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Reinforcement Learning =
Decision Making and
Learning
under Uncertainty
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1. Formalizing RL



Markov Decision Processes
(MDPs)

AN INTRODUCTION TO THE THEORY

OF DWING

1.6. The Functional Equation Approack
Let us begin by observing that the problems posed above have the following features
in common:

1. The state of the system is described by a small set of parameters.
2. The effect of a decision is to transform this set of parameters into a similar set.

3. The past history of the system is of no importance in determining future actions,
a Markovian property. |PY

74¢ D-ﬂ n Déotﬁow&b«

[Bellman 1953, 1954, 1957; Puterman 1994]




Markov Decision Processes (MDPs)




Markov Decision Processes (MDPs)
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Markov Decision Processes (MDPs)
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Markov Decision Processes (MDPs)
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Markov Decision Processes (MDPs)
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Optimality in Markov Decision Processes

Finite-horizon;

Infinite-horizon:

[Kaelbling, Littman & Moore, 1996]



Learning performance

Asymptotic convergence:
T, 2T aAS N — ©

PAC:
P(Nerrors > F (-, €,6)) <6

Regret (e.g., bound B on total regret):
T

max E rej — 1 < B
J
t=0

[Kaelbling, Littman & Moore, 1996]

[Dann, Lattimore & Brunskill
2017] unity notion of PAC
and regret into Uniform-PAC



Key RL challenges

- Explore — exploit
- Credit assignment

- Function approximation /\




2. Value Functions



Dynamic Programming and Bellman Equations
Optimal state-value function:
V*(s;) = max
VA

Bellman equation defines recursively:

VT (se) = R(Strﬂ(st)) Ty z T(St41ls6(S)IV™(Se41)

St+1
Bellman optimality equation = Bellman eq for

V™ (5) = maxR(sy, @) +¥ ) P(sesalse, V™ (s41)
St+1 [Bellman 1957]



Temporal Difference (TD) Error and TD(0)

Observe samples < s¢, ag, 13, S¢41 >. If value estimates are
accurate, the following must hold:

If not, there is an error (TD error):
o = —

To learn better estimates — minimize § (TD(0)):
V(s) « V(s) + a( — )

[Samuel 1959; Sutton 1984, 1988]



TD-Gammon

Artificial Intelligence Accomplishment | 1990s

IBM researchers: Gerald Tesauro

Where the work was done: T.J. Watson Research Center

What we accomplished: Gerald Tesauro (pictured)
developed an innovative combination of nonlinear function

approximation with reinforcement learning (RL) techniques §

and showed it could achieve success in large-scale complex®

decision making problems. The approach was tested in a

self-teaching backgammon program called TD-Gammon. )
Starting from a random initial strategy, and learning its Image credit:
strategy almost entirely from self-play, TD-Gammon

achieved a remarkable level of performance. When

operating without any lookahead search, it demonstrated a

highly sophisticated sense of positional judgement rivaling

that of human masters. When its positional evaluation was augmented by very shallow (2-ply, 3-ply) search

procedures, the program matched and ultimately surpassed the playing ability of world-champion human

players. This achievement has been highly influential in the AI and computer gaming communities, and has

inspired numerous real-world applications of similar RL techniques.

Credit; IBM Research

Related links: Temporal difference learning and TD-Gammon, March 1995 paper in Communications of the
ACM.

Image credit: IBM Think Magazine, December 1992


https://researcher.watson.ibm.com/researcher/view_page.php?id=6853
https://en.wikipedia.org/wiki/TD-Gammon

Q-Learning

Bellman optimality equation for Q:
Q*(s¢a.) = E - (rt +y max Q" (S¢yq, a))

§ = _

[Watkins 1989; Watkins & Dayan 1992]



Q-Learning Algorithm

For each episode:
Observe 1nitial state sj
for each step t=0,1,2... in the episode:
Select action a; using Q(a,s) (e.g., €-greedy)
Take action a;, oObserve TI,Siyq

Q(sg,ar) = Q(sg,ar) + af — ]

S = St+1

Regret bounds for Q-Learning:
Chi Jin, Allen-Zhu, Bubeck & Jordan: “Is g-
[Watkins, 1989; Dayan & Watkins, 1992] learning provably efficient?" NeurlPS 2018
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[Johnson, Hofmann, Hutton &
Bignell, 2016]

sample_r



https://www.rarnonalumber.com/en-us/research/project/project-malmo/
https://github.com/Microsoft/malmo

Q-Learning in Malmo

Task: navigate an initially
unknown environment

- Adapted from Sutton &
~ Barto (2018) chapter 6

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6



https://github.com/Microsoft/malmo

Q-Learning in Malmo: Task Definition

Positive reward

. Task: navigate an initially
' unknown environment

: Adapted from Sutton &
~ Barto (2018) chapter 6

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6



https://github.com/Microsoft/malmo

Q-Learning in Malmo: Q-table

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6


https://github.com/Microsoft/malmo

Q-Learning in Malmo Initial policy

.ecewed nlssmn. Cliffualkingmiseh i
EBarto,

: et 3ﬂt’-t‘ar:m learn about consequences of
Source: 127881 i e S It's actions
léagerfﬁs tmed to Suim in lava “‘7. ‘ s I T

The agent has to explore to

Eanwmda

Try this at home, see https://github.com/Microsoft/maImo tutorial 6


https://github.com/Microsoft/malmo

Q-Learning in Malmo:

e e B e teed on outton and

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6



https://github.com/Microsoft/malmo

3. Function Approximation



Q-Learning with Function Approximation

To generalize over states and actions, parameterize Q with a
function approximator, e.g., a deep neural net:

5=Tt+ymélXQ(St+1!a; )_Q(StJa; )

Turn into an optimization problem by minimizing the loss on
the TD error:

[Watkins 1989, Riedmiller 2000, 2005]




Stability

The “deadly triad” [Sutton & Barto, DQN [Mnih et al. 2013, 2015] stabilizes

2018] learning:

1) Off-policy learning 1) Experience replay buffer [Lin 1993] +
2) Flexible function approximation mini-batch SGD

3) Bootstrapping 2) Separate target network stabilizes

optimization targets: 6 = 1, +

max S , A, — S, A ;9
In the face of all three, learning is Y ea Q (Se4s )= Q (st,a50)

unstable (can and will diverge) [Baird 3) Clip § to [—1,1]
1995; Tsitsiklis & Van Roy 1997]

Great blog post with code (DQN, Double DQN):
https://davidsanwald.github.io/2016/12/11/Double-DQN-interfacing-OpenAi-Gym.html



https://davidsanwald.github.io/2016/12/11/Double-DQN-interfacing-OpenAi-Gym.html
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Improving DQN (Selection)

Van Hasselt et al. 2016] Double Q-Learning — reduce bias
Anschel et al. 2017] Average Q-Learning — reduce variance
‘Andrychowicz et al. 2017] Hindsight Experience replay
Dabney et al. 2018] Distributional RL (quantile regression)
Horgan et al. 2018] Ape-X — distributed replay buffer

For further study check David Silver's ICML 2016:
https://www.icml.cc/2016/tutorials/deep rl tutorial.pdf



https://www.icml.cc/2016/tutorials/deep_rl_tutorial.pdf

Case Study: Learning to navigate Minecraft
from pixels using DQN

,‘ M k. w
Q values
“““‘\ “““\ . »
turn 1 turn 1
b £ - M, ‘:
alabls actiane: mave 1 | tuem 1 | tuen <1 y - g : ey

Girpacty action \ggant: turn <1

EVAL: Steop 228: Scnding grocdy action: move 1
action 1z bedng set to move 1

EVAL: Q values lor greedy action: | ©.92030752
©.24320011 0.84240200|

EVAL: Stecp 220: Scending greedy action: move 1
action 1z being zcot to move 1

EVAL: Q valucs lor grecdy action: | ©.80722812
©.82780518 @.80110001|

EVAL: Stecp 230: Scending grecdy action: tuen 1
action 1z being set to turn L

EVAL: Q values lor greedy action: | ©.00737081
©.80811125 0.82000587|
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action 15 being set to turn 1

EVAL: Q values (or greedy action: | ©.85500004
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action 15 bedng set to turn L

EVAL: Q valucs lor greedy action: | 1.0087350
©.81054020 ©.85274422|

EVAL: Step 234: Scnding greedy action: turn 1
action 15 being set to turn 1



Case Study: Learning to navigate Minecraft
from pixels using DQN
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Case Study: Learning to navigate Minecraft
from pixels using DQN
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Case Study: Learning to navigate Minecraft
from pixels using DQN

74 tk iy
Observed state Q values Y 2
1.0
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move 1 turn 1 turn -1

-

ilable actions: move 1| turn 1| turn -1 & 9 9 ‘ - = g o

nt: turn -1 ¢ Auto

EVAL: Step 224: Sending greedy action: turn -1
action is being set to turn -1

EVAL: Q values for greedy action: [ ©.76446813
©.77853584 ©.71595681]

EVAL: Step 225: Sending greedy action: turn 1
action is being set to turn 1

EVAL: Q values for greedy action: [-8.97447467
0.81960291 ©.77710128]

EVAL: Step 226: Sending greedy action: turn 1
action is being set to turn 1

EVAL: Q values for greedy action: [ ©.88808435
©.78155595 ©.75919962]

EVAL: Step 227: Sending greedy action: move 1
action is being set to move 1

EVAL: Q values for greedy action: [ ©.88548459
©0.82144076 ©.83988965]

EVAL: Step 228: Sending greedy action: move 1
action is being set to move 1

EVAL: Q values for greedy action: [ ©.92630752
©0.84326011 ©.84246206]

EVAL: Step 229: Sending greedy action: move 1
action is being set to move 1

EVAL: Q values for greedy action: [ ©.80733812
©0.82786518 ©.89110661]

EVAL: Step 230: Sending greedy action: turn -1
action is being set to turn -1



Decoding multitask
DQN in the world of
Minecraft

Lydia Liu, Urun Dogan,
Katja Hofmann

EWRL 2016
Deep Learning Workshop @ NIPS 2016

move 1

Q values

turn 1

turn -1

n.’ y
=

agent faces danger

no da nger in sig Nt

states reachable by turning




3. Exploration



Exploration vs Exploitation — Common Approaches

Optimistic

initialization

If upper bound is known (e.qg.,

o on Q), initialize all estimates to

the upper bound.




No hidden layer 1 hidden layer 2 hidden layers 2 hidden layers
(linear)

Example: Interaction T IR R
between optimistic ——— T A BBV &
function approximation

=5 03 —as oo X 2, = oo X 2 —as
pesition pasition position

20K steps
histogram hisogram histogram
reward reward 0 reward
equilibrium i A equilibrium equilibrium
initialization initialization initialzation

=% 03 oo = 03 =%
position psition position

40k steps s 40k steps
—histogram histogram histogram nistogram
—reward reward 0 reward
= equilibrium i 1 : equilibrium equilibrium
= _initialization initialization

o5 03 X3 o5 X =) =X 03 X = o5
pasition position position position

160k steps
160k steps 160k steps 0.08 . 160k steps
histogram °
== histogram histogram reward nistogram

reward equilibrium

https://en.wikipedia.org/wiki/Mountain car problem ' e L=

Dauparas, Tomioka & Hofmann, 2018

X X3
position paskion



https://en.wikipedia.org/wiki/Mountain_car_problem

Exploration vs Exploitation — Common Approaches

Optimistic g€ —— Epsilon-greedy
initialization
([ argmaxfy(a) w.prob.1—¢
aceAi
Tl:t — <
®
X rand(a) w.prob.e

‘greedy” action



Exploration vs Exploitation — Common Approaches

Optimistic  [g® Qlues Epsilon- Q values Soft-

1.0
initialization I I greedy . I max

0.5
0.0
. -0.5 I
-10/ M

nove 1 turn 1 turn 1

- I
=1.0
move 1

turn 1

0.6

Sample from the Softmax policy: o

eh(s,a) 0.4
T[(CllS) — n(sa’) <03
ZaleA e\ 0.2

0.1

Action 1 Action 2 Action 3



Exploration vs Exploitation — Optimistic initialization

Optimistic ¥ Qvalues Epsilon-

initialization I I greedy
0.5
0.0

-1.0

move 1 turn 1 turn 1

Softmax

Q values

0.6

1.0
0.5
0.0

B I
=1.0

Action 1 Action 2 Action 3

Upper . .
confidence Derive Upper Confidence
bound Bound (UCB), e.g., for bandits:
A Int
T = argg}qax ry(a) +c 0

[Auer et al. '02]



Exploration vs Exploitation — Optimistic initialization

Optimistic

Initialization

Upper
confidence
bound

move 1

Epsilon- , Q values Softmax
greedy

Action 1 Action 2 Action 3

Posterior
sampling

Maintain distribution P(r|a). At time t
sample from this distribution, and take
the optimal action according to the
sample; update P.

turn 1 turn

[Thompson ‘33, Chapelle & Li ‘11, Russo & Van Roy ‘14]



Deep exploration using Bootstrapped DQN

ldea (BDQN):
Approximate
uncertainty over Q

using deep ensembles r _.
[OS b an d et al ZO'I 6] (a) Shared network architecture (b) Gaussian process posterior  (c¢) Bootstrapped neural nets

Shared network

Figure 1: Bootstrapped neural nets can produce reasonable posterior estimates for regression.

[Osband et al. 2018]
extend BDQN with 7 goritm

randomized prior il
function

T T T T T T
0 500 1000 1500 2000 2500
Episode Episode

(a) Only BSP learns a performant policy. (b) Inspecting the first 500 episodes.

Figure 5: Learning curves for the modified cartpole swing-up task.




Successor Uncertainties

|dea: approximate uncertainty over Q as a function of successor features
[Dayan 1993]

Objective: + [t — e — b |IP 4+ {de,w) — rega]?
J . _ A _J

" "
succ. feat. regularisation reward prediction loss

ReSU|tS Chaln Bootstrap+Prior Bootstrap+Prior SuU
MDP T o

(1x compute) (25x compute) (1x compute)

[0
£
-
o
£
c
—
1]
Rl
c
L
i
@
£

10 20 10 20 0 100 200 0 100 200 0 100 200

problem scale L problem scale L problem scale L problem scale L problem scale L

Median # episodes to solve the tree MDP (5 seeds). Blue = all (5), orange = some (1-4), red = none
of the 5 runs finished within 5000 episodes. Dashed line for uniform policy. Note the varying x-axis scale!

[Janz*, Hron*, Mazur, Hofmann, Hernandez-Lobato, Tschiatschek, NeurlPS 2019]



Successor Uncertainties Tue 10:45a
#198

versus Successor Uncertainties
Bootstrap

DQN
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Pon
Pri
Q*B
Riv
Roa
Rob
Sea
Spa
Sta
Ten
Tim
Tut

Nam
Up
Ven
Vid
Wiz
Zax

i
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Ice
Kan
Kru
Kun
Mon

W @ £
T=58

Ali
Ami
Ass
Ast
Ast
Atl
Ban
Bat
Bea
Bow
Box
Bre
Cen
Cho
Cra
Dem
Dou
End
Fis
Fre
Fro
Gop
Gra

Atari 260

o

games, alphabetical

Bars show the difference in human normalised score between SU and BootDQN (top), UBE (middle) and
DQN (bottom) for each of the 49 Atari 2600 games. Blue indicates SU performed better, red worse. SU
outperforms the baselines on 36/49, 43/49 and 42/49 games respectively. Y-axis clipped to |—2.5,2.5].

[Janz*, Hron*, Mazur, Hofmann, Hernandez-Lobato, Tschiatschek, NeurlPS 2019]




4. Policy Gradient and Actor
Critic Approaches



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,11 - St—1,As—1, 7+ by following mg(als)
for each step 1=0..t—1:
Ri = k=i V™" 1x
Ai — Ri — b
6 =0+ aVylogmg(als;) 4;

[Williams 1992]



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)
for each step 1=0..t—1:

Ri = Yr=i V' ny

Ai=R; =D . Policy
0 =0+ aVylogmy (a|Si) A; parameterized by
learnable 6

[Williams 1992]



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)

for each step 1=0..t—1:
R. = Zt yt—ka _ Unbiased estimate of remaining episode
T Lk=tY ke return under 1y starting from i
Ai — Ri — b

6 =0+aVylogn,(als;) 4;

[Williams 1992]



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)
for each step 1=0..t—1:

Ri = Y=V ny

A =R. —b ~ Subtract baseline b to lower variance,

i — i > . t . o o .
A e.g., episode return R = .5 r; (intuition:

0 =0+ aVglogmg(als;) A; advantage)

[Williams 1992]



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)
for each step 1=0..t—1:
Ri = Zp=i V" "1
Ai — Ri — b
6 =0+aVylogmy(als;) A;

[Williams 1992]



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)
for each step 1=0..t—1:
Ri = Zp=i V" "1
A, =R;,—b Objective:  J(8) = Y7 Po(t) R(T)
0=0+a V) (6) =V ) Po(t)R(™)

— z R(7)

e

[Williams 1992]



Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)
for each step 1=0..t—1:
Ri = Zp=i V" "1
A, =R;,—b

B =0+aV,logmy (alsi) Ai X Act.or—critic appAroaches use IearneAd
estimate (e.g., A(s,a) = Q(s,a) =V (s))




Policy Gradient Algorithm: REINFORCE

For each episode:
Generate T = Sy, AgTy,S1,A1,171 - St—1, 1,7+ by following my(als)
for each step 1=0..t—1:
Ri = Zp=i V" "1
Ai — Ri — b
6 =0+aVylogmy(als;) A;

NeurlPS 2016 Tutorial by Pieter Abbeel John Schulman: Deep
Reinforcement Learning through Policy Optimization
(https://media.nips.cc/Conferences/2016/Slides/6198-Slides.pdf )



https://media.nips.cc/Conferences/2016/Slides/6198-Slides.pdf

Actor-Critic with Deep Function Approximation

Need to balance between learning speed, stability

[Kakade & Langford 2002] Conservative Policy Iteration (CPI): propose surrogate objective,
guarantee monotonic improvement under specific state distribution

[Schulman et al. 2015] Trust Region Policy Optimization (TRPO): approximates CPI with trust
region constraint

[Schulman et al. 2017] Proximal Policy Optimization (PPO): replace TRPO constraint with KL
penalty + clipping (computationally efficient)

HalfCheetah-v1 — A2C
A2C + Trust Region
CEM
PPO (Clip)
Vanilla PG, Adaptive
TRPO




Actor-Critic with Deep Function Approximation

Need to balance between learning speed, stability

[Kakade & Langford 2002] Conservative Policy Iteration (CPI): propose surrogate objective,
guarantee monotonic improvement under specific state distribution

[Schulman et al. 2015] Trust Region Policy Optimization (TRPO): approximates CPI with trust
region constraint

[Schulman et al. 2017] Proximal Policy Optimization (PPO): replace TRPO constraint with KL
penalty + clipping (computationally efficient)

[Haarnoja et al. 2018] Soft Actor-Critic (SAC): stabilize learning by jointly maximizing
expected reward and policy entropy (based on maximum entropy RL [Ziebart et al. 2008])

(b) Walker2d-v1 (c) HalfCheetah-v1 e¢) Humanoid-v (f) Humanoid (rllab)



Optimistic Actor Critic (OAC)

Focus on exploration in deep Actor
Critic approaches

Q" 1 (a)

samples ! samples
needed more I needed less

Insight: existing approaches tend to
explore conservatively

Solution: more principled
exploration using optimism
Upper confidence bound (optimistic
estimate) on Q:
Qua(x,a) = up(x,a) +

\ J

|
mean belief about Q

[Kamil Ciosek, Vuong, Loftin, Hofmann 2019]



Tue

Optimistic Actor Critic (OAC) spotlight

5:05PM
T3-S2

Key result: Optimistic Humanoid-v2 4 training steps
exploration leads to
efficient, stable learning in
modern Actor Critic
methods

OAC 4 training steps
—— SAC 4 training steps
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0.5
million steps

[Kamil Ciosek, Vuong, Loftin, Hofmann 2019]



RL Applications

Example: Personalizer

Further study: ICML 2017 tutorial on Real World Interactive Learning by Alekh Agarwal
and John Langford http://hunch.net/~rwil/

Example: Robotics

Further study: ICML 2017 tutorial on Deep Reinforcement Learning, Decision Making, and
Control by Chelsea Finn and Sergey Levine https://sites.google.com/view/icml17deeprl

Example: Tutoring systems

Further study: NeurlPS 2017 tutorial on Reinforcement Learning for the People and/or by
the People https://cs.stanford.edu/people/ebrun/NIPS 2017 tutorial brunskill.pdf



http://hunch.net/~rwil/
https://sites.google.com/view/icml17deeprl
https://cs.stanford.edu/people/ebrun/NIPS_2017_tutorial_brunskill.pdf

5. Generalization



Generalization in RL

Example: generalization using successor features [Dayan 1993], rapidly
adapt to new reward structure [Barreto et al. 2018]

Nature-CNN IMPALA-CNN

How many tasks are
needed before modern
approaches generalize?

e
D
2
S,
A
n
v
>
v
-
X

[Cobbe et al. 2019] 102 rE o 107 03 7o

# Training Levels # Training Levels
(a) Final train and test performance of Nature-CNN agents after (b) Final train and test performance of IMPALA-CNN agents af-
256M timesteps, as a function of the number of training levels. ter 256M timesteps, as a function of number of training levels.

Figure 2. Dotted lines denote final mean test performance of the agents (rained with an unbounded set of levels. The solid line and
shaded regions represent the mean and standard deviation respectively across 5 seeds. Training sets are generated separately for each
seed.




Generalization in RL

Recently proposed benchmarks:

.-

Multi-Room CoinRun
Chevalier-Boisvert et al. (2018) Cobbe et al. (2019)



Generalization in Reinforcement Learning with
Selective Noise Injection and Information Bottleneck

Previous reqularization approaches developed for supervised learning, not RL!

Insight 1: Selective noise injection for Insight 2: regularization with
but not Information bottleneck is
speeds learning particularly effective
[T
=~ (aglxt)
Vo] () = E Z Vo log iy (ag|x;)
6J\Tlg (ag|x;) t (a.|x,) 6 108 t1Xt

[Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin, Hofmann 2019]



Generalization in Reinforcement Learning with
Selective Noise Injection and Information Bottleneck

IBAC
mmm |BAC-SNI (A= 0.5)

Key result: Dramatically improve

mm= Dropout performance on generalization

Dropout-SNI (A = 0.5)

mm= NoReg benchmarks

Weight Decay

[Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin, Hofmann 2019]



Generalization in Reinforcement Learning with @i

Selective Noise Injection and Information Bottlentgkes:

Sat Dec 14th 8:00AM - 6:00PM
@ West 211 - 214
Learning Transferable Skills

Marwan Mattar - Arthur Juliani

Danny Lange - Matthew Crosby
Benjamin Beyret

Baseline BatchNorm Our IBAC-SNI approach https://www.skillsworkshop.ai/
reqularizer

[Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin, Hofmann 2019]


https://www.skillsworkshop.ai/

6. Structure



Meta Learning

= Learn to Learn, e.g., learn an update rule from related tasks

Task embeading: m;

States

|"'| e . L .
]HI. [-__t | {u. .nll‘ r I :‘:J _'

Transition function
T(Sty1lSe, ag;m;)

Reward function R(s, a; m;)
Policy m(s|a)

Example, tasks
are related
through low-
dimensional
embedding



Model-Agnostic Meta Learning (MAML)
[Finn et al. 2017]

Flexible meta-learning approach based on 2" order gradient descent

2-stage gradient-based approach on batches of tasks T

7 Inner loop:

!/
0; =0 —aVeLly(fo) For more on Meta-
Learning see ICML 2019
tutorial by Chelsea Finn
2) Outer loop: and Sergey Levine

— 0 _ https://sites.google.com/
6=0-FV Efi,\,pm LTl(fez’) view/icml19metalearning



https://sites.google.com/view/icml19metalearning

Fast Context Adaptation via Meta-Learning (CAVIA)

Problem: Many parameters + few data points can lead to overfitting

Key insight: Many tasks only require task identification — no need to
update all model parameters at test time

MAML (Finn et al. 2017) CAVIA

[Zintgraf, Shiarli, Kurin, Hofmann & Shimon Whiteson, 2019]



Ove I"VieW | - Context parameters:

- - = Task-specific input parameter vector.
Updated at test time via gradient descent.
Represents task embedding.

9

- == Network parameters:
: Shared across tasks.
Meta-trained, fixed at test time.

[Zintgraf, Shiarli, Kurin, Hofmann & Shimon Whiteson, 2019]




Fast Context Adaptation via Meta-Learning (CAVIA)
Results: Half-Cheetah directions task

context parameter 1 context parameter 2

®9
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®
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—-0.002

—-0.003

Learn about work in progress: learning to
explore in Meta-RL settings — Shimon'’s invited ..= **
talk at the Deep RL workshop on Sat, T0AM
https://sites.google.com/view/deep-rl-

workshop-neurips-2019/home

L

Number

[Zintgraf, Shiarli, Kurin, Hofmann & Shimon Whiteson, 2019]


https://sites.google.com/view/deep-rl-workshop-neurips-2019/home

7. Models



Model-based RL

Model:

First 99 moves Moves 100-186 (149 at 131, 150 at 130) |mage credit: https//enw|k|ped|aOrg/W|k|/A|phaGo


https://en.wikipedia.org/wiki/AlphaGo

Model-based RL

What if we don’t know the model — learn from data?

C: Coulom 2002
KK: Kimura & Kobayashi 1999

D: Doya 2000
WP; Wawrzynski & Pacut 2004 days

16000+, . ...
. | SOTA SOTA SOTA

‘ C h ua et Model-Based  Model-Free Model-Free
1 (Nagab. et (Haarnojaet at convergence
al 18 al. 2017) . al. 2018)

a

8000

15 min. 30 min.

45 min.

1 hour

[Deisenroth & Rasmussen 2011]

— PILCO - learns model
parameterized as Gaussian
Process

[Ha & Schmidhuber 2018] —
World Models — learn models
for policy optimization in visual
domains

[Chua et al. 2018] — Learn
flexible models that quantify
uncertainty using ensembles of
Bayesian NNs

[Sun et al. 2019]
|dentify settings
where model-
based RL provably
faster than model-
free approaches



Meta-Learning for Model Identification

Goal: use data from
related tasks to Systems vary in mass m

rapidly adapt model and pendulum length 1
to new task

6 training tasks: l € [.5,.7] x

Approach: Gaussian
Process dynamics m € [.4,.6,.8]

conditioned on NN 14 held out test tasks

latent variable L :
(optimized jointly) require mt.erpolanon +
extrapolation

[Seemundsson, Hofmann & Deisenroth, 2018]



Multi-task Cart-Pole

Result 1: Learned
embeddings accurately
capture task structure

[Seemundsson, Hofmann & Deisenroth, 2018]



Multi-task Cart-Pole

Result 2: dynamics model
effectively uses multi-task
structure for rapid
adaptation

Qo
-

=)
-

S
(-

—~
o
o<
N —
Q
)
oV
oY
0
)]
(D)
Q
@)
]
Up)

()
-

2 3 4 5 6 7 8 9 10 11 12 13 14 15
Trial

[Seemundsson, Hofmann & Deisenroth, 2018]



Using more (known) structure

Structural Priors Insight: propose
High-level prior knowledge: e.g., laws of physics or configuration Variational

S Integrator Networks
(VINS) with built-in
physics and
geometric structure

» Improve data efficiency and generalization

Image credit: Marc Deisenroth
[Seemundsson, Terenin,

Hofmann & Deisenroth, 2019]



Using more (known) structure

Residual (Euler) Network Result: VINs within auto-
encoder setup effectively
constrains latent space, learns
from limited data.

Here: training on 40 images
(28x28)

0.4
0.2

0.0

—0.2

-0.4

[Seemundsson, Terenin,
R Hofmann & Deisenroth, 2019]




Using more (known) structure

Residual (Euler) Network Variational Integrator Network Result: VINs within auto-
encoder setup effectively
constrains latent space, learns
from limited data.

Here: training on 40 images
(28x28)

For more details see Steindor’s poster
at the Bayesian Deep Learning

workshop: Fri 9:35AM
http://bayesiandeeplearning.org/

[Seemundsson, Terenin,
Hofmann & Deisenroth, 2019]



http://bayesiandeeplearning.org/

8. New Challenges



Multi-Agent Reinforcement Learning in Malmo (MARLO)

Agents The Multi-Agent
collaborate to Reinforcement
catch pig, Learning in MalmO
chicken, or other (MARLO)
mob in a small Competition by
enclosure Perez-Liebana et al.
https://arxiv.org/abs/
1901.08129
One agent ": - Agents

collects and B & tame - F= = Collaborate to
caries treasure to 7 4 =251 build a structure,
a goal, the other we==/ but the faster
defends the team s agent earns
from attackers *‘

g
'H

- &% more rewards


https://arxiv.org/abs/1901.08129

The MineRL

Competition on Sample
-fficient Reinforcemen

]

_earning using Hu
°riors

NeurlPS 2019 Competition
Arxiv: 1904.100/9

Man

Organizing Team
William H. Guss (Carnegie Mellon University)
Mario Ynocente Castro (Preferred Networks)
Cayden Codel (Carnegie Mellon University)
Katja Hofmann (Microsoft Research)
Brandon Houghton (Carnegie Mellon University)
Noboru Kuno (Microsoft Research)
Crissman Loomis (Preferred Networks)
Keisuke Nakata (Preferred Networks)
Stephanie Milani (University of Maryland and CMU)
Sharada Mohanty (Alcrowd)
Diego Perez Liebana (Queen Mary University of London)
Ruslan Salakhutdinov (Carnegie Mellon University)
Shinya Shiroshita (Preferred Networks)
Nicholay Topin (Carnegie Mellon University)
Avinash Ummadisingu (Preferred Networks)
Manuela Veloso (Carnegie Mellon University)
Phillip Wang (Carnegie Mellon University)

Advisory committee
Chelsea Finn (Google Brain and UC Berkeley)
Sergey Levine (UC Berkeley)
Harm van Seijen (Microsoft Research)
Oriol Vinyals (Google DeepMind)



Click to play (in powerpoint)

Video link: https://www.microsoft.com/en-us/research/video/minerl-competition-2019/



https://www.rarnonalumber.com/en-us/research/video/minerl-competition-2019/

MineRL @ NeurlPS 2019 Competition Track

Top Submissions

Winners announced this Saturday
(Competition Track Day 2): 9AM

EEEEEEEEE

Net Reward
r(t): e0.e0
net: 0.00
Camera Control

http://minerl.io/competition/



http://minerl.io/competition/

RL@NeurlPS

—~

Enjoy the
conference!!
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