
Katja Hofmann

Principal Researcher, Game Intelligence

Microsoft Research, Cambridge, UK

aka.ms/gameintelligence

Twitter: @katjahofmann









1. Formalizing RL





agent
with a (learnable) 

behaviour policy

environment
with initially unknown 

dynamics and reward



state s0 ∈ 𝑆
agent

with a (learnable) 

behaviour policy

environment
with initially unknown 

dynamics and reward



state st ∈ 𝑆

action a𝑡 ∈ 𝐴

reward rt ∈ ℝ
agent

with a (learnable) 

behaviour policy

environment
with initially unknown 

dynamics and reward



state st+1 ∈ 𝑆

action a𝑡 ∈ 𝐴

reward rt+1 ∈ ℝ
agent

with a (learnable) 

behaviour policy

environment
with initially unknown 

dynamics and reward



state st+1 ∈ 𝑆

action a𝑡 ∈ 𝐴

reward rt+1 ∈ ℝBehavior policy: 

π(a|s)

Dynamics: T(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

Reward: 𝑅(𝑟𝑡+1|𝑠𝑡 , 𝑎𝑡)



Finite-horizon:

𝔼 ෍

𝑡=0

ℎ

𝑟𝑡

Infinite-horizon:

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡

Average-reward:

lim
ℎ→∞

𝔼
1

ℎ
෍

𝑡=0

ℎ

𝑟𝑡



𝜋𝑛 → 𝜋∗ 𝑎𝑠 𝑛 → ∞

PAC: 

𝑃 𝑁𝑒𝑟𝑟𝑜𝑟𝑠 > 𝐹(⋅, 𝜖, 𝛿) ≤ 𝛿

Regret (e.g., bound B on total regret): 

max
𝑗

෍

𝑡=0

𝑇

𝑟𝑡𝑗 − 𝑟𝑡 < 𝐵





2. Value Functions



𝑉∗ 𝑠𝑡 = max
𝜋

𝔼 ෍

𝑡=0

∞

𝛾𝑡𝑟𝑡

𝑉𝜋 𝑠𝑡 = 𝑅 𝑠𝑡 , 𝜋 𝑠𝑡 + 𝛾෍

𝑠𝑡+1

𝑇 𝑠𝑡+1|𝑠𝑡 , 𝜋(𝑠𝑡) 𝑉
𝜋 𝑠𝑡+1

𝜋∗

𝑉𝜋∗ 𝑠𝑡 = max
𝑎

𝑅 𝑠𝑡 , 𝑎 + 𝛾෍

𝑠𝑡+1

𝑃 𝑠𝑡+1|𝑠𝑡 , 𝑎 𝑉𝜋 𝑠𝑡+1



< 𝑠𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 >

𝑉 𝑠𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1)

𝛿 = 𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡

𝛿

𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑟𝑡 + 𝛾𝑉 𝑠𝑡+1 − 𝑉 𝑠𝑡



Credit: IBM Research 

https://researcher.watson.ibm.com/

researcher/view_page.php?id=6853

Image credit: 

https://en.wikipedia.org/wiki/TD-Gammon

https://researcher.watson.ibm.com/researcher/view_page.php?id=6853
https://en.wikipedia.org/wiki/TD-Gammon


𝑄∗ 𝑠𝑡, 𝑎𝑡 =

𝛿 = 𝑟𝑡 + 𝛾max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎)



[Watkins, 1989; Dayan & Watkins, 1992]

For each episode:

Observe initial state 𝑠0
for each step 𝑡 = 0,1,2… in the episode:

Select action 𝑎𝑡 using 𝑄(𝑎, 𝑠) (e.g., 𝜖-greedy)
Take action 𝑎𝑡, observe r𝑡 , s𝑡+1
𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾max

𝑎
𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎)]

𝑠 = st+1

Regret bounds for Q-Learning:

Chi Jin, Allen-Zhu, Bubeck & Jordan: “Is q-

learning provably efficient?" NeurIPS 2018



A platform for AI 

experimentation, built on 

Minecraft
microsoft.com/en-

us/research/project/project-malmo/

Open source on github
github.com/Microsoft/malmo

[Johnson, Hofmann, Hutton & 

Bignell, 2016]

https://www.rarnonalumber.com/en-us/research/project/project-malmo/
https://github.com/Microsoft/malmo


Task: navigate an initially 

unknown environment

Adapted from Sutton & 

Barto (2018) chapter 6

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6

https://github.com/Microsoft/malmo


Task: navigate an initially 

unknown environment

Adapted from Sutton & 

Barto (2018) chapter 6

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6

Positive reward

Negative reward

https://github.com/Microsoft/malmo


Try this at home, see https://github.com/Microsoft/malmo - tutorial 6

https://github.com/Microsoft/malmo


Try this at home, see https://github.com/Microsoft/malmo - tutorial 6

The agent has to explore to 

learn about consequences of 

it’s actions

https://github.com/Microsoft/malmo


Q-Learning in Malmo:

Try this at home, see https://github.com/Microsoft/malmo - tutorial 6

https://github.com/Microsoft/malmo


3. Function Approximation



𝛿 = 𝑟𝑡 + 𝛾max
𝑎

𝑄(𝑠𝑡+1, 𝑎; 𝜃) − 𝑄(𝑠𝑡, 𝑎; 𝜃)

J 𝜃 = 𝛿 2

= 𝑟𝑡 + 𝛾max
𝑎∈𝐴

𝑄 𝑠𝑡+1, 𝑎; 𝜃 − 𝑄 𝑠𝑡 , 𝑎𝑡; 𝜃
2



Great blog post with code (DQN, Double DQN): 

https://davidsanwald.github.io/2016/12/11/Double-DQN-interfacing-OpenAi-Gym.html

𝛿 = 𝑟𝑡 +
𝛾max

𝑎∈𝐴
𝑄 𝑠𝑡+1, 𝑎; 𝜃

′ − 𝑄 𝑠𝑡 , 𝑎𝑡; 𝜃

𝛿 [−1, 1]

https://davidsanwald.github.io/2016/12/11/Double-DQN-interfacing-OpenAi-Gym.html


Figure from: Mnih et al. (2015)



[Van Hasselt et al. 2016] Double Q-Learning

[Anschel et al. 2017] Average Q-Learning 

[Andrychowicz et al. 2017] Hindsight Experience replay 

[Dabney et al. 2018] Distributional RL 

[Horgan et al. 2018] Ape-X 

For further study check David Silver’s ICML 2016: 

https://www.icml.cc/2016/tutorials/deep_rl_tutorial.pdf

https://www.icml.cc/2016/tutorials/deep_rl_tutorial.pdf


Case Study: Learning to navigate Minecraft 

from pixels using DQN



Case Study: Learning to navigate Minecraft 

from pixels using DQN



Case Study: Learning to navigate Minecraft 

from pixels using DQN



Case Study: Learning to navigate Minecraft 

from pixels using DQN



Decoding multitask 

DQN in the world of 

Minecraft

Lydia Liu, Urun Dogan, 

Katja Hofmann 

EWRL 2016

Deep Learning Workshop @ NIPS 2016



3. Exploration



Common Approaches

Optimistic 

initialization

If upper bound is known (e.g., 

on Q), initialize all estimates to 

the upper bound.



https://en.wikipedia.org/wiki/Mountain_car_problem

[Dauparas, Tomioka & Hofmann, 2018]

https://en.wikipedia.org/wiki/Mountain_car_problem


Common Approaches
Optimistic 

initialization
Epsilon-greedy

𝜋𝑡 = ൞

argmax
𝑎∈𝐴

Ƹ𝑟𝑡 𝑎

𝑟𝑎𝑛𝑑 𝑎

𝑤. 𝑝𝑟𝑜𝑏. 1 − 𝜀

𝑤. 𝑝𝑟𝑜𝑏. 𝜀

“greedy” action



Common Approaches
Optimistic 

initialization

Epsilon-

greedy
Soft-

max

Sample from the Softmax policy: 

𝜋 𝑎 𝑠 =
𝑒ℎ(𝑠,𝑎)

σ
𝑎′∈𝐴

𝑒ℎ 𝑠,𝑎′

0

0.1

0.2

0.3

0.4

0.5

0.6

Action 1 Action 2 Action 3

𝜋
(A

|S
)



Optimistic initialization
Optimistic 

initialization

Upper 

confidence 

bound

Epsilon-

greedy

Softmax

Derive Upper Confidence 

Bound (UCB), e.g., for bandits:

𝜋𝑡 = argmax
𝑎∈𝐴

Ƹ𝑟𝑡 𝑎 + 𝑐
ln 𝑡

𝑁𝑡(𝑎)

[Auer et al. ’02]



Optimistic initialization
Optimistic 

initialization

Upper 

confidence 

bound

Epsilon-

greedy

Softmax

Posterior 

sampling

Maintain distribution 𝑃 𝑟 𝑎 . At time t
sample from this distribution, and take 

the optimal action according to the 

sample; update P.

[Thompson ‘33, Chapelle & Li ‘11, Russo & Van Roy ‘14]





[Janz*, Hron*, Mazur, Hofmann, Hernández-Lobato, Tschiatschek, NeurIPS 2019]



[Janz*, Hron*, Mazur, Hofmann, Hernández-Lobato, Tschiatschek, NeurIPS 2019]

Tue 10:45a

#198



4. Policy Gradient and Actor 

Critic Approaches



For each episode:

Generate 𝜏 = 𝑠0, 𝑎0𝑟1, 𝑠1, 𝑎1, 𝑟1…𝑠𝑡−1, 𝑎𝑡−1, 𝑟𝑡 by following 𝜋𝜃(𝑎|𝑠)
for each step i = 0… 𝑡 − 1:

𝑅𝑖 = σ𝑘=𝑖
𝑡 𝛾𝑡−𝑘𝑟𝑘

መ𝐴𝑖 = 𝑅𝑖 − 𝑏
𝜃 = 𝜃 + 𝛼 ∇𝜃 log 𝜋𝜃 𝑎 𝑠𝑖 መ𝐴𝑖



𝜃

𝜃 𝜃 𝜃 𝜃

Policy 

parameterized by 

learnable 𝜃



𝜃

𝑅𝑖
𝑅𝑖

𝜃 𝜃 𝜃 𝜃

Unbiased estimate of remaining episode 

return under 𝜋𝜃 starting from 𝑖



𝜃

𝑅𝑖
መ𝐴𝑖 𝑅𝑖
𝜃 𝜃 𝜃 𝜃

መ𝐴𝑖

Subtract baseline 𝑏 to lower variance, 

e.g., episode return R = σ1
𝑡 𝑟𝑡 (intuition: 

advantage)



𝜃

𝑅𝑖
መ𝐴𝑖 𝑅𝑖
𝜃 𝜃 ∇𝜃 𝜃

መ𝐴𝑖

Gradient with respect to policy 

parameters estimated from samples



𝜃

𝑅𝑖
መ𝐴𝑖 𝑅𝑖
𝜃 𝜃 ∇𝜃 log 𝜋𝜃 𝑎 𝑠𝑖 መ𝐴𝑖

ො𝑔

Objective: J 𝜃 = σ𝜏𝑃𝜃 𝜏 𝑅(𝜏)

∇𝜃𝐽 𝜃 = ∇𝜃෍
𝜏
𝑃𝜃 𝜏 𝑅 𝜏

=෍
𝜏
∇𝜃𝑃𝜃 𝜏 𝑅 𝜏

ො𝑔 is an unbiased estimate: Policy 

gradient theorem [Sutton et al. 2000]



𝜃

𝑅𝑖
መ𝐴𝑖 𝑅𝑖
𝜃 𝜃 ∇𝜃 𝜃

መ𝐴𝑖
Actor-critic approaches use learned 

estimate (e.g., መ𝐴(𝑠, 𝑎) = ෠𝑄(𝑠, 𝑎) − ෠𝑉(𝑠))



𝜃

𝑅𝑖
መ𝐴𝑖 𝑅𝑖
𝜃 𝜃 ∇𝜃 𝜃

መ𝐴𝑖

NeurIPS 2016 Tutorial by Pieter Abbeel John Schulman: Deep 

Reinforcement Learning through Policy Optimization 

(https://media.nips.cc/Conferences/2016/Slides/6198-Slides.pdf )

https://media.nips.cc/Conferences/2016/Slides/6198-Slides.pdf


[Kakade & Langford 2002] Conservative Policy Iteration (CPI):

[Schulman et al. 2015] Trust Region Policy Optimization (TRPO): 

[Schulman et al. 2017] Proximal Policy Optimization (PPO): 



[Kakade & Langford 2002] Conservative Policy Iteration (CPI):

[Schulman et al. 2015] Trust Region Policy Optimization (TRPO): 

[Schulman et al. 2017] Proximal Policy Optimization (PPO): 

[Haarnoja et al. 2018] Soft Actor-Critic (SAC): 



[Kamil Ciosek, Vuong, Loftin, Hofmann 2019]

Insight: 

Solution: 

෠𝑄𝑈𝐵(𝑥, 𝑎) = 𝜇𝑄(𝑥, 𝑎) + 𝛽𝑈𝐵𝜎𝑄(𝑥, 𝑎)

uncertainty about ෠𝑄mean belief about ෠𝑄



Key result: Optimistic 

exploration leads to 

efficient, stable learning in 

modern Actor Critic 

methods

Tue 

5:30PM

#179

Tue 

spotlight 

5:05PM 

T3-S2

[Kamil Ciosek, Vuong, Loftin, Hofmann 2019]



Example: Personalizer

Further study: ICML 2017 tutorial on Real World Interactive Learning by Alekh Agarwal 

and John Langford http://hunch.net/~rwil/

Example: Robotics

Further study: ICML 2017 tutorial on Deep Reinforcement Learning, Decision Making, and 

Control by Chelsea Finn and Sergey Levine https://sites.google.com/view/icml17deeprl

Example: Tutoring systems

Further study: NeurIPS 2017 tutorial on Reinforcement Learning for the People and/or by 

the People https://cs.stanford.edu/people/ebrun/NIPS_2017_tutorial_brunskill.pdf

http://hunch.net/~rwil/
https://sites.google.com/view/icml17deeprl
https://cs.stanford.edu/people/ebrun/NIPS_2017_tutorial_brunskill.pdf


5. Generalization



Generalization in RL

How many tasks are 

needed before modern 

approaches generalize?

[Cobbe et al. 2019]



Generalization in RL

CoinRun

Cobbe et al. (2019)
Multi-Room

Chevalier-Boisvert et al. (2018)



Previous regularization approaches developed for supervised learning, not RL!

Insight 1: Selective noise injection for 

gradient update but not behavior

(rollout) policy speeds learning

∇𝜃𝐽 𝜋𝜃 = ෡𝔼𝜋𝜃
𝑟 𝑎𝑡 𝑥𝑡 ෍

𝑡

𝑇
𝜋𝜃 𝑎𝑡 𝑥𝑡
𝜋𝜃
𝑟 𝑎𝑡 𝑥𝑡

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑥𝑡 መ𝐴𝑡

Insight 2: regularization with 

Information bottleneck is 

particularly effective

[Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin, Hofmann 2019]



Key result: Dramatically improve 

performance on generalization 

benchmarks

[Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin, Hofmann 2019]



[Igl, Ciosek, Li, Tschiatschek, Zhang, Devlin, Hofmann 2019]

Baseline BatchNorm
regularizer

Our IBAC-SNI approach

Thu 

10:45AM

#228

Sat Dec 14th 8:00AM – 6:00PM 

@ West 211 - 214

Learning Transferable Skills

Marwan Mattar · Arthur Juliani  

Danny Lange · Matthew Crosby 

Benjamin Beyret

https://www.skillsworkshop.ai/

https://www.skillsworkshop.ai/


6. Structure





Model-Agnostic Meta Learning (MAML) 

[Finn et al. 2017]

Flexible meta-learning approach based on 2nd order gradient descent

2-stage gradient-based approach on batches of tasks 𝒯

1) Inner loop:

𝜃𝑖
′ = 𝜃 − 𝛼∇𝜃ℒ𝒯𝑖(𝑓𝜃)

2) Outer loop:

𝜃 = 𝜃 − 𝛽∇𝜃෍
𝒯𝑖~𝑝(𝒯)

ℒ𝒯𝑖(𝑓𝜃𝑖
′)

For more on Meta-

Learning see ICML 2019 

tutorial by Chelsea Finn 

and Sergey Levine 

https://sites.google.com/

view/icml19metalearning

https://sites.google.com/view/icml19metalearning


C A via

Problem: Many parameters + few data points can lead to overfitting

Key insight: Many tasks only require task identification – no need to 

update all model parameters at test time

CAVIAMAML (Finn et al. 2017)

[Zintgraf, Shiarli, Kurin, Hofmann & Shimon Whiteson, 2019]



Context parameters: 

Task-specific input parameter vector.

Updated at test time via gradient descent.

Represents task embedding.

Network parameters: 

Shared across tasks.

Meta-trained, fixed at test time.

[Zintgraf, Shiarli, Kurin, Hofmann & Shimon Whiteson, 2019]



C A via

[Zintgraf, Shiarli, Kurin, Hofmann & Shimon Whiteson, 2019]

Learn about work in progress: learning to 

explore in Meta-RL settings – Shimon’s invited 

talk at the Deep RL workshop on Sat, 10AM 

https://sites.google.com/view/deep-rl-

workshop-neurips-2019/home

https://sites.google.com/view/deep-rl-workshop-neurips-2019/home


7. Models



Dynamics: T(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡),  Reward: 𝑅(𝑟𝑡+1|𝑠𝑡 , 𝑎𝑡)

Model is fully known

Image credit: https://en.wikipedia.org/wiki/AlphaGo

https://en.wikipedia.org/wiki/AlphaGo


[Deisenroth & Rasmussen 2011] 

– PILCO – learns model 

parameterized as Gaussian 

Process

Chua et 

al. ‘18

[Sun et al. 2019] 

Identify settings 

where model-

based RL provably 

faster than model-

free approaches

[Ha & Schmidhuber 2018] –

World Models – learn models 

for policy optimization in visual 

domains

[Chua et al. 2018] – Learn 

flexible models that quantify 

uncertainty using ensembles of 

Bayesian NNs



Systems vary in mass 𝑚
and pendulum length 𝑙

6 training tasks: 𝑙 ∈ [.5, .7] x 

𝑚 ∈ [.4, .6, .8]

14 held out test tasks 

require interpolation + 

extrapolation

[Sæmundsson, Hofmann & Deisenroth, 2018]

Goal: use data from 

related tasks to 

rapidly adapt model 

to new task

Approach: Gaussian 

Process dynamics 

conditioned on NN 

latent variable 

(optimized jointly)



Result 1: Learned 

embeddings accurately 

capture task structure

[Sæmundsson, Hofmann & