats, including data replication. We then in-
stantiate a collaborative market for cases where parties share
a common machine learning task and where parties’ tasks
are different. Our marketplace incentivizes parties to sub-
mit high quality training and true validation data using a
novel payment-division function that is robust-to-replication
and customized output models that perform well only on re-
quested machine learning tasks. In experiments, we validate
the assumptions underlying our theoretical analysis and show
that these are approximately satisfied for commonly used ma-
chine learning models.

1 Introduction

One of the main obstacles for training well-performing ma-
chine learning models is the limited availability of suf-
ficiently diverse labeled training data. However, the data
needed to train good models often exists but is not easy to
leverage as it is distributed and owned by multiple parties.
For instance, in the medical domain, important data about
patients that could be used for learning diagnostic support
systems for cancer might be in possession of different hos-
pitals, each of which holding different data, (e.g., from a
specific geographical region with different demographics).
Typically, by pooling the available data, the hospitals could
train better machine learning models for their application
than they could using only their own data. As all hospi-
tals would benefit from a better machine learning model ob-
tained through data sharing, there is a need for collaborative
machine learning.

Naturally, this type of collaboration raises questions in
terms of how to incentivize parties to participate in such
a collaborative machine learning effort. Unfortunately, in
many applications there is a clear and natural incentive for
parties to provide quality data or share their data to begin
with. Financially rewarding parties to incentivize participa-
tion seems to be natural in such cases but has to be done
with great care. For example, a fixed price per data point

Training Data
& Validation Task Secure Marketplace
& Investment —_—
Party 1 I(} :>. Payment
Division
Payoff & Custom Model _1/
’ Data
. Valuation
. Training Data
& Validation Task Customized
& Investment Model
Party M '< Training
Payoff & Custom Model

Figure 1: Collaborative marketplace setup.

could motivate parties to gather large amounts of low quality
or fake data if there is no mechanism to control data quality.
Another reason that may dis-incentivize parties from sharing
data could stem from privacy and integrity concerns regard-
ing the use of party’s data once it is shared. For example,
once a party’s data is released it can be easily reused or sold.

To overcome these challenges and enable collaborative
machine learning in the outlined setting, there is a need for a
secure machine learning marketplace for joint model train-
ing that guarantees fair incentives for participation and en-
sures secure data handling. In this work, we propose a cloud-
based collaborative machine learning platform accessible to
parties for submitting data and machine learning tasks. Sub-
mitted training data represents the data that a party is willing
to contribute/sell, while submitting the validation data can
be seen as a specification of the machine learning model a
party is willing to buy. After a trade in this market, a partic-
ipating party obtains a model trained on the data available
to the market and customized for its task. Crucially, there
is no sharing of data and parties are only provided this cus-
tomized model (or query interface). As a result, only infor-
mation relevant to the validation task is released through the
model, limiting the possibility of copying and reusing the
data for other tasks. Such markets allow multiple parties to
jointly train machine learning models based on the training

data provided by all of the parties and achieve improved per-
formance on their own tasks. Parties pay fo the market for
the improvement on their validation tasks and get paid by
the market for the contribution of their training data to the
tasks of others. The market can support a single validation
task scenario, for example, where hospitals bring together
their data to train a single model for detecting cancer. Fur-
thermore, it also supports scenarios where one’s data can
contribute to multiple tasks. An overview of our envisioned
marketplace is shown in Figure 1.

Our market is enabled by three main components: 1. Data
valuation. Each model in the market is trained on the data
that is best suited for the specified validation task. Similar
to recent and concurrent work (Jia et al. 2019; Ghorbani and
Zou 2019) we can use Shapley values (Shapley 1953), a so-
lution concept from game theory discussed later, to match
data to tasks. 2. Customized model training. We ensure that
the model that a party receives is only suited for its own task
but not the other tasks available on the market. As a result
each party is incentivized to provide its true validation task.
3. Payment division. Each party receives a reward propor-
tional to how useful its data is for training other models. We
again use Shapley values, however, in this case to determine
fair payoffs.

One of the key challenges in designing such data market-
places comes from the very nature of data, i.e., free replica-
tion. This means that the reward of a party submitting copies
of the same dataset should not be more than the party sub-
mitting it once. Indeed the authors of (Agarwal, Dahleh, and
Sarkar 2019) also point out that, if used naively for machine
learning, Shapley value is not robust to replication (albeit in
a different market setup than ours). We design a market that
is robust-to-replication. The key idea behind our approach is
to allow a party to contribute data only if it also submits a
validation task for which it requires a trained model. Sub-
mitting a task, in turn, requires a participation fee. Hence,
for every replica, a party has to pay a participation fee that
depends on its validation task. As a result, the fee it pays for
the improvement on its task balances the payoff it gets from
the use of its training data.

Finally, we ensure that our cloud-based market is secure
and can be trusted by the parties. That is, the market itself
cannot resell, copy or release the data or the trained models.
Such a market can be instantiated using secure hardware,
such as Intel SGX (Hoekstra et al. 2013), which allows par-
ties to submit their data encrypted and ensure that it is only
decrypted and processed in secure enclaves and data is al-
ways encrypted in memory. It also provides attestation ca-
pabilities that parties can use to verify the integrity of the
market (e.g., that the data was used only to train specific
models and was not copied in plaintext outside of an en-
clave). See (Ohrimenko et al. 2016) for details.

We summarize our contribution as follows:

1. Marketplace Definition: We introduce a collaborative
marketplace to sell data and buy machine learning models
for learning single and multiple validation tasks.

2. Payment Division: We propose a novel and robust-to-
replication payment division function.

3. Customized model training: We propose to release cus-
tomized models to each party and not data in order to pre-
vent malicious parties from reselling the data while incen-
tivizing them to submit honest validation tasks (which in
our market can be seen as an indirect bid on the data).

4. Evaluation: We empirically evaluate the properties of our
marketplace. Our experimental results confirm that our
marketplace generates fair payoffs, customized models
and is robust to replication.

2 Background and Notation

Machine Learning Models and Evaluation In super-
vised machine learning, we often consider training of mod-
els for regression or classification tasks, i.e., learning of
a prediction function M: Q — RF or M: Q — [K],
respectively, where €2 is some input space, k € N, and
[K] = {1,...,K}. We introduce concepts for classifica-
tion problems only but the same concepts apply to regres-
sion problems. The model M is a part of some hypoth-
esis space H, e.g., the set of one layer neural-networks
with a fixed number of hidden neurons and sigmoid acti-
vations. These functions are learned from labeled training
data X, i.e., collections/sets of tuples of the form (w, 2),
where z € [K] for classification. Learning in that context
commonly refers to minimizing a sample-wise loss function
l: Ox[K] — R, e.g., the cross-entropy loss, overloading no-
tation: M(X) = arg minen 137 2 w,2pex LM (W), 2).
The goal of the learning process is to identify functions M
that perform well on unseen data, i.e., test data, and, for
instance, achieve good classification accuracy. As a proxy,
for estimating the performance on test data, we use valida-
tion data V. The average classification performance on the
validation data is G(V, M(X)) = |—]1,| > (wm)ey LM (w)=2»
where 1 is the indicator function. Clearly, the performance
measure is application dependent and can, for instance, also
be the RMSE, ranking accuracy, etc. We refer to G as (per-
formance) gain function.

Properties of G In the paper and for simplicity, we as-
sume an idealized gain function G and dependencies of the
model on the training data. For training datasets X', X’ we
assume that:

(i) replicated data does not change performance:
VX, X M(X) = MX dX);

(il) monotonicty: GV, M(X))) < GV, M(X @ X")));

(iii) supermodularity: GV, Mx U A{z}) -
GV, M(X)) < GV, M(X"U{x})) = G(V, M(X7))
for ¥ C X andx & X,

(iv) boundedness: G(V, M(X)) < 1.

Here, (i) captures that duplication of training data does not
change the learned model. This is, for instance, true for 1-
NN classifiers; (ii) characterizes that additional data either
improves or does not change the performance; (iii) captures
the collaborative market setting where each party provides
complementary data that contributes towards a ML task even
in the presence of other parties’ data.

Shapley Values for Fair Payoffs Consider a (machine
learning) task which M parties M = {1,..., M} aim to
solve with a joint effort. To quantify the value of the contri-
bution of each party towards solving the task, we consider a
characteristic function v: 2M — R. For every set S C M
of parties, v(S) quantifies how well the parties in S can
solve the task, e.g., v(S) could be the prediction accuracy
of the best model the parties in .S can train by combining
their training data, i.e., v(S) = G(V,U;esd;), where X; is
the ¢th party’s training data. If parties are to be compensated
for helping to solve a machine learning task, it is natural
to ask what a fair payoff for each parties’ effort is. To this
end, we consider Shapley values (Shapley 1953), i.e., unique
payoffs, studied in game theory for collaborative games, that
satisfy certain natural fairness properties discussed later. The
Shapley value for characteristic function v and party : € M
is

o(w.i)=3 IS0 sy ().)

SCM\{i}

i.e., ¥(v,1) quantifies the average marginal contribution of
party ¢ wrt all possible subsets of parties. If v(M) # 1,
Shapley values can be normalized using 1/v(M). When
clear from the context which characteristic function is used,
we use (7). For a fixed characteristic function v, Shapley
values (i) are the unique payoffs satisfying properties of
efficiency, symmetry, linearity and null player. These prop-
erties ensure that parties are paid equally for equal contribu-
tions and all gains are distributed among the parties.

We will use Shapley values with different characteristic
functions in our marketplace: u for deciding which data to
use for training customized models (§5) vs. v and w for com-
puting the payoffs for parties in §4.1. This is necessary as
Shapley value itself is not robust to replication.

3 A Collaborative Marketplace

In our marketplace, we consider M parties P, ..., Py
which aim to collaborate towards training machine learn-
ing models for their tasks. Each party simultaneously takes
the role of a seller and a buyer. The ¢th party has train-
ing data AX; and validation data V;. The performance of
a machine learning model M(X) trained on some train-
ing data X is evaluated using a performance/gain function
g(Vi, M(X)) € [0, 1].

The goal of the market is to provide party ¢ with a cus-
tomized model trained on the subset of (or potentially all)
datasets of other parties’ that best fits its task (based on V).
At the same time the market uses X; to train models of par-
ties where this dataset fits the corresponding task (based on
validation data of other parties).

Definition 1 (Marketplace). A marketplace is a tuple
(P,PD), where P = (Pi, ..., Py) is the list of parties en-
gaging with the market place and PD is the payment division
function.

We consider the following interaction with the data mar-
ketplace:

1. Parties P, ..., Py arrive.

2. The marketplace collects all training data sets
X1, ..., Xy and validation tasks Vi, ..., V.

3. Every party pays the market a participation fee A; that
is determined proportional to unit increase in personal
performance gain A; = 1 — G(V;, M(&X;)), i.e., valu-
ation for increasing performance to 100% on their val-
idation data. The market can also set a fixed value for
a unit increase ¢ > 0 in performance, such that A; =

c- (1 =GV, M(X)).

4. The marketplace trains a machine learning model M for
every party ¢ where M* = M(V;, ®jecs, ;) and S; C
M.

5. The model M? is shared with party i. Let a; =
G(Vi, M¥) — G(V;, M(X;)). Party i receives payoff ¢;
which depends on the increase in performance on its vali-
dation data V; (i.e., they receive A; —a;) and how much its
data helps in improving performance of models for other
validation tasks, b;. Hence, in total party ¢ gains (or loses)
(Aj —a;) +b; — A; = b; — a,.

3.1 Desired Properties

In the following we enumerate desired properties for a ma-
chine learning marketplace such that participating parties re-
ceive fair payoffs for their engagement and benefit from par-
ticipation.

Revenue division and payment Our list of properties is
inspired by the “standard axioms of fairness” since they
are the de facto method to assess the marginal value of
goods (i.e., features in our setting) in a cooperative game
(i.e., prediction task in our setting). They include: Balance:
> b; = > a;. Symmetry: if two parties ¢ and j enter the
market with same training and validation sets then the their
payoff, t; = t;. Zero element buyer: if there is a party whose
performance does not increase, it should at least get its par-
ticipation fee back, t; = A;.

Incentives Party ¢ decides on whether to enter the collab-
orative market or not and what V; and X; to contribute. As
a result, the marketplace should incentivize the parties to
join the market with good training data and honest valida-
tion data:

Joining the market: The market should incentivize new
parties to join. Our setting incentivizes this as follows. A
new party brings a new task to the market, hence, existing
parties’ data may be useful for this task, increasing their
payoff b;. At the same time, the new party is also bringing
new training data which can increase performance of tasks
submitted in the existing market, resulting in an increased
payoff. Hence a party joining the market can benefit from
increased utility.

Validation data: A dishonest party can try to manipulate
training and validation data (including their relationship) in
order to gain more than it would with its true training and
validation datasets. For example, V; can be seen as an im-
plicit bid that party i places on the model M? it will ob-

tain. There can be a case that G(V', M*) —G(V', M(X;)) >
GV, M)~ G(Vi, M),

If it is the case, M"* has higher utility than what is de-
termined by V;. To this end, the marketplace needs to ensure
that the model M that is returned to the party does not allow
for existence of V' in the current marketplace, incentivizing
the party to provide the best V; to get the best utility model.
We enforce this incentive by training models that are cus-
tomized for a specific task, i.e., maximizing their accuracy
towards a specific task while minimizing their accuracy on
all other tasks in the market.

Training data: The market needs to ensure that the pay-
ment b; that party ¢ receives for the use of its data to train
other models incentivizes it to provide its best X;. We note
that our market does not have an explicit way for parties to
bid or price training data.

Robustness to replication Parties may not behave hon-
estly and may replicate their data and create new replica par-
ties to join the market on their behalf. The market should be
robust to replication. That is, a party that replicates its train-
ing data should not earn more than it would in the original
market. This is a crucial property for any data market since
data as compared to physical goods is easily replicable. This
problem was already highlighted for a different marketplace
setup in (Agarwal, Dahleh, and Sarkar 2019).

Privacy and Integrity Since data can be easily leaked and
manipulated compared to physical goods, the market should
provide assurance to its participants about the correct han-
dling of their data and model training. At the very least it
should ensure that information about the training data X; of
party ¢ is revealed only to other parties through models for
validation tasks where ith training data is useful. The infor-
mation about V; has to be kept secret as well. As we men-
tion in the introduction, these properties can be provided if
the market infrastructure is instantiated using Trusted Exe-
cution Environments (or enclaves): parties submit their data
encrypted and allow only attested (verified) code to decrypt,
compute on it, and finally encrypt the models under the
encryption keys of the parties who can access these mod-
els (i.e., the party who specified the validation data for this
model).

4 Market Instantiations

We provide market instantiations for both a single validation
task among all the parties and multiple validation tasks.

4.1 Single Validation Task

Let us describe the marketplace for a single validation task V
that all M parties agree on. We slightly abuse the notation
by letting Mg = M(DresXk) be the model trained on
data from parties in .S for task V. The parties agree on the
same marginal payment per increase of the model perfor-
mance they gain (for example, per percentage increase): if
G(V, Mn1) = 1 then party ¢ pays the amount proportional
to A; = 1 — G(V, M,). Hence, the largest amount that can

be distributed among market participants is),y A;. Re-
call that, when entering the market the party submits X; and
fee A;. After the market completes, i obtains My and pay-
outb; > 0.

In §5 we explain how to train My from parties’ datasets
and here describe how we instantiate the market, compute
the payoffs using Shapley and show that the market is robust
to replication.

Characteristic Function Our characteristic function cap-
tures the value of data to parties in a set S for the task V' as
the value of the model trained on the data as well as value
the model brings to every party. As a result the characteristic
function for this market is defined as

v(8)= GV Ms) +>_[G(ViMs) —G(ViM;)]
——

JjeSs

value of the model model value for party j

This function could be seen as the value of the model trained
on the datasets of all parties in S plus marginal gains for
each party. Note that for a single party the value of the data
is expressed as the value of the model trained on its own
training dataset.

Payment Division The total amount, a, that is distributed
among the participants depends on the individual gains
obtained from the final model. Let a; = G(V, Mnp) —
G(V, M;).Then,a =), 4 a;. We use (normalized) Shap-
ley values for characteristic function v to determine the dis-
tribution of a for each party i: b; = a x (v, 7). (To simplify
the notation we use ¢ (¢) to denote (v, ¢).) In total, party
obtains t; = (A;—a;)+b; where (A; —a;) is the return of the
original investment if the final model performance is not 1.
Hence, party ¢ gains/loses the following amount by partici-
pating in the market: (A; —a;) +b; — A; = ¥(i)a— a;. Note
that ¢ gets 1(¢) portion from each a; and it pays 1 — ¢)(4)
of a; to the market.

Properties Our single-task market has the following prop-
erties: Balance: > (b; — a;) = Y. a x ¢¥(i) — > a; =
a x 1 —a = 0. Symmetry: This follows from using Shapley
value to calculate payout b; and a; would be the same for
the parties with same data. Zero element buyer: If © does not
benefit from other parties, that is G(V, M;) = G(V, M),
then A; is returned to ¢ since a; = 0.

Robustness-to-replication Recall that a market is robust
if a party does not gain a higher payoff in the market with
the replicas compared to its gain the original market.

Let us consider the total payoff of ¢ when it replicates it-
self. Let a and a® be the values of the original and repli-
cated markets. By definition of market value, all = a+ a;.
Let ¢ denote i’s payoff in the original market and ¢ be
its total payoff when it replicates itself. Similarly, let ()
and %() denote Shapley values before and after replica-
tion. t¥ = 2 x f(i)(af — a;) — 2 x (1 — YT(i))a; =
2 x (B (i)af* —a;). In the market where each party is equiv-
alent, that is V&, ar = a, replication does not help. Using

tlzlze symmetry property of Shapley value we can show that
t=0.

Let us consider the case when the contributions of the par-
ties are different. Recall that: t = ¢(i)a — a; and tf* = 2 x
(¥ (i)(a+ a;) — a;). Replication is useful to party i only if
t < t%.If this is the case, then: ¥ (i)a+a; < 29%(i)(a+a;)
should hold.

Condition 1. Market in §4.1 is robust to replication if

R Y(i)ata;
w ()S 2(aiala)

We show that our single-task market instantiation is robust
to replication as long as the gain function G has the proper-
ties outlined in §2. Our proof proceeds as follows. We first
derive the payoff that ¢ needs to make in the replicated mar-
ket in order to break even. We then determine the marginal
contribution of party ¢ for new coalitions that are created due
to the addition of its replica i’ (see Appendix Lemma 1). We
then devise the relationship between the Shapley values of
party ¢ before and after replication. Finally we show that the
Shapley value of 7 in the new replicated market satisfies the
condition of robustness to replication, yielding the following
theorem (proof details are provided in the appendix):

Theorem 1. Single market instantiation in §4.1 is robust to
replication as per Condition 1.

4.2 Multiple Validation tasks

The market setup is similar to the single task market where
there is a task from each party, ;. Similarly when entering
the market the party submits X; and fee A;. After the market
completes, i obtains M4, and payout b; > 0. In §5 we ex-
plain how to train an individual M3, from parties’ datasets
and use the rest of the section to describe how we instanti-
ate the market and compute the payoffs. The characteristic
function w for the multi-task market is defined as:

=> g My+> g = G(Vis M) |

ieM €S .
value for party ¢

(Vi; M)

value of all models of set M.

We observe that this is a natural extension from a single val-
idation task: the goal of the market is to achieve better per-
formance on all tasks of the market as well as individually
for each party. As we will see it also helps with lowering
the impact of replicated parties on the value of the market:
an addition of a replicated party will affect only the second
part of the value function while a party with new data has a
chance to contribute to both parts of the characteristic func-
tion.

Payment division and properties The payment division
is identical to the one for a single task market in §4.1 except
that w is used as the characteristic function when computing
the Shapley value.

Since the payment function is the same as in single
market, the condition on robustness is also the same and
marginal contribution of ¢ to coalitions that are created due
to its replication is limited in the same manner as in the
single-task market (see Appendix Lemma 3).

Since multi-task market payout is defined in the same
manner as the one for single task, the following proper-
ties also hold: balance, zero element and symmetry. The
main difference is the computation of the characteristic func-
tion w.

S Training over Multi-Party Data

In this section, we describe (1) how to align the training data
provided by all parties for training models for different tasks,
i.e., select the relevant training data; and (2) how to train
a model for party ¢ such that it performs well only on its
corresponding task and not other tasks in the market.

Training Data Selection With multi-party data we need
to select the right training data for training each parties’
model. To this end, we also make use of Shapley values.
Note that this step happens prior to the computation of the
payoffs which again involves the computation of Shapley
values but for a different characteristic function. For train-
ing data selection for party 7 we follow the following two
steps: (1) Compute the Shapley values ¢(u;,) for u;(S) =
G(Vi, M(UjesX;)). (2) Determine the relevant data for the
task of party ¢ as D; = {j € M | ¥(u;,j) > T}, where
7 is a threshold that can be used to control the amount of
used training data. Note that the above steps can be trivially
applied on a sample-level instead of a dataset-level. Com-
puting sample-level Shapley value would typically result in
better model performance at increased computational cost
for deciding on the training data to use. In the case of a sin-
gle common validation set, D; = Dj, Vi # j.

The characteristic functions used for computing payoffs
in §4.2 are computed using only relevant training data. In
particular, when computing Shapley values for determining
each parties’ payoff, we use the shorthand MY for Msqp, .
Superscript is omitted for single validation task.

Customized Model Training To minimize usefulness of
the model provided to party ¢ after interacting with the mar-
ket for other parties’ validation tasks, we adopt the following
strategy for training the model for party i: Party ¢ receives
a model trained on the data of parties D;. Additionally the
model that party ¢ receives is optimized for maximizing the
loss wrt all Vy, for k # i, i.e.

mein Z G(Vi, M(@remAr)) 2
JeEM\{i}
s.t. GV, M(@remXi)) > G — ¢,

where G* = G(V;, M{v[) is the best performance achievable
on the validation data of party ¢ by standard model train-
ing, € > 0 is some constant, and # are parameters of the
models, e.g., weights of a neural network. To avoid overfit-
ting to the validation data by using it during model train-
ing (we still need to resort to the validation data for pric-
ing) and have a straightforwardly approachable optimization
problem, we consider the proxy maxg G(Ukep, Xk, Mivl)—
A2 G(Vj, Miy), where A > 0 is a hyperparameter. This
approach is evaluated in our experiments.

Change in accuracy for digit 0 Change in accuracy for digit 0

Change in overall accuracy Change in overall accuracy

97 1 99
P/%“%*“}ﬂ—{ 89.51 % 96.51 %
59717 > 598-;/’1\\‘,/~: I tlpeeo] o]
o v % 89.0 \s g : ~ 1 g | BT Ny
395 3 e] g T é955)
g o] ~e._] 1 R . e
<94_ < 88.5 \‘:;;;;; <97. < S
-3- 0 44 -3- 0 4 s -3- 0 4 95.01 -3~ o af
T T T T T T 880- T = T T T T T T T =
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Replicas # Replicas # Replicas # Replicas
(a) Logistic regression (b) DNN

Figure 2: Accuracy for MNIST dataset trained using logistic regression (two left plots) and a DNN (two right plots) with
replication of digit 0. Replication of other digits showed similar results.

6 Experiments over the number of replicas. For logistic regression, the ac-

We implemented a prototype of our marketplace and eval- curacy of glgssifying digit 0 inf:reases initially .With repli-
uated it on the task of classifying handwritten digits from cation of digit 0 and then remains constant. This confirms
the MNIST dataset (LeCun et al. 1998). Here we validate that replication does not necessarily benefit the accuracy of
assumptions made in the paper and evaluate the effective- the replicated digit on a model that is trained on sufficient
ness of our marketplace setup. The goals of our evaluation samples. On the other hand, the accuracy of classifying the
are: (i) Understand the effect of replicated training data on digit 0 decreases slightly with replication of 4. This result
the accuracy on validation data; (ii) Measure the (impor- shqws that rf?phcatlon may h}lrt the accuracy of other vali-
tance) value of training data towards a single validation task; dation tasks in the market. Finally, we observe that the ac-
(iii) Calculate the payoffs with our payment division func- curacy of the overall validation task of 10K images reduces
tion for training data with and w/o replication and compare only slightly with the replication of both digits. The results
them to those of the naive payment division; (iv) Evaluate for DNNs show similar trends. Thus, in summary, the as-
the effectiveness of an output model customized for a given sumptions needed for our theoretical results hold approxi-
validation task. mately in practice.

6.1 Effect of Data Replication on ML models 6.2 Customized Model Training
We aim to understand how data replication affects model ac- An important component of our marketplace is customized
curacy and validate the assumption we made in §2. To this model training, cf. §5, which consists of two steps: data se-
end, we consider a collaboration among 10 parties for the lection and model training. We empirically investigate both
validation task of 10K images with all 10 digits. We mea- steps here.
sure the accuracy on this validation task on models that are Training data selection. To understand the usefulness of
trained using the data from all parties. We train a logistic training data with respect to a validation task, we consider
regression model and a single hidden layer (500 neuron;) a setting where each party holds 2000 training samples for
DNN model for 100 epochs with ilearnmg rate of 107, two randomly selected labels. As validation tasks, we con-
Adam optimizer and a value of 107 for (2 regularization. sider classification of all ten digits and classifying digits
In the 1q1t1a1 setup, each party .contrlbutes 1000 images (0,1,2,3,6,8). Figure 3a shows the Shapley values using
corresponding to a single digit, which are randomly sampled characteristic function u for both validation tasks. For all
from the training data for this digit. To understand the effect the digits in the validation data (label 0-9 in the figure), we
of replication, we compare the accuracy of the model trained observe that the parties with unique labels such as 1, 2 and 6
in the initial setup with the following replication configu- have higher Shapley values indicating higher utility of their
rations. The party with digit 0 or 4, respectively, replicates training data. For the validation task on digits (0,1,2,3,6,8)
and creates new parties with the same 1000 images as their we observe that the parties which do not contribute any of
training data. We vary the number of replicas from 0 to 50. these digits have zero Shapley values. This confirms that
Hepce, 'there will be 50,0QO'samples correspondlf{g to the Shapley values are well suited for selecting training data for
digit O in the combined training dataset for 50 replicas. All task-specific model training.

observations are similar for the replication of other digits.
In addition to the overall accuracy of the validation task, we
looked at the accuracy of the digits 0 and 4 present in the

Model training. To evaluate the customized model train-
ing we considered a setting with ten parties in which each
party holds data for two different digits s.t. party 7 has data

validation dataset. for labels (4, (j + 1) mod 10) for j € {0,1,...,9}. For

party j the training data consists of all training samples from
Results. Figure 2 shows results for a logistic regression the MNIST dataset with either of its two labels. The same
and a DNN model averaged over 50 runs (random draws holds for its validation data with respect to the validation
of training and validation data, and of the initial network data from MNIST. In Figure 4 we see results for applying
weights). The dotted and the solid lines denote the accuracy the customized model training approach when training a lo-

m09 ®(0,1,23,6,8)
20

mP1-(0,8) @P2-(2,8) OP3-(2,8

n 45

o

s 40

© w35

> [

> 10 g

2 £5s

=%

© 5 e 357

c TS5

v I I S 10
0 5

(2,8)(7,9) (4,1) (5,9) (4,9) (6,8) (4,0) (5,7) (4,7) (0,8) 0

Digits contributed by each party

(@)

Number of Replicas

) OP4-(2,8) OP5-(2,8) OP6-(2,8) uP1-(0,8) EP2-(2,8) DP3-(2,8) OP4-(2,8) OPS5-(2,8) OP6-(2,8)

120

Shapley Values
using v(S)
[
8

Number of Replicas

©

Figure 3: (a) Shapley values for parties contributing training data for validation tasks with all ten digits and only digits
(0,1,2,3,6,8). Figures (b) and (c): Shapley values on validation dataset of digits (0,2,8) with replicating parties for char-
acteristic function u (accuracy) in (b) and our proposed characteristic function v (§4.1) in (c).

gistic regression model for the validation task of each party.
We observe that although the combined training points con-
sist of all the digits in MNIST, the model trained with our
approach is useful only for the specific validation task and
has mediocre performance on (other) validation tasks with
overlapping labels. That is, it is not useful to classify dig-
its from the remaining labels outside the specific validation
task.

