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Abstract

In this paper, we study the non-stationary online second price
auction problem. We assume that the seller is selling the same
type of items in T rounds by the second price auction, and
she can set the reserve price in each round. In each round,
the bidders draw their private values from a joint distribu-
tion unknown to the seller. Then, the seller announced the
reserve price in this round. Next, bidders with private val-
ues higher than the announced reserve price in that round
will report their values to the seller as their bids. The bid-
der with the highest bid larger than the reserved price would
win the item and she will pay to the seller the price equal
to the second-highest bid or the reserve price, whichever is
larger. The seller wants to maximize her total revenue during
the time horizon T while learning the distribution of private
values over time. The problem is more challenging than the
standard online learning scenario since the private value dis-
tribution is non-stationary, meaning that the distribution of
bidders’ private values may change over time, and we need
to use the non-stationary regret to measure the performance
of our algorithm. To our knowledge, this paper is the first to
study the repeated auction in the non-stationary setting the-
oretically. Our algorithm achieves the non-stationary regret
upper bound Õ(min{

√
ST , V̄

1
3 T

2
3 }), where S is the num-

ber of switches in the distribution, and V̄ is the sum of total
variation, and S and V̄ are not needed to be known by the al-
gorithm. We also prove regret lower bounds Ω(

√
ST ) in the

switching case and Ω(V̄
1
3 T

2
3 ) in the dynamic case, showing

that our algorithm has nearly optimal non-stationary regret.

1 Introduction
As the Internet is rapidly developing, there are more and
more online repeated auctions in our daily life, such as the
auctions on the e-Bay website and the online advertisement
auctions on Google and Facebook. Perhaps the most stud-
ied and applied auction mechanism is the online repeated
second price auctions with a reserve price. In this auction
format, a seller repeatedly sells the same type of items to
a group of bidders. In each round t, the seller selects and
announces a reserve price r(t) while the bidders draw their
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private values v(t) on the item from a joint value distribu-
tion, which is unknown to the seller. For each bidder i, if
its private value v

(t)
i is at least the reserve price r(t), she

will submit her bid v
(t)
i to the seller; otherwise she will not

submit her bid since she would not win if her value is less
than the announced reserve price. After the seller collects
the bids in this round (if any), she will give the item to the
highest bidder, and collect from this winner the payment
equal to the value of the second-highest bid or the reserve
price, whichever is higher. If no bidder submits bids in this
round, that means the reserve price the seller announced is
too high, and the seller receives no payment. Such repeated
auctions are common in online advertising applications on
search engine or social network platforms. The seller’s ob-
jective is to maximize her cumulative revenue, which is the
total payment she collects from the bidders over T rounds.
Since the seller does not know the private value distribution
of the bidders, the seller has to adjust the reserve price over
time, hoping to learn the optimal reserve price.

The above setting falls under the multi-armed bandit
framework, where reserve prices can be treated as arms and
payments as rewards. As in the multi-armed bandit frame-
work, the performance of an online auction algorithm is
measured by its regret, which is the difference between
the optimal reward that always chooses the best reserve
price and the expected cumulative reward of the algorithm.
When the distribution of private values does not change over
time, results from (Cesa-Bianchi et al. 2017; Zhao and Chen
2019b) can be applied to solve the above problem, whereas
the work in (Cesa-Bianchi, Gentile, and Mansour 2015) con-
siders a somewhat different setting where the seller only gets
the reward as the feedback but does not see the bids (full-
bandit feedback) and the private value distribution of each
bidder is i.i.d.

In real-world applications, however, the private value
distribution of the bidders may likely change over time,
e.g., some important events happen, which greatly influence
the market perception. When the private value distribution
changes over time, the optimal reserve price will also change
and there is no single optimal reserve value. None of the
above studies would work under this realistic setting, ex-
cept resetting the algorithms by human intervention. Since



it is difficult to predict distribution changes, we prefer to
have algorithms that could automatically detect distribution
changes and adjust their actions accordingly, and still pro-
vide nearly optimal performance over the long run.

In this paper, we design the first online learning algorithm
for online second price auction with non-stationary distri-
butions of private values. We assume that the private values
of the bidders at time t follow the joint distribution Dt, and
we assume that r∗t is the best reserve price at time t. We
use non-stationary regret to measure the performance of the
algorithm, which is the difference between the expected cu-
mulative reward of the best reserve prices at each round and
the expected cumulative reward of the algorithm. We use
two quantities to measure the changing of the distributions
{Dt}t≤T : switchings and total variation. The number of
switchings is defined as S := 1+

∑T
t=2 I{Dt 6= Dt−1}, and

the total variation is given as V̄ :=
∑T
t=2 ||Dt − Dt−1||TV,

where || · ||TV denotes the total variation of the distribution
and T is the total time horizon (Section 2).

In this paper, we provide an elimination-based al-
gorithm that can achieve the non-stationary regret of
Õ(min{

√
ST , V̄ 1

3T
2
3 }) (Section 3). This regret bound

shows that if the switchings or the total variations are not
large (sublinear to T in particular), our algorithm can still
achieve sublinear non-stationary regret. We give a proof
sketch in Section 4 to show the main technical ideas of the
regret analysis. We further show the non-stationary regret
is lower bounded by Ω(

√
ST ) in the switching case, and

lower bounded by Ω(V̄ 1
3T

2
3 ) in the dynamic case (Section

5), which means that our Elim-NS algorithm achieves nearly
optimal regret in the non-stationary environment. Moreover,
our algorithm is parameter-free, which means that we do
not need to know the parameters S and V̄ in advance and
the algorithm is self-adaptive. Our main method is to reduce
the non-stationary online auction problem into a variant of
the non-stationary multi-armed bandit problem called non-
stationary one-sided full information bandit, and solve this
problem with some novel techniques.

Due to the space constraint, the detailed technical proofs
are included in our full report (Zhao and Chen 2019a), but
the proof sketch covering all essential ideas are included in
the main text.

1.1 Related Work
Multi-armed bandit: Multi-armed bandit (MAB) problem
is first introduced in (Robbins 1952). MAB problems can be
classified into stochastic bandits and the adversarial bandits.
In the stochastic case, the reward is drawn from an unknown
distribution, and in the adversarial case, the reward is de-
termined by an adversary. Our model is a generalization of
the stochastic case, as discussed below. The classical MAB
algorithms include UCB (Auer, Cesa-Bianchi, and Fischer
2002) and Thompson sampling (Thompson 1933) for the
stochastic case and EXP3 (Auer et al. 2002) for the adver-
sarial case. We refer to (Bubeck and Cesa-Bianchi 2012) for
comprehensive coverage on the MAB problems.

Non-stationary MAB: Non-stationary MAB can be
view as a generalization of the stochastic MAB, where

the reward distributions are changing over time. The non-
stationary MAB problems are analyzed mainly under two
settings: The first considers the switching case, where there
are S number of switchings in the distribution, and de-
rives switching regret in terms of S and T (Garivier and
Moulines 2011; Wei, Hong, and Lu 2016; Liu, Lee, and
Shroff 2018); The second considers the dynamic case, where
the distribution is changing continuously but the variation V
is bounded, and present dynamic regret in terms of V and
T (Gur, Zeevi, and Besbes 2014; Besbes, Gur, and Zeevi
2015). However, most of the studies need to use S or V
as algorithm parameters, which may not be easy to obtain
in practice. Designing parameter-free algorithms has been
studied in the full-information case (Luo and Schapire 2015;
Jun et al. 2017; Zhang et al. 2018). There are also sev-
eral attempts to design parameter-free algorithms in the
bandit case (Karnin and Anava 2016; Luo et al. 2018;
Cheung, Simchi-Levi, and Zhu 2019), but the regret bound
is not optimal. A recent and innovative study (Auer, Gajane,
and Ortner 2019) solves the problem in the bandit case and
achieves optimal regret. Then, (Chen et al. 2019) signifi-
cantly generalizes the previous work by extending it into the
non-stationary contextual bandit and also achieves optimal
regret. Our study is the first one on the non-stationary one-
sided full information bandit and its application to the online
auction setting.

Online auction: For the online case where the private
value distribution is unknown, (Cesa-Bianchi, Gentile, and
Mansour 2015; Cesa-Bianchi et al. 2017; Zhao and Chen
2019b) consider different forms of the online second price
auction. These studies assume that bidders truthfully follow
their private value distributions, the same as we assume in
this work. (Mohri and Medina 2015) further considers the
online second price auction with strategic bidders, which
means that their bidding may not be truthful. (Roughgarden
and Wang 2016) studies the online second price auction with
bidder specific reserve price. However, they need to use all
the bidding information, and they also assume that the bid-
ders are truthful. For the offline case where the private value
distribution is known, the classical work by Myerson (My-
erson 1981) provides an optimal auction algorithm when the
private value distributions of all bidders are independent and
known, and the seller could set different reserve prices for
different bidders.

2 Preliminary and Model
In this section, we introduce the non-stationary online sec-
ond price auction with semi-bandit feedback. We will also
introduce the non-stationary regret to measure the perfor-
mance of the algorithm. As mentioned before, we reduce the
non-stationary online second price auction problem to a non-
stationary bandit problem, which we called non-stationary
one-sided full information bandit. We will also give the for-
mal definition of the bandit problem and show the perfor-
mance measurement for the corresponding bandit problem.

