
Models and Algorithms for Distributed Order
Management

Michael Berezansky2,6, Yaron Fairstein1,5, Luke Marshall2,6, Ishai Menache2,6,
Joseph (Seffi) Naor1,5, Ola Svensson3,7, and Timur Tankayev4,8

1 Technion – Israel Institute of Technology
2 Microsoft

3 EPFL
4 Georgia Institute of Technology

5 yyfairstein, naor@cs.technion.ac.il
6 mibereza,luke.marshall,ishai@microsoft.com

7 ola.svensson@epfl.ch
8 timur.tankayev@gatech.edu

Abstract. The emergence of cloud computing has revolutionized vari-
ous business sectors, such as transportation, health care and retail. In
particular, the ability to bring together huge amounts of data with ac-
cessible compute resources, has opened the gate for solving large-scale
decision problems associated with the underlying data. One such example
is Distributed Order Management (DOM), a key component in modern
retail applications. The goal of DOM is assigning orders of customers to
stores (or warehouses) while minimizing fulfillment costs (e.g., shipping
or transport costs). We introduce here a formal mathematical frame-
work to address the underlying optimization problems. In particular, we
define several variants that differ in their objective (e.g., minimize fulfill-
ment cost, maximize satisfied orders) and constraints (e.g., unsplittable
vs. splittable assignments of orders to stores). We present approximation
algorithms for the different models with proven lower and upper bounds.

Keywords: Order management · Discrete optimization · Approxima-
tion Algorithms.

1 Introduction

The majority of retailers nowadays adopt the so-called omnichannel commerce
strategy. In the omnichannel commerce world, customer orders are created through
different channels such as brick and mortar stores, e-commerce websites, or call
centers. Orders may be fulfilled by a network of fulfillment locations such as ware-
houses, fulfillment centers, third party distribution services, and retail stores.
Some products may also be shipped directly from a manufacturer to the cus-
tomer. Each order includes fulfillment related attributes such as fulfillment type
(e.g., store pickup or shipment), expected delivery date, and delivery method
(e.g., standard or expedited shipment). The basic fulfillment problem that the

2 M. Berezansky et al.

order management system needs to solve is deciding which location(s) fulfill each
of the orders and then release this information to the fulfillment locations.

The emergence of cloud computing allows retailers to address these fulfillment
problems from a centralized global view of all relevant elements, such as inven-
tory levels, customer orders, and fulfillment costs. Indeed, several enterprises
such as IBM, Oracle and Microsoft, are offering software-as-a-service solutions
for the underlying allocation problems, often called Distributed Order Manage-
ment (DOM) [7]. In a nutshell, the main goal of DOM is to produce a fulfillment
plan that maximizes the number of orders fulfilled according to customer ex-
pectations and/or minimizes the total fulfillment cost. Generally, DOM differs
from traditional order managements systems in the configuration flexibility it
accommodates, in particular:

– Order splitting. Some retailers prefer that orders are fulfilled from a single
location. To increase fulfillment of orders and reduce costs, other retailers
allow orders to be fulfilled from multiple locations.

– Affine cost structure. Fulfilling an order (or parts thereof) comes with a
“cost”. The cost can be a combination of a fixed component (e.g., propor-
tional to the travel-distance of a truck from source to destination), and a
linear component which depends on quantity (e.g., as in packet shipping).

We provide here a rigorous study of DOM-related optimization. Our main
contribution is twofold. We first formulate different variants of the underlying
optimization problems, which account for the rich configuration flexibility of re-
tailers. Based on that, we then design approximation algorithms with guaranteed
bounds on performance. While there has been work in the Operations Research
literature on order fulfillment in retail contexts (see, e.g., [10, 6, 1] and references
therein), to the best of our knowledge there has not been work on approximation
algorithms that captures the configuration flexibility of current DOM solutions.

1.1 Problem Definition

In the Distributed Order Management (DOM) problem there are: a set N of cus-
tomers, a set M of stores, and a catalog K of items. There is an order associated
with each customer, where an order is a collection of items purchased by the cus-
tomer. Items are aggregated into lines, which means that each item k, ordered by
customer j, defines a line, and djk denotes the number of items in the line, i.e.,
the number of items the customer ordered. Each store i has a finite stock of items
of each type – the available stock of item k by store i is denoted by sik. Another
important parameter throughout the paper is δ := maxj∈N

∑
k∈K 1 {djk > 0},

the maximum number of lines in a single order (of a customer).
Delivering a unit of item k to customer j from store i generates revenue,

while also incurring a shipping cost which is composed of a fixed cost component
and a variable cost component, depending on the quantity delivered.

The goal in the DOM problem is to satisfy the orders of the customers. There
are two main models that we consider. We first consider the Full Fulfillment

Models and Algorithms for Distributed Order Management 3

DOM model (FF-DOM) in which all orders must be fully satisfied. In this case
the revenue is fixed (all orders are fulfilled) and the goal is to minimize the total
shipping cost. There are three variations on this model: (i) Unsplittable: an order
of a customer has to be fulfilled by a single store. (ii) Partially splittable: each
line of a customer has to be served by a single store. (iii) Fully splittable: a line
of a customer can be served by any number of stores.

The second model we consider is the Partial Fulfillment (PF-DOM) model in
which orders are not necessarily fully served. The goal here is to maximize the
revenue from satisfied orders minus the shipping cost. We consider two variations
on this model: (i) Unsplittable, and (ii) Partially splittable. Both variations are
defined as in (FF-DOM).

1.2 Our Results

Our first contribution is the introduction of a formal mathematical framework
for optimization problems that arise in the setting of DOM. We define several
models and variants of these optimization problems, varying with respect to
the objective function and given constraints. We first formulate the problems
as linear programs and compute optimal fractional solutions. We then present
several LP rounding algorithms for the (FF-DOM) and (PF-DOM) models. Our
rounding works via a simple two-step scheme. First, using randomized rounding,
we obtain a temporary infeasible solution. Second, we fix the (infeasible) solution
at a low expected cost.

For the partially splittable and fully splittable minimization problems (sub-
ject to full fulfillment) we present a bi-criteria (O(log δ), O(log δ)) approximation
algorithms, where both the cost and the violation factor are within a factor of
O(log δ). In addition, we explain how to achieve a O(log δ) approximation for
unsplittable FF-DOM.

In the maximization problems we first consider unsplittable PF-DOM for
which we present for every ε ∈ (0, 1) a (1 − ε) approximation algorithm, under
the natural assumption that store capacities are much larger than the demand
of single orders. We normalize the demands to have size at most one and so the
assumption becomes sik ≥ Ωε(ln |K|) (or sik = 0) for all i ∈ M,k ∈ K. For the
partially splittable PF-DOM problem we present an approximation hardness
of 1
|M |1−ε , for any ε > 0 even with store-capacities taking values in {0,∞}.

In order to achieve a better result we conform to a more realistic scenario in
which δ is constant. Under this assumption, we present for every ε ∈ (0, 1) a
(1−ε) approximation algorithm, under the assumption that sik ≥ Ωε(ln |K|) (or
sik = 0) for all i ∈M,k ∈ K.

We view the models defined in this paper, together with the proven results
(upper and lower bounds), as a first step in understanding the DOM optimization
setting. Obvious open research directions include online variations of the problem
in which stock level changes and orders arrive over time.

4 M. Berezansky et al.

1.3 Related Work

Packing problems have received much attention throughout the years. For exam-
ple, a classic problem that received extensive attention is the Minimum Gener-
alized Assignment Problem (Min-GAP), in which we are given a set of machines
with size constraints, and a set of jobs with a different size and cost for place-
ment in each machine. The goal is to assign all jobs to machines such that size
constraints are not violated, and the overall cost is minimized. Shmoys et al. [8]
presented an LP rounding algorithm yielding a solution with optimal cost, while
violating the size constraints by at most a factor of two.

Solving Packing Integer Problem (PIP) was considered by Chekuri et al. [2].
Given a matrix A ∈ [0, 1]d×n, b ∈ [1,∞)d, and c ∈ [0, 1]n, where maxj cj = 1,
the goal in PIP is to find a vector x ∈ {0, 1}n such that cᵀx is maximized
and Ax ≤ b. This problem captures the world of multidimensional constraints.
Chekuri et al. [2] gave an approximation hardness of 1

d
1

B+1
−ε for ε > 0, where

B = maxi bi. This proves a connection between the hardness of the problem and
the ratio between the size of the bins to the size of the items (in our terminology,
the stock level and the maximum number of items in a single line).

The order fulfillment problem has been considered in the OR literature, tak-
ing into account various aspects, such as reliability, on-line order arrivals, due-
dates, etc. [1, 6]. These references, however, focus on the impact of incorporating
the time dimension, using heuristic approaches. Xu et al. [9, 10] focus on heuris-
tics that ‘re-optimize’ to improve an online generated assignment. Our work
considers a more general cost structure while restricting attention to offline de-
terministic setting. This is a common use-case in DOM solutions, where orders
are allocated in large batches (see, e.g., [7]).

2 Minimizing Cost Subject to Full Fulfillment

Here we consider the FF-DOM model in which all orders are fulfilled. In partic-
ular, this means that we can focus on minimizing costs, as the revenue is a fixed
constant. We consider three different submodels that differ in the way splitting
the service of a single order between several stores is allowed. Specifically, we
consider the unsplittable, partially splittable, and fully splittable variants.

We mention that the unsplittable variant (where each order is satisfied by
a single store) can be solved exactly using the partial re-sampling algorithm
presented by [5] for the Column-sparse packing problem. The solution violates
the stock constraints by at most O(log δ).

Theorem 1. There is an algorithm for unsplittable FF-DOM returning an exact
solution violating the stock constraints by at most a factor of O(log δ).

2.1 Partially Splittable

In this setting each line of an order is satisfied by a single store; however, given
an order with demands for several different lines, we can assign different stores

Models and Algorithms for Distributed Order Management 5

to satisfy each one. This prevents us from bundling costs together into a single
cost for each store-client pair.

Let yij indicate whether store i serves some line for customer j, and xijk
indicate that line k in an order from customer j was satisfied by store i. The
fixed cost for sending a package from store i to customer j is denoted by fij .
In addition, there’s an additional shipping cost, cijk, paid for including line k in
the package. We get the following IP:

min
∑

i∈M,j∈N,k∈K

cijkxijk +
∑

i∈M,j∈N
fijyij

subject to ∑
i∈M

xijk = 1, ∀j ∈ N, k ∈ K, (1a)∑
j∈N

djkxijk ≤ sik, ∀i ∈M,k ∈ K, (1b)

yij ≥ xijk, ∀i ∈M, j ∈ N, k ∈ K, (1c)
yij , xijk ∈ {0, 1}, ∀i ∈M, j ∈ N, k ∈ K.

Eq. (1a) ensures every line of every client is fully satisfied, (1b) limits service
provided by a store, and (1c) includes shipping cost from a store only when
necessary.

Theorem 2. The Partially splittable FF-DOM cannot be approximated within
a factor of Ω(log δ) unless P = NP .

The proof can be found in Appendix A.

Algorithm 2.1:

1. Solve the LP.
2. For each customer j and store i: randomly select θij ∼ unif(0, 1).
3. Set store i to serve line k to customer j if xijk log δ ≥ θij .
4. Define a GAP instance for each item k (a job is defined for each unsat-

isfied customer with size djk and cost equal to the sum of shipping and
additional shipping costs). Round using a rounding algorithm for GAP.

Theorem 3. Algorithm 2.1 provides a bi-criteria (O(log δ), O(log δ)) approxi-
mation for the partially splittable FF-DOM problem, approximating the overall
cost and violating the capacities constraints by at most a factor of O(log δ)

Proof. The rounding in the algorithm can be split into two phases, a randomized
rounding phase and a correction phase. In the rounding phase we randomly select
a threshold θij for each store-customer pair. If the connection indicator xijk is
larger than the threshold, we set store i to serve line k to customer j. If we
denote the indicator whether customer j was not served line k by Ijk in the
randomized rounding phase we get:

Pr[Ijk] =
∏
i∈M

(1− xijk) ≤
∏
i∈M

e−xijk ≤ e−1 ≤ 1

e
. (2)

6 M. Berezansky et al.

Since we also amplified the probability for a store to serve an order of a client by
a factor of O(log δ), we get that Pr[Ijs] ≤ 1

δ . Thus we have an integral bi-criteria
(O(log δ), O(log δ)) approximation (incurred by the variables multiplication), but
all demands are satisfied with low probability.

Building on this partial solution we run the correction phase. For each item
type k define an instance of GAP. A machine is defined for each store, and a
job is defined for each unsatisfied customer j with size equal to djk. The cost of
assigning job j to store i is the sum of shipping cost fij and additional shipping
costs cijk. The size constraint of machine i equals the stock of item k that store
i has. We define a fractional solution for the constructed instance of GAP. For
each job j the fractional assignment of j to machine i is xijk.

We notice that for an item k the expected cost of the fractional solution is∑
i,j cijkxijk +

∑
i,j fijyij

δ
, (3)

since a customer’s line is not satisfied with probability of at most 1
δ . The LP

rounding algorithm for GAP returns an integral solution with cost equal to the
fractional cost, but the size constraints are violated by a factor of two. Let us
first consider the cost. If we sum over the solutions for the GAP instances created
for all items we get an expected additive cost of∑

i,j,k cijkxijk + δ ·
∑
i,j fijyij

δ
=

∑
i,j,k cijkxijk

δ
+

∑
i,j

fijyij (4)

which is at most the optimal fractional cost.
We note that even though we fix the partial solution by solving a GAP

instance for each item separately, there is no dependence between the items’
stock. Thus rounding each instance of GAP leads to an expected additive increase
to the capacities violation factor of a single item of 1

δ . Summing over the costs
incurred by both phases we get a bi-criteria (O(log δ), O(log δ)) approximation
in which all demands are satsified.

2.2 Fully Splittable

In this setting several stores can supply the same item to a single customer.
The program created using notation as above, except that now xijk is an integer
variable. It is easy to see that the program is not linear due to the new constraint
yij ≥ min{xijk, 1}. We formulate instead a configuration IP. For a store i we say
that order q ∈ i if it can serve it. We also mark by qk the number of units of item
k in order q. Now we consider for each client the possible orders it may have
from different stores. Variable xijq indicates whether store i serves customer j
order q. We also mark by Cijq the total cost for store i to serve customer j order
q. Even though it has an exponential number of variables, the resulting LP can
be solved through its dual using a separation oracle. The solution can be used
to construct a solution to the original LP.

Models and Algorithms for Distributed Order Management 7

min
∑

i∈M,j∈N,q∈i
Cijqxijq

subject to ∑
i∈M,q∈i

xijq · qk = djk, ∀j ∈ N, k ∈ K, (5a)∑
j∈N,q∈i

xijq · qk ≤ sik, ∀i ∈M,k ∈ K, (5b)

xijq ≥ 0, ∀i ∈M, j ∈ N, q ∈ i.

Eq. (5a) ensures every order is fulfilled, and (5b) limits service provided by
a store.

Theorem 4. The fully splittable FF-DOM problem cannot be approximated within
a factor of Ω(log δ) unless P = NP .

The proof of Theorem 2 proves this theorem as well, as it was proven for a
partially splittable FF-DOM isntance with units demands.

Algorithm 2.2:

1. Solve the LP and fix assignment of any integral parts.
2. For each customer j and store i: randomly select θij ∼ unif(0, 1).
3. Set store i to serve line k to customer j if xijklog(δ) ≥ θij .
4. Define an instance of SGAP for each item k (a job is defined for each unsatis-

fied customer with size djk, assignment cost of fij , and computation cost cij .
Round using a rounding algorithm for SGAP (see Appendix C).

Theorem 5. Algorithm 2.2 provides a bi-criteria (O(log δ), O(log δ)) approxi-
mation for the fully splittable FF-DOM problem, approximating the overall cost
and violating the capacities constraints by at most a factor of O(log δ).

The proof follows the same arguments as the proof of Theorem 3.

3 Maximizing Revenue with Partial Fulfillment

In the partial fulfillment variant we do not require every order to be fulfilled.
Instead the goal is to maximize the overall revenue gained from satisfied orders,
after subtracting the shipping costs. We consider two cases of the problem. First,
the unsplittable PF-DOM in which all lines of an order must be satisfied by a
single store. In the second case we allow different lines to be satisfied by different
stores. In addition, the revenue gained is accumulated per lines satisfied, and we
do not need to serve all lines in an order to earn revenue. However, as pointed
out in Remark 1, our techniques also apply to the case when all lines of an order
need to be satisfied.