6.3 Payoffs in Single Task Marketplace

We now empirically validate that our proposed characteris-
tic function v in §4.1 for computing payoffs is indeed robust
to replication. We also compare it to the case where Shap-
ley values are computed for characteristic function u (model
accuracy), cf. §5, which is not robust to replication. Here,
we consider two parties: Honest party P; with digits (0,8),
and replicating party P> with digits (2,8). P; creates replicas
Ps to Ps with the same dataset. The single validation task is
classification of digits 0,2,8. The parties combine their data
and train a logistic regression model.

Figure 3 shows Shapley values of our results as number
of replicas increases. We observe that the combined Shap-
ley value of the replicating parties increases with the num-
ber of replicas while that of the honest party P, decreases
for v (Figure 3b) when using Shapley values with accuracy
as the characteristic function. In contrast, Figure 3c shows
that when Shapley values are instantiated with our new char-
acteristic function, Shapley values of P; and the combined
values for the replicating parties are equal. This verifies that
replication does not benefit the replicating party when using
our single-task collaborative market instantiation.

7 Related Work

Multiple lines of work are related to our proposed collabo-
rative machine learning markets framework. We organized
it into work on using Shapley values for valuating data for
model training and machine learning marketplaces. Also
general work on game theory and mechanism design is re-
lated to our work but not discussed here in detail, cf. (Nisan
et al. 2007) for an overview.

Validation task

0,1) (1,2) (2,3) (3,4) (4,5 (56) (6,7) (7,8) (89) (9,0)

Training data

Figure 4: Classification accuracy of the customized models
for different validation tasks.

Shapley values for valuating data. Prior work has pro-
posed the use of Shapley values for characteristic func-
tion u to valuate data in machine learning settings. Most
of these works focus on the problem of efficiently approx-
imating Shapley values. Closest to ours, Agarwal, Dahleh,
and Sarkar (2019) uses Shapley values to compute pay-
offs in non-collaborative marketplace. Before that, Datta et
al. (2016) proposed the use of Shapley values to quantify
feature importance for classification problems, and proposed
sampling based approximations of Shapley values. Ghor-
bani et al. (2019) show that Shapley values are good met-
ric to quantify the usefulness of data for machine learn-
ing tasks. They show that valuating data for model training
based on Shapley value is better than using leave-one-out
cross-validation, and propose sampling and gradient based
approaches for approximating Shapley values. Also Jia et

al. (2019) propose several sampling based approaches and
the use of influence functions (Koh and Liang 2017) to re-
duce the computational cost of computing Shapley values.

Machine learning marketplaces. The closest to our pa-
per is work by Agarwal et al. (2019) who study an al-
gorithmic approach for data marketplaces. They propose
a general marketplace setup which makes use of Shapley
values for computing payoffs. The marketplace sets prices
for data in an online fashion and matches sellers to buy-
ers. They highlight the problem of data replication in com-
bination with Shapley values and propose to overcome it
heuristically by downweighing Shapley values according to
data similarity. Critically, their approach also reduces pay-
offs for honest, i.e., non-replicating, parties. In contrast,
we achieve robustness-to-replication naturally through the
multi-party setting in combination with novel characteris-
tic functions. Furthermore, in our marketplace no data is
given to party, avoiding further reselling of the data while
in (Agarwal, Dahleh, and Sarkar 2019) this is possible.
Other related work tries to price machine learning models
instead of data directly (Chen, Koutris, and Kumar 2018).
In that work, a broker forms the interface between data sell-
ers and model buyers. Their main focus is to ensure afford-
ability of models for all buyers by adjusting the model’s
performance through noise-injection and prevention of ar-
bitrage. Abernethy and Frongillo (2011) study incentive
mechanisms in the setting where solving a task (e.g., ML
prediction) is done in a collaborative decentralized man-
ner with parties contributing towards solving the task with
their expertise (e.g., improvements to a classifier), as op-
posed to contributing data. Marketplaces that treat data sim-
ilar to classical goods are available at (Big Data Exchange ;
QLik Data Market).

8 Future Work

We consider the following extensions of our work: Perfor-
mance: Improve the time to select training data using opti-
mizations for evaluation of Shapley values such as sampling
or influence functions (Koh and Liang 2017; Jia et al. 2019;
Ghorbani and Zou 2019). Data Privacy: Use differential pri-
vacy techniques to strengthen privacy of training data in the
customized models, as a result mitigating model inversion or
membership inference attacks on the output model (Shokri
et al. 2017; Fredrikson, Jha, and Ristenpart 2015). Itera-
tive Market: Consider marketplace properties when the par-
ties interact with the market over multiple rounds. Iterative
markets would allow parties to learn additional information
about the market such as the type of validation tasks and
training data available, which might give advantage to ad-
versarial parties.

References

Abernethy, J. D., and Frongillo, R. M. 2011. A collaborative
mechanism for crowdsourcing prediction problems. In Ad-
vances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Sys-
tems 201 1. Proceedings of a meeting held 12-14 December
2011, Granada, Spain., 2600-2608.

Agarwal, A.; Dahleh, M.; and Sarkar, T. 2019. A market-
place for data: An algorithmic solution. In Proceedings of
the 2019 ACM Conference on Economics and Computation,
701-726. ACM.

Big Data Exchange.
bigdataexchange.com.