Definition 1 (Non-stationary Online Second Price Auction).
There are a fixed number of n bidders and a seller, and the
seller sells the same item in each round t ∈ [T ]. In each



round t, the seller sells the item through second price auc-
tion with reserve price r(t), where r(t) is chosen by the seller
at the beginning of each round t and is announced to the bid-
ders before the bidders give their private values. The values
of the bidders follow a distributionDt with support [0, 1]n in
round t, and the environment draws a vector of realized val-
ues for the bidders v(t) ∼ Dt. For each bidder i ∈ [n], if her
value v(t)

i ≥ r(t), she will report her value v(t)
i to the seller,

otherwise she will not report her value and not attend the
auction in this round.1 The seller then dispatches the item
using the second price auction with reserve price r(t). We
assume that the distributions Dt are generated obliviously,
i.e., Dt are generated before our algorithm starts, or equiv-
alently, Dt are generated independently to the randomness
of Ds for all s ≤ t and the randomness of the algorithm.

The performance of the reserve price in auction
is always measured by the revenue: R(r(t),Dt) :=
Ev∼Dt

[∑n
i=1 pi(r

(t),v)
]
, where pi(r

(t),v) denote the
money bidder i needs to pay when the reserve price is r(t)

and v is the private value vector of the bidders is v. In partic-
ular, if bidder i has the highest bid among all bidders and its
bid is also larger than the reserve price r(t), then i pays the
maximum value among all other bids and the reserve price
and gets the auction item; otherwise the bidder i pays noth-
ing and does not get the item. Note that if we fix a reserve
price r, whether bidders with values less than r report their
values or not does not affect the revenue. Given the revenue
of a reserve price, we have the following definition for the
non-stationary regret in the online second price auction.
Definition 2 (Non-stationary Regret for Online Second Price
Auction). The non-stationary regret of algorithm A for the
online second price auction is defined as follow,

RegSPA := E

[
T∑
t=1

(R(r∗t ,Dt)−R(r(t),Dt))

]
,

where r∗t := argmaxrR(r,Dt) and r(t) is the reserve price
algorithm A chooses in round t, and the expectation E[·] is
taken over all the randomness, including the randomness of
the algorithm itself and the randomness of v(1), . . . ,v(t−1)

leading to the randomness in the selection of r(t).

We now introduce the measurement of the non-
stationarity. In general, there are two measurements of the
change of the environment: the first is the number of the
switchings S, and the second is the total variation V̄ . For
any interval I = [s, s′], we define the number of switch-
ings on I to be SI := 1 +

∑s′

t=s+1 I{Dt 6= Dt−1}.
As for the total variation, the formal defintion is given as
V̄I :=

∑s′

t=s+1 ||Dt − Dt−1||TV, where || · ||TV denotes the
total variation of the distribution. For convenience, we use S
and V̄ to denote S[1,T ] and V̄[1,T ].

1We fully understand that in the repeated online second price
auction, the bidder may not be truthful since she may participate in
the auction in several rounds. However, this is out of the scope of
the current paper. We will assume that the bidders are truthful in
each round, and it is a good approximation in some cases.

Next, we briefly discuss how to reduce the online sec-
ond price auction to the one-sided full-information bandit:
1) We can discretize the reserve price into r1, . . . , rK . Be-
cause the revenue of the second price auction is one-sided
Lipschitz, when K is large enough, the revenue of the best
discretized reserve price should not make so much differ-
ence to that of the best reserve price on the whole domain.
2) The distribution of the value Dt will induce a distribu-
tion of reward on (r1, . . . , rK). More specifically, any pri-
vate value vector v(t) ∼ Dt will induce a reward vector
X(t) = (X

(t)
1 , . . . , X

(t)
K ) for the discretized reserve price

r1, . . . , rK , and the reward vector X(t) follows a distribu-
tion νt. 3) At time t, because all bidders with values at least
r(t) will report their values, we can compute the rewards for
all r ≥ r(t) given the specific private values larger than or
equal to r(t). This gives us the following definition of the
non-stationary one-sided full-information bandit. The for-
mal reduction from the online auction to the bandit problem
will be given in the proof of the Theorem 3.

Definition 3 (Non-stationary One-sided Full Information
Bandit). There is a set of arms {1, 2, . . . ,K}, and for each
arm a ∈ [K] at time t, it corresponds to an unknown distri-
bution νa,t with support [0, 1], where νi,t is the marginal dis-
tribution of νt with support [0, 1]K . In each round t, the en-
vironment draws a reward vector X(t) = (X

(t)
1 , . . . , X

(t)
K ),

where X(t) is drawn from distribution νt. The player then
chooses an arm At to play, gains the reward X(t)

At
and ob-

serves the reward of arms At, At + 1, . . . ,K, i.e. observes
X

(t)
i ,∀i ≥ At. We assume that the distribution νt at each

round t is generated obliviously, i.e. νt are generated before
the algorithm starts.

We use µa,t to denote the mean of X(t)
a , i.e. µa,t =

E[X
(t)
a ]. We also use µ∗t = maxa µa,t to denote the mean

of the best arm at time t. Then we have the following defini-
tion of the non-stationary regret.

Definition 4 (Non-stationary Regret). We use the following
to denote the non-stationary regret of algorithm A.

RegA := E
[ T∑
t=1

(µ∗t − µAt,t)

]
.

For convenience, we will simply use regret to denote the
non-stationary regret. We now introduce the measurements
for the non-stationarity for the one-sided bandit case. Simi-
lar to the auction case, we have switchings S and variation
V . For any interval I = [s, s′], we define the number of
switchings on I to be SI := 1 +

∑s′

t=s+1 I{νt 6= νt−1}.
As for the sum of variation, the formal definition is given
as VI :=

∑s′

t=s+1 maxa |µa,t − µa,t−1|, which sums up the
max difference of mean in each round. For convenience, we
use S and V to denote S[1,T ] and V[1,T ]. Note that the num-
ber of switchings in the bandit case is the same as that of
the auction case, so we reuse the notations, and the variation
definition in the bandit case uses the sum of the maximal dif-
ferences in the consecutive mean vectors instead of the sum



of total variations in the auction case, so we use the notation
V instead of V̄ for differentiation. The variation V defined
for the bandit case is consistent with the variation defined in
other non-stationary bandit papers.

We will use Switching Regret to denote the non-stationary
regret in the switching case, and Dynamic Regret to denote
the non-stationary regret in the dynamic case.

3 Algorithm
In this section, we present our algorithm Elim-NS for the
non-stationary one-sided full-information bandit problem
and its regret bounds. The algorithm for the online auction
problem can be easily derived from Elim-NS, as outlined in
Section 2, and we present its regret bound in Theorem 3.

Our algorithm Elim-NS borrows ideas from (Zhao and
Chen 2019b) and (Auer, Gajane, and Ortner 2019). (Zhao
and Chen 2019b) introduce an elimination-based algorithm
for the one-sided full-information bandit, and (Auer, Gajane,
and Ortner 2019) presents an elimination-based algorithm to
adaptively follow the best arm in the switching case without
knowing the number of switches S. Our algorithm is a non-
trivial combination of these ideas, and our innovation highly
depends on the feedback structure of the one-sided bandit
problem. The algorithm is given in Algorithm 1.

Generally speaking, our algorithm maintains a set E to
record the exploration phases for the adaptive detection of
the dynamic changes in the distribution, and a set M to
record the information when an arm is eliminated. If we
were dealing with the stationary case where the distribution
of arms does not change, after observing arms for enough
times, we can eliminate an empirically sub-optimal arm,
and with high probability, the eliminated arm is indeed sub-
optimal. However, in the non-stationary case, the optimal
arm is changing, and thus we need to properly add explo-
ration phases to observe the eliminated arms with some
probability. When we detect that the distribution indeed has
changed from these exploration phases, the algorithm starts
a new epoch and resets E andM to empty sets. 2

Set M records the information at the time when an arm
is eliminated. Each element (g, e,v) ∈ M is a tuple, where
g ∈ R records the empirical gap, which is the difference of
the empirical means of the empirically optimal arm and that
of the eliminated arm amin; e = amin records the index of
the eliminated arm; and vk for k ≥ amin records the empir-
ical mean of arm k when the arm e is eliminated (v ∈ RK).
An exploration phase is a pair (d, I) where d = 2−k and
interval I ⊆ [T ], |I| = Θ( 1

d2 ). Each such phase is stored
independently into E with a probability (in line 8 of Step
1). The purpose of these exploration phases is to re-examine
arms that have been eliminated to detect possible changes
in the distribution, with I indicating the range of rounds for
an exploration. Intuitively, if there is no change in the dis-
tribution, such an exploration would pay an extra regret. To
control this extra regret, we use d to indicate the per-round
regret that such an exploration could tolerate, and the length
of I is controlled to be Õ(1/d2) to bound the total regret.

2We mark the actual values of E andM in each round as Et and
Mt in the algorithm, to be used in our analysis.

At each round, Our algorithm Elim-NS has the follow-
ing four steps. In Step 1, we randomly add exploration
phases into the set E . We set p`,i = di

√
(`+ 1)/T to

be the probability to add an exploration phase (di, [t, t +
dC2 ln(KT 3)/d2

i e)) into E in epoch ` at time t. This prob-
ability is chosen carefully, not too small to omit the non-
stationarity, and not too big to induce large regret.

In Step 2, we choose the action to play. If the current
round t is not in any exploration phase, then we will play
the arm that is not eliminated and has the smallest index. If t
is in an exploration phase (d, I), we will find the maximum
value dmax,t = max(d,I)∈E,t∈I d. We will play arm At ←
aexp = min{k : ∃(g, e,v) ∈ M, k = e, g ≤ 8dmax,t}
and observe the reward X(t)

a for all a ≥ aexp. This arm se-
lection in the exploration phase guarantees that the arm we
play would induce the regret of at mostO(dmax,t) per round
if the distribution has not changed.

In Step 3, we perform arm elimination when the proper
condition holds. In particular, when we find an arm is empir-
ically sub-optimal among the remaining arms, we eliminate
this arm in this epoch. When an arm is eliminated, the algo-
rithm will add an tuple (g, e,v) into the setM to store the
information at this point, where g stores the empirical gap
with the best arm, e stores the index of the eliminated arm,
and for k ≥ e vk stores the empirical mean of arm k.

In Step 4, we apply the non-stationarity check. At the end
of an exploration phase, we check that if there is a tuple
(g, e,v) ∈ M and an arm a ≥ e, such that the gap between
the current empirical mean of arm a during the exploration
phase and the stored empirical mean va is Ω(g). If so, it
means that the empirical mean has a significant deviation
indicating a change in distribution, and thus we will start a
new epoch to redo the entire process from scratch.

The algorithm incorporates ideas from (Auer, Gajane, and
Ortner 2019; Zhao and Chen 2019b), and its main novelty
is related to the maintenance and use of set M in arm se-
lection (Step 2), arm elimination (Step 3) and stationarity
check (Step 4), which make use of the feedback observation
to balance exploration and exploitation.

Now, we use a simple example to illustrate how the
Elim-NS algorithm detects the distribution changes in the
switching case. Suppose that we have three arms. At first,
arm 1 always outputs 0, arm 2 always outputs 0.45, and
arm 3 always outputs 0.5. Then arm 1 will be eliminated
first, and the tuple (g, e,v) = (0.5, 1, (0, 0.45, 0.5)) will
be stored in M, where g = 0.5 is the empirical gap be-
tween the means of arm 1 and the empirically best arm 3.
Next, arm 2 will be eliminated, and the algorithm will store
(0.05, 2, (?, 0.45, 0.5)) inM, where ? means that the value
at that position has no meaning. At this point, the algorithm
may have randomly selected many exploration phases, but
they all fail to start a new epoch since the distribution does
not change and non-stationarity would not be detected. Then
suppose that at round t, the distribution changes, and arm 1
will output 1 from now on and thus becomes the best arm.
Suppose that after round t, we randomly select an explo-
ration phase with d = 2−5, and in this exploration phase, we
will play arm 2 but not arm 1 (since 0.05 ≤ 8 ∗ 2−5 < 0.5),



Algorithm 1: Elim-NS

Data: Total time horizon T , total number of arms K. Parameters C1, C2.
1 t← 1, `← 1, τ` ← t.
2 M← φ, amin ← 1, E ← φ.
3 Let µ̂a[t1, t2) denote the empirical mean of arm a in the time interval [t1, t2).
4 while t ≤ T do
5 Step 1. Randomly select the exploration phases
6 ifM 6= φ then ∆t,min ← min(g,e,v)∈M g.
7 Let di ← 2−i for every i ∈ N, and It ← max{i : 8di ≥ ∆t,min}.
8 For every i ≤ It, independently add pair

(
di,
[
t, t+ dC2 ln(KT 3)/d2

i e
))

into E with probability p`,i = di

√
`+1
T .

9 (Let Et andMt be the values of E andM respectively at this point, to be used in the proof)
10 Step 2. Choose an action to play
11 if ∃(d, I) ∈ E such that t ∈ I then
12 dmax,t ← max(d,I)∈E,t∈I d.
13 Play arm At ← aexp = min{k : ∃(g, e,v) ∈M, k = e, g ≤ 8dmax,t} and observe the reward X(t)

a for all
a ≥ aexp.

14 else
15 Play arm At ← amin and observe the reward X(t)

a for all a ≥ amin

16 Step 3. Perform the elimination process

17 while ∃σ ≥ τ`, a > amin such that µ̂a[σ, t+ 1)− µ̂amin [σ, t+ 1) >
√

C1 ln(KT 3)
t+1−σ do

18 Let v be a vector with length K.
19 Let b be the arm such that µ̂b[σ, t+ 1)− µ̂amin [σ, t+ 1) is maximized.
20 g ← µ̂b[σ, t+ 1)− µ̂amin [σ, t+ 1), e← amin, and vi ← µ̂i[σ, t+ 1) for all i ≥ amin.
21 M←M∪ {(g, e,v)}, amin ← amin + 1.

22 Step 4. Perform the non-stationarity check

23 if ∃(d, [t′, t+ 1)) ∈ E , (g, e,v) ∈M, a ≥ e such that g ≤ 8d and |µ̂a[t′, t+ 1)− va| > d
4 then

24 `← `+ 1,M← φ, E ← φ, amin ← 1, τ` ← t+ 1.
25 t← t+ 1.

and thus we will still not detect the non-stationarity of arm
1. However, when we randomly select an exploration phase
with d = 0.5 in step 1 (perhaps in a later round), we will
play arm 1 according to the key selection criteria for arm ex-
ploration in line 13 of step 2. This would allow us to observe
the distribution change on arm 1 in the exploration phase and
then start a new epoch, which will restart the algorithm from
scratch by playing arm 1 again.

The following two theorems summarize the regret bounds
of algorithm Elim-NS in the switching case and the variation
case for the one-sided full-information bandit.

Theorem 1 (Switching Regret). Suppose that we choose pa-
rameters C1 ≥ 2048, C2 ≥ 32, then the algorithm Elim-NS
has regret in the switching case bounded by Õ(

√
ST ), where

Õ(·) hides the polynomial factor of logK and log T .

Theorem 2 (Dynamic Regret). Suppose that we C1 ≥
8192, C2 ≥ 128, and suppose that the variation is not too
small (V = Ω(1)). Then the algorithm Elim-NS has regret
in the dyanmic case bounded by Õ(V 1

3T
2
3 ), where Õ(·) hide

the polynomial factor of logK and log T .

As outlined in Section 2, Elim-NS can be easily adapted to
solve the online second price auction problem by discretiz-
ing the reserve price. The following theorem provides the
regret bound of Elim-NS on solving the online second price
auction problem.
Theorem 3 (Regret for Online Second Price Auction). For
every 0 ≤ k ≤ d

√
T e, let rk = k/d

√
T e, and we only

set reserve price r(t) ∈ {r1, . . . , rd
√
Te}. Each time we set

reserve price r(t) = rAt and get all the private value v(t)
i ≥

r(t), we compute the reward X(t)
k for all k ≥ At and receive

the reward X(t)
At

. Then we apply our algorithm Elim-NS and
set C1, C2 appropriately, and the regret is bounded by

RegSPA ≤ Õ(min{
√
ST , V̄ 1

3T
2
3 }),

where we assume that V̄ = Ω(1) is not too small.

4 Proof Sketch for the Regret Analysis
In this section, we will give a proof sketch of the regret
analysis in the switching case (Theorem 1) and the dynamic
case (Theorem 2). In general, we first give a proof in the



switching case, and then we reduce the dynamic case into
the switching case. The proof strategy in the dynamic case
is nearly the same as that in the switching case, and we will
briefly discuss how to do the reduction.

4.1 Proof Sketch of Theorem 1
Generally speaking, our proof strategy for Theorem 1 is to
define several events (Definitions 5,6,7,8), and decompose
the regret by these events. We show that each term in the
decomposition is bounded by Õ(

√
ST ).

Definition 5 (Sampling is nice). We say that the sampling is
nice if for every interval I ⊆ [T ] and every arm a, we have

1

|I|

∣∣∣∣∑
t∈I

X(t)
a −

∑
t∈I

µa,t

∣∣∣∣ <
√

ln(KT 3)

2|I|
,

where |I| is the length of interval I. We use N s to denote
this event. We use N s

t to denote the event when the above
inequality holds for all I ⊆ [t].

Definition 6. We use Pt to denote the event such that t is in
an exploration phase, i.e. ∃(d, I) ∈ Et such that t ∈ I.

Definition 7 (Records are consistent). We say that the
records are consistent at time t if for every (g, e,v) ∈ Mt,
for every arm a ≥ e, we have |µa,t − va| ≤ g/4. We use Ct
to denote this event.

We have the following definition when Ct does not hap-
pen.
Definition 8 (Playing bad arm). Let bt denote the smallest
index of an arm such that ∃(g, e,v) ∈Mt, e = bt and there
exists a ≥ e, |va − µa,t| > g/4, i.e.

bt = min
{
e : (g, e,v) ∈Mt,∃a ≥ e, |va − µa,t| >

g

4

}
.

We use Bt to denote the event {At ≥ bt}.
Generally speaking, bt is the smallest index of an elimi-

nated arm such that the recorded mean when bt is eliminated
induces the event ¬Ct.

Based on the above definitions, we decompose the regret
into four mutually exclusive events and bound the regret for
each event in the order of Õ(

√
ST ). These four event cases

are listed below, where the first three are when the sampling
is nice, and the last case is when sampling is not nice.

Case 1: N s ∧ Ct ∧ ¬Pt. This means that the sampling is
nice, the records are consistent at time t, and round t is not in
an exploration phase. The regret should be bounded in this
case since when Ct happens, the distribution does not change
much, and it is also not in an exploration phase (Lemma 1).

Case 2:N s∧Ct∧Pt orN s∧¬Ct∧¬Bt. The sampling is
still nice. When Ct ∧ Pt is true, round t is in an exploration
phase and the records are consistent, meaning that the cur-
rent arm means have not deviated much from the records. In
this case, similar as discussed before, the definition of the
exploration phase (d, I) and the setting in line 13 guarantee
that the arm explored would not have a large regret. When
¬Ct ∧ ¬Bt is true, we first claim that ¬Ct ∧ ¬Bt implies Pt.
This is because if the records are not consistent (i.e. ¬Ct) but

At < bt (i.e. ¬Bt), it meansAt played in round t has smaller
index than bt, but bt is an eliminated arm according to Defi-
nition 8, and thus arm At must be played due to exploration.
Next, since At < bt, the arm played is not a bad arm with a
large gap, so its regret is still bounded (Lemma 2).

Case 3:N s ∧¬Ct ∧Bt. The sampling is nice, the records
are not consistent, and in round t, we play a bad arm with a
large gap between the current mean and the recorded mean.
Although the regret in this case cannot be bounded by O(g)
where (g,At,v) ∈ Mt, the key observation is that, due to
the random selection of the exploration phase, we will ob-
serve the non-stationarity (since Ct does not happen and Bt
happens) with some probability, and the expected regret can
be bounded (Lemma 3).

Case 4: ¬N s. The sampling is not nice, which is a low
probability event, and its regret can be easily bounded by a
constant (Lemma 4).
Lemma 1.

E

[
T∑
t=1

(µ∗t − µAt,t) · I {N s ∧ Ct ∧ ¬Pt}

]
≤2S + 2(

√
C1 +

√
2)
√

ln(KT 3)
√

2ST .
The proof of Lemma 1 is similar to the analysis in (Zhao

and Chen 2019b) and can be viewed as a generalization of
the original proof. The key difference is that in the proof of
Lemma 1, we divide the interval into

[1, T ] = [s1, e1] ∪ [s2, e2] ∪ · · · ∪ [sS , eS ],

and we sum the regret in each interval first, and get the regret
in each interval to be Õ(

√
ei − si + 1). Then we sum them

up and show that the regret is in the order of Õ(
√
ST ).

Lemma 2.

E

[
T∑
t=1

(µ∗t − µAt,t) · I {N s ∧ Ct ∧ Pt}

]

+ E

[
T∑
t=1

(µ∗t − µAt,t) · I {N s ∧ ¬Ct ∧ ¬Bt}

]

≤

(
C2 ln(KT 3)

√
(S + 1)T + 2

√
S + 1

T

)

×

(
3− log2

√
C1 ln(KT 3)

T

)
.

This lemma bounds the regret when Bt does not hap-
pen and t is in an exploration phase. In this case, we show
that the number of different lengths d of exploration phases
(d, I) can be bounded by polylog(K,T ). Then, we show
that the regret induced by the specific length exploration
phase is bounded by Õ(

√
ST ). Finally, we combine the pre-

vious argument and apply the union bound to show that the
total regret considered is bounded by Õ(

√
ST ).

Lemma 3.

E

[
T∑
t=1

(µ∗t − µAt,t) · I {N s ∧ ¬Ct ∧ Bt}

]



≤24
√

(S + 1)T + 24
√
C2 ln(KT 3)ST .

This lemma bound the regret when Bt happens, and this
lemma is the most technical one. The proof strategy is sim-
ilar to (Auer, Gajane, and Ortner 2019), which partitions
the entire time horizon into several intervals with identical
distribution, and applies a two-dimensional induction from
back to front. As discussed before, the regret in this case in
each round cannot be bounded by O(g) where (g,At,v) ∈
Mt. However due to the random selection of the explo-
ration phases, with some probability, we will observe the
non-stationarity (since Ct does not happen and Bt happens),
and the expected regret can be bounded.

Finally, by a simple application of the high probability
result on N s, we can get the following lemma.

Lemma 4. E
[∑T

t=1 (µ∗t − µAt,t) · I {¬N s}
]
≤ 2.

Combining these lemmas together, we complete the proof
of Theorem 1.

4.2 Proof Sketch of Theorem 2
In this part, we briefly introduce how to reduce the dynamic
case to the switching case. The proof is an imitation of the
proof strategy of Theorem 1. Although the means can be
changing at every time t ∈ [1, T ], we can approximately di-
vide them into several sub-intervals such that in each inter-
val, the change of means is not large. Recall that for interval
I = [s, s′], VI :=

∑s′

t=s+1 maxa |µa,t−µa,t−1| and we use
V := V[1,T ]. We have the following lemma,

Lemma 5 (Interval Partition (Chen et al. 2019)). There is a
way to partition the interval [1, T ] into I1 ∪ I2 ∪ · · · ∪ IΓ

such that Ii ∩ Ij = φ, and for any i ≤ Γ, VI ≤
√
C3/|Ii|

and Γ ≤ (2T/C3)
1/3 V 2

3 + 1.

Suppose that we have a partition shown in the above
lemma. We construct a new instance such that µ′a,t =

1
|Ij |

∑
s∈Ij µa,s for all j ≤ Γ and all t ∈ Ij , i.e. we take the

average mean of each interval and make them all the same.
Generally speaking, the dynamic regret can be bounded

by the sum of 2 parts: the switching regret of the new in-
stance and the difference between the switching regret of
the new instance and the dynamic regret. As for the first part,
since Γ ≤ (2T/C3)

1/3 V 2
3 + 1, we know that the switching

regret can be bounded by Õ(
√

ΓT ) = Õ(V 1
3T

2
3 ). As for the

difference between the 2 regret, since |µa,t − µ′a,t| ≤ VIj
for t ∈ Ij , we sum up all t, we know that the difference
is bounded by O(

∑
j

√
|Ij |) = O(

√
ΓT ) = O(V 1

3T
2
3 ).

Combine them together we complete the proof.

4.3 Proof Sketch of Theorem 3
In the proof of Theorem 3, we first show that the online sec-
ond price auction has one-sided Lipschitz property, and thus
discretizing the reserve price will not lead to a large regret.
Next, we briefly discuss why discretizing the reserve price
can lead to a one-sided full information bandit instance, and
then it is easy to show that the regret can be bounded by
Õ(
√
ST ) in the switching case. To bound the regret in the

dynamic case, we only have to set up the connection be-
tween the total variation V̄ in the online auction and the vari-
ation V in the bandit problem. The bridge between these two
variables can be set up easily by the definition and property
of total variation || · ||TV.

5 Lower Bounds for Online Second Price
Auction in Non-stationary Environment

In this section, we show that for the online second price auc-
tion problem, the regret upper bounds achieved by Elim-NS
is almost tight, by giving a regret lower bound of Ω(

√
ST )

for the switching case, and a lower bound of Ω(V̄ 1
3T

2
3 ) for

the dynamic case.

Theorem 4. For any algorithm, and any S > 0, there
exists a set distributions of bids D1, . . . ,DT where S =

1 +
∑T−1
t=1 I{Dt 6= Dt+1} is the number of switchings

of the distribution and the non-stationary regret is at least
Ω(
√
ST ). Moreover for any algorithm and any V̄ ≥ 1, there

exists D1, . . . ,DT where
∑T
t=2 ||Dt − Dt−1||TV ≤ O(V̄),

such that the regret is at least Ω(V̄ 1
3T

2
3 ).

Our theorem is based on the following result in (Cesa-
Bianchi, Gentile, and Mansour 2015).

Proposition 1 (Theorem 2 of (Cesa-Bianchi, Gentile, and
Mansour 2015)). For any deterministic algorithm, there ex-
ists a distribution of bids operating with two bidders and the
stationary regret is at least Ω(

√
T ).

The above proposition shows that in the full-information
case, any deterministic algorithm will have stationary regret
lower bounded by Ω(

√
T ) for the online second price auc-

tion problem. Generally speaking, we divide the time inter-
val into S segments, each with length T

S . We construct an
instance such that the regret in each segment is Ω(

√
T/S),

and the total non-stationary regret sums up to be Ω(
√
ST ).

As for the regret in the dynamic case, the proof is very
similar. We also divide the time horizon into Θ(V̄ 2

3T
1
3 ) seg-

ments, and the total variation between the distribution of ad-
jacent segments is bounded by

(
V̄/T

) 1
3 .

6 Conclusion and Further Work
We study the non-stationary online second price auction
with the “semi-bandit” feedback structure in this paper. We
reduce it into the non-stationary one-sided full-information
bandit and show an algorithm Elim-NS that solves the prob-
lem. Our algorithm is parameter-free, which means that we
do not have to know the switchings S and the variation V in
advance. Our algorithm is also nearly optimal in both cases.
There are also some future directions to explore:

First, in this work, we consider the online auction with
“semi-bandit” feedback, where all the bidders with private
values exceeding or equaling the reserve price will report
their private values. We can also consider the “full-bandit”
feedback where the seller only gets the reward in each
round but does not observe the private values and design
parameter-free algorithms to solve it in the non-stationary



case. Second, in this work we use the second price auction
and assume that the bidders are truthful. We can also study
how to generalize this non-stationary result into the strate-
gic bidders’ case or the other auction formats such as the
generalized second price auction.
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