8 M. Berezansky et al.

3.1 Unsplittable

In this setting, one receives the payment of an order if and only if the whole order
is fulfilled by a single store. In particular, this means that we can incorporate
all payments and costs of a single order into a single value which represents the
revenue earned from fulfilling the order. We denote by pij the revenue earned if
store i ∈ M served the order of client j ∈ N . Let yij indicate whether store i
serves client j. Then the following IP models the problem:

max
∑

i∈M,j∈N
pijyij

subject to ∑
i∈M

yij ≤ 1, ∀j ∈ N , (6a)∑
j∈N

djkyij ≤ sik, ∀i ∈M,k ∈ K, (6b)

yij ∈ {0, 1}, ∀i ∈M, j ∈ N .

Eq. (6a) ensures every order is sent from at most one store, and (6b) limits
service provided by a store.

We observe that the unsplittable PF-DOM problem generalizes the q-dimensional
knapsack problem, as an instance of unsplittable PF-DOM with a single store,
and q = |K|. For normalization, we consider the scaled problem in which for
each k, maxj djk = 1 and let B = min{sik : sik > 0}. If q = |K| is not a
constant, it was shown by Chekuri et al. [2] that the q-dimensional knapsack

problem is hard to approximate within a factor of q
1

B+1−ε for some ε > 0. Thus
to get good algorithmic guarantees, we need to make additional assumptions
on the problem instance. While the number |K| of different items may well be
very large, a natural assumption is to assume that B is much larger than the
demand of any single order, i.e., B � maxj djk = 1. This is similar to the small
bid assumptions often made in ad-allocation. More specifically, we analyze the
following algorithm with this assumption.

Algorithm 3.1 with parameter ε ∈ (0, 1):

1. Solve the LP to obtain optimal solution y.
2. For each order j ∈ N , assign it to store i with probability (1 − ε)yij

(independent of other orders).
3. Throw away all orders assigned to stores that cannot satisfy all orders

assigned to them.

Theorem 6. For every ε ∈ (0, 1), Algorithm 3.1 returns (in expectation) a (1−
ε)-approximate solution for the unsplittable PF-DOM problem, assuming that
sik ≥ 3ε−2(1− ε)−1 ln(|K|/ε) (or sik = 0) for all i ∈M and k ∈ K.

The proof follows the same arguments as the proof of Theorem 8.

Models and Algorithms for Distributed Order Management 9

3.2 Partially splittable

In the partially splittable variant an order can be satisfied by several stores;
however, each line is satisfied by a single store. The presence of orders with
many lines makes this variant very hard to approximate.

Theorem 7. Unless ZPP = NP , for any ε > 0 the partially splittable prob-
lem cannot be approximated within a factor of 1

|M |1−ε , where M is the set of

stores. Moreover, this hardness holds for instances with a single order and store
capacities taking values in {0,∞}.

The proof can be found in Appendix B. The above hardness shows that a
general algorithm with no assumptions on the input cannot give any reasonable
guarantees for the considered problem. However, based on the data that inspired
the problem we noticed that in realistic scenarios, the instances have several
nice structural properties. First, either a store has a large stock compared to the
client requirements, or it does not have any stock (as in the previous section).
This assumption alone is not sufficient here (as the above hardness says). We
therefore also make a second assumption motivated by the observation that
although there are many different items, in practice, each order contains only a
small (constant) number of different lines. This leads us to consider instances of
the partially splittable PF-DOM problem where (i) B = min{sik : sik > 0} � 1
is large9 and (ii) the maximum number of lines in an order, denoted by δ, is a
constant.

In order to solve the problem we define a new IP. Let Fj be the set of all
possible assignment of order j to the stores. We say that in an assignment σ ∈ Fj
line k is served by store i if σ(i, k) = 1; otherwise σ(i, k) = 0. We define for order
j an indicator yjσ, where σ ∈ Fj . The revenue of assignment σ is denoted by
pjσ. We get the following IP for the problem:

max
∑

j∈N,σ∈Fj

pjσyjσ

subject to ∑
σ∈Fj

yjσ ≤ 1, ∀j ∈ N , (7a)∑
j∈N,σ∈Fj

djkσ(i, k)yjσ ≤ sik, ∀i ∈M,k ∈ K, (7b)

yjσ ∈ {0, 1}, ∀j ∈ N, σ ∈ Fj .

Eq. (7a) ensures each order is assigned once, and (7b) limits service provided
by a store.

We remark that the linear programming relaxation of the above IP can be
solved in polynomial time assuming the number of lines δ per order is a constant.
This is true since the number of constraints is polynomial in |N |, |M |, |K|, and
the number of variables is polynomial in |N | and the size of Fj ’s, which is upper
bounded by |M |δ. We now give an algorithm for rounding a fractional solution.

9 As in the previous section, we normalize demands so that, ∀ k ∈ K, maxj djk = 1.

10 M. Berezansky et al.

Algorithm 3.2 with parameter ε ∈ (0, 1):

1. Solve the linear relaxation of the IP to obtain optimal solution y.
2. For each order j: with probability (1− ε)yjσ assign j as in σ.
3. Throw away all lines assigned to stores with violated stock-capacity

constraints.

Theorem 8. Algorithm 3.2 runs in time polynomial in |N |, |M |δ, |K| and re-
turns (in expectation) a (1 − ε)-approximate solution for the partially splittable
PF-DOM problem under the assumption that sik ≥ 3ε−2(1 − ε)−1 ln(|K|/ε) (or
sik = 0) for all i ∈M and k ∈ K.

Proof. The running time of the algorithm is dominated by solving the linear
programming relaxation. The running time thus follows from the discussion after
the definition of the IP. Let Yjσ be a random variable indicating whether the
assignment of order j to the stores is σ. Thus, Pr[Yjσ] = (1 − ε)yiσ. We would
like to bound the probability that store i has a shortage in stock of item k,
given that order j′ was partially assigned to it in assignment σ′. Using standard
Chernoff bound we get that:

Pr

∑
j,σ

djkσ(i, k)yjσ > sik|Yj′σ′

 ≤ ε/|K| .
By union bounding over all |K| items we get that the probability that store i is
thrown, given that order j′ is partially assigned to it in σ′ is at most ε.

It is important to notice that if a store is thrown away, and an order is
partially assigned to it, only lines assigned to this store are thrown away as well.
Building on this observation and our previous calculations we may sum over
all orders to get that the expected revenue is at least (1− ε)

∑
j∈N,σ∈Fj pjσyjσ,

which concludes the proof.

Remark 1. The above techniques also imply that we can get an algorithm that
finds (1− ε)-approximate solution even in the case when an order is either fully
satisfied or not sent at all. The only changes are (i) Step 3 of Algorithm 3.2
now becomes to throw away whole orders assigned to stores with violated stock-
capacity constraints, and (ii) to make the slightly stronger assumption sik ≥
3ε−2(1− ε)−1 ln(|K| · δ/ε) (or sik = 0).

Models and Algorithms for Distributed Order Management 11

A Partially Splittable FF-DOM Hardness

Proof. We recall that there is no algorithm for the set cover problem, with
approximation ratio better than log(|K|), where |K| is the number of elements,
unless P = NP [3]. We will show a reduction from set cover to an instance of
our problem with |K| items, which concludes that an approximation ratio better
than log(|K|) is not achievable.

We are given an instance of set cover in which there are |K| elements and
a collection S = S1, ..., S|M | of subsets of the elements. We are also given a
cost cSi for each subset Si. We now define an instance of the partially splittable
FF-DOM problem where we have a single customer, |M | stores, one for each
subset Si, and |K| items, one for each element. The shipping cost of store i
is cSi , the cost of set i. For each store i, the stock of items corresponding to
elements in Si is one, and for other items it is zero. The additional shipping cost
is set to zero. The customer demands one of each item. One can notice that in
the constructed instance δ = |K|, and that a solution to the partially splittable
FF-DOM instance provides a solution to the set cover problem (select the sets
corresponding to the chosen stores), which concludes the proof.

B Partially Splittable FF-DOM Hardness

Proof. We will prove this hardness result using a reduction from the Maximum
Independent Set (MIS) problem. In the MIS problem we are given a graph G =
(V,E) and the goal is to find a maximum cardinality subset F ⊂ V such that
for each pair of nodes u, v ∈ F, (u, v) /∈ E.

Given an instance of MIS on an input graph G = (V,E) we define an instance
of the partially splittable PF-DOM problem. In this instance we define an item
for each edge, i.e., for each edge (u, v), there is an item kuv. We also define a
single client with a single order with a line for each of the |E| items, for each
the demand is a single unit. A store is defined for each vertex. Store u only has
(infinitely many) items corresponding to adjacent edges in its stock. The revenue
earned for serving an item is 1 (at all stores), and the packing cost in store u is
δ(u)− 1 (where δ(u) is the number of neighbors of u).

Given a solution to the partially splittable PF-DOM instance we construct a
solution to the MIS instance by selecting all vertices corresponding to the stores
chosen to serve the order. A revenue is gained from a store if and only if it serves
all the items it can serve, i.e., all items corresponding to the adjacent edges of
the store’s vertex. Since only a single unit of each item is required, for each item
kuv a single store is chosen to serve and pay for the packing. Thus, for each
edge in the graph only one of its vertices is chosen in the constructed solution.
Moreover, by the same arguments, one can see that any solution to MIS defines
a solution of the same value to the partially splittable PF-DOM instance.

This proves that given an α-approximation algorithm for the partially split-
table problem, an α-approximation algorithm can be constructed for MIS. Since
for any ε > 0 MIS cannot be approximated within a factor of 1

|V |1−ε assuming

12 M. Berezansky et al.

ZPP 6= NP [4], the partially splittable PF-DOM problem cannot be approxi-
mated within a factor of 1

|M |1−ε .

C Splittable Generalized Assignment Problem

There is a set N of jobs and a set M of machines. Machine i is associated with a
size constraint Wi. Each job j has an assignment size wj and two different costs,
a computation cost cij paid for each unit of size job j occupies on machine i,
and an assignment cost fij paid if job j is assigned to machine i. Job j is said to
be satisfied if it is assigned to several machines in which it occupies a total size
of wj . The objective is to satisfy all jobs such that the size constraints are not
violated, and the total assignment cost is minimized. Given a fractional solution
to the problem it can be rounded by fixing the itnegral parts of the solution,
and rounding the remainder using the rounding algorithm for GAP [8].

Theorem 9. Given a fractional solution to the SGAP LP, there exists an algo-
rithm that returns a feasible solution to the problem with the same cost.

References

1. Chan, F.T., Chung, S.H., Choy, K.L.: Optimization of order fulfillment in dis-
tribution network problems. Journal of Intelligent Manufacturing 17(3), 307–319
(2006)

2. Chekuri, C., Khanna, S.: On multidimensional packing problems. SIAM journal on
computing 33(4), 837–851 (2004)

3. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: Proceedings
of the forty-sixth annual ACM symposium on Theory of computing. pp. 624–633.
ACM (2014)

4. H̊a stad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–
142 (1999)

5. Harris, D.G., Srinivasan, A.: The moser-tardos framework with partial resampling.
In: Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium
on. pp. 469–478. IEEE (2013)

6. Jasin, S., Sinha, A.: An lp-based correlated rounding scheme for multi-item ecom-
merce order fulfillment. Operations Research 63(6), 1336–1351 (2015)

7. Purushotham, A.: Distributed order management (DOM). Tech. rep. (2018),
https://docs.microsoft.com/en-us/dynamics365/unified-operations/retail/dom

8. Shmoys, D.B., Tardos, É.: Scheduling unrelated machines with costs. In: SODA.
vol. 93, pp. 448–454 (1993)

9. Xu, P.J.: Order Fulfillment in Online Retailing : What Goes Where. Thesis, Mas-
sachusetts Institute of Technology (2005)

10. Xu, P.J., Allgor, R., Graves, S.C.: Benefits of Reevaluating Real-Time Order Fulfill-
ment Decisions. Manufacturing & Service Operations Management 11(2), 340–355
(Dec 2008). https://doi.org/10.1287/msom.1080.0222