Chen, L.; Koutris, P.; and Kumar, A. 2018. Model-based
pricing for machine learning in a data marketplace. arXiv
preprint arXiv:1805.11450.

Datta, A.; Sen, S.; and Zick, Y. 2016. Algorithmic trans-
parency via quantitative input influence: Theory and exper-
iments with learning systems. In 2016 IEEE symposium on
security and privacy (SP), 598-617. IEEE.

Fredrikson, M.; Jha, S.; and Ristenpart, T. 2015. Model
inversion attacks that exploit confidence information and
basic countermeasures. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Se-
curity, 1322-1333. ACM.

Ghorbani, A., and Zou, J. 2019. Data Shapley: Equi-
table valuation of data for machine learning. arXiv preprint
arXiv:1904.02868.

Hoekstra, M.; Lal, R.; Pappachan, P.; Rozas, C.; Phegade,
V.; and del Cuvillo, J. 2013. Using innovative instructions
to create trustworthy software solutions. In Workshop on
Hardware and Architectural Support for Security and Pri-
vacy (HASP).

Jia, R.; Dao, D.; Wang, B.; Hubis, F. A.; Hynes, N.; Gurel,
N. M; Li, B.; Zhang, C.; Song, D.; and Spanos, C. 2019.
Towards efficient data valuation based on the Shapley value.
arXiv preprint arXiv:1902.10275.

Koh, P. W., and Liang, P. 2017. Understanding black-box
predictions via influence functions. In International Confer-
ence on Machine Learning (ICML), 1885—-1894.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; et al. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278-2324.

Nisan, N.; Roughgarden, T.; Tardos, E.; and Vazirani, V. V.
2007. Algorithmic game theory. Cambridge university press.
Ohrimenko, O.; Schuster, F.; Fournet, C.; Mehta, A
Nowozin, S.; Vaswani, K.; and Costa, M. 2016. Oblivi-
ous multi-party machine learning on trusted processors. In
USENIX Security Symposium.

QLik Data Market. QLik Data Market. http://www.qlik.
com/us/products/qlik-data-market.

Shapley, L. S. 1953. A value for n-person games. Contribu-
tions to the Theory of Games 2(28):307-317.

Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In Security and Privacy (SP), 2017 IEEE Sympo-
sium on, 3—18. IEEE.

Big Data Exchange. htt://www.

A Proof details

We show that our single-task market instantiation is robust to replication. Recall that a market is robust if a party does not gain
a higher payoff in the market with the replicas compared to its gain the original market. Let M be the number of parties in the
market before replication. Let ¢ be the party that replicates itself. Our proof proceeds as follows. We first derive the payoff that
1 needs to make in the replicated market in order to break even (Condition 1) and estimate what is the marginal contribution
of party 4 for new coalitions that are created due to the addition of its replica ¢’ (Lemma 1). We then devise the relationship
between the Shapley values of party ¢ before and after replication. (Lemma 2). Finally, we show that, under certain conditions
on the gain function G, 1)* of the new market satisfies the condition on robustness to replication (Theorem 1).

Our main argument depends on the following lemmas where we capture the influence of the replicated party on the compu-
tation of the Shapley value (7).

Lemma 1. Let i and i’ be replicas and let i’ € S then v(S U {i}) — v(S) < a; for any set S.

Proof. Let us expand v(S U {i}) using the property of the gain function that states that replicated does not change its value
(.e., G(V; Mgugiy) = G(V; Ms)):

v(SU{iY) = GWiMsug)+ Y [G(VsMsuy) —G(VsM;)] =
jESU{i}
GV Ms)+ > [G(ViMs) —G(ViM,)]
jeSu{i}
Then
w(SU{Y) — w(S)

= GWiMs)+ Y [G(ViMs) - G(V;M;)]
jeSu{i}

—G(ViMs) =D [G(ViMs) = G(ViM;)]
JjES

= G(V;Ms) —G(V;M;) < a;
O

Lemma 2. Let ¢ and ¢™ be the Shapley values of the original market and the market where party i replicates itself. Then, if G
used in the characteristic function v is monotonic and supermodular,

Y(i)v(M) a; (i) v(M) + a;

R(; _
VN S S0 e T 20 T e 2(o(M) 4 ay)

Proof. Let us express ¥ (i) in terms of 1. Compare the coalition subsets S between the two values. All the new subsets in)%
will contain the replica of i. As shown in Lemma 1, for such subsets v(S U i) — v(S) = a;. The other subsets are the same as
in 1 except that their value towards the overall Shapley value decreases. Let 17 (i) = %, (i) + o[, (i) where 1, is the value
brought from old (coalition) subsets and ¢ from the new ones.

new

Computing ¢, (i): 5, (i) < % The (normalized) Shapley value of the subsets that existed before replication for
both markets is:

vo- g > SEEEED sugn-us)
SCM\{i}

w1 SO IS

Vgali) ”<MR>SQ§\{Z-} arenr (MU -us)

where v(M*) = v(M) + a;. We need to show that

. 1
bata(i) = o(M) +a Z

SCM\{i}

[SI(M — |S])!

(M +1)! (v(SU{i})—v(5)) <

2(w(M) + a))

Simplifying the inequality and substituting v (v):

[SM = 1S ey — o P(i)v(M)

Sg\m Qi CEUi-uE) < =

> B esui-us) < qp S PSR asug-os) 3
SCM\{i} SCM\{i}

> BB sum-us) < 5 > SR s -us)
SCM\{i} ’ SCM\{i} ’

> “ﬂgﬁﬁgkﬁﬂ(“SU{”’““”) < % > IS — [S] = D! (v(SU{i}) —v(S))

SCM\{i} SCM\{i}

Y (M =28 - 1(u(Sufi})—u(S)) < 0
SCM\{i}

Note that coefficients M — 2|S| — 1 are symmetric for sets |R| < |[M/2| and |Q] = M — |R| - 1: M —2|R| -1 =
—(M —2|Q| — 1). Hence, as long as v(R U {i}) — v(R) < v(Q U {i}) — v(Q), the inequality is satisfied.
Recall that the characteristic function is defined for the single-task market is defined as v(S U {i}) = G(V; Msupy) +
ZjeSU{i} [g(V, MSU{z}) - Q(V, ./\/l])} . Then U(S U {Z}) — U(S) is:
GViMsuay) + Y [G(Vi Msugy) = G(Vs M) = G(ViMs) = > [G(V; Ms) =G (Vi M;)] =
jESU{i} JjES
(IS + DIG(V; Msugiy) — G(Vs M)l + [G(V; Msugiy) — G(Vs M)
Hence, v(RU{i}) —v(R) < v(Q U {i}) — v(Q) can be written as follows, using the fact that G is monotonic:
(IR + DIG(V: Mrugy) — G(ViMR)] < (1Q + DG (Vi Maugsy) — G(Vi Mq)]
(18] + DG (Vs Mrugy) — G(Vs Mr)] < (M = [RD[G(Vs Maugy) — G(Vs Mg)]
The inequality holds, as long G is supermodular since |R| + 1 < M — |R| for |R| < M/2.

Computing ¥ (i): Let us now show that 2 (i) = W, where we denote the number of coalitions of size s without
party ¢ in the market with M parties using, ns ps:
M—-1
Ns,M =
s

Each new coalition in the new marketplace contains i’. Hence, using Lemma 1, marginal contribution of 7 in these new
coalitions will be limited to a;. The number of such new subsets is

M—1 M—1
ny,M+1 E NgM+1 — Nsm =1+ E Mg M1 — Ns, M
s=1 s=1

Overall these subsets bring the following value to ¢*(4):

1 1 n n
R s,M+1 — Tbs,M

Ns M4+1
1 1 M—1 1 1 M+1 a;
+ =a = “)
M +1 (MR) 2 M+ 1o(MFE) 2 20(MRE)
(see Claim 1 for the expansion of the subset combinations).
Then substituting derivations 3 and 4 into)*(i):
Ry, Y(i)v(M) a; () (M) + a
P(i) < + =

20(M) +a;) 2(v(M) + a;) 2(v(M) + a;)

O

10

Corollary 1. Ifa; = 0, then Y2 (i) < wéz)(’j\(/}\)/[) = wéi).

Theorem 1. Single market instantiation in §4.1 is robust to replication as per Condition 1.

Proof. Let a = a; + a; where a; refers to the sum of aj, for all other parties in the market except 7 and 7’. Let us prove

the contrary that the market is not robust to replication and hence Condition 1 is false. Substituting 1) from Lemma 2 in
Condition 1 and rearranging we obtain

(i)

a; + a; a;
2((11‘ + a; +ai) 2((17; + a; +ai)

. v(M) a;

<YO3000 1a) T 300 T a

Y(i)(a; +aj) + a; - Y(i)v(M) + a;)
(a; + a; + a;) v(M) + a;

Recall that v(M) = G(V;Mm) + D jepq @t = G(V; Mm) + a; + a;. Note that a; < G(V; M) < 1, Vi since a; =

GV; Mm) — G(V; M;). Let k = argmax a;.
Replacing v(M) in Equation 5:

Y(i)(ai + a;) + a; < Y(i)(ak + ai + aj) + a;

(a; + a; + a;) ar + (a; + a; + a;)
ag +a; +aj+a; V() (ag +a; +a;) + a;
ai—&-aj + a; ¢(i)(ai+aj)+ai

Let A=ay +a;,+aj, B=a;+a;,z=1/1() >1Then
A+a < Y(i)A+a;
B+a; 9()B+a;
A+a; A+ za;
B+ a; B + za;
Letp = gii ,then (A + a;) = p(B + a;). Since A > B, a; > 0, then p > 1. We need to show that

< A+ za, :p(BJrai)faiquai

B+ xa; B+ xa;
pB + pra; < pB 4+ pa; — a; + xa;
pra; < pa; — a; + xra;
pr<p+zxz—1

However, px > p+ x — 1 for p,z > 1 and we arrive to contradiction. O

Lemma 3. Let i and i’ be replicas and let i’ € S then w(S U {i}) — w(S) < a; for any set S.
Proof. Consider the value w(S U {i}) — w(.S) for replicated party 4.

w(SUi) = Z Q(Vj;/\/lgg,i)) + Z [g(vaM{s,i)) - Q(Vj;./\/lg)]

jeEM jJES,i
w(S Ui, =Y g(vj;M{S,i’i,)) + Y [g(vj;M{S’i,i,)) — GV M) =
JEM JES,i,i!
DGV M)+ D [G(Vi Mg ,) — G(Vis M))]
JjEM JES, i,

Then
w(SUi, i) —w(SUi)=
Z g(VJ?MgS,i)) + Z [G(Vss M{S,i)) ~G(ViiM))

—

jEM JES,i,if
- Z g(Vj;M{S,i)) - Z [Q(VﬁM{s,i)) - g(Vj?Mg)] =
jEM j€S.i

G (Vi§M{S,i)) — GV M))] = a;

11

) (M) L (M-t —s)!

(

: M—1 ns, —nem 1 (M=1)M _ M—1
Claim1. >~ = IZ:IM:Z M M(2) — Mol
Proof.

(Ms, 41— Ns M) (Aj) - (Mgl
et)
and

M-1

D

s=1

(

M
s

)~ (

M—-1
s

G

),

M
s

M-—1

D

s=1

)

S

sI(M —s—1)IM!

1L (M—-1)M M-1

Vi VAR R

12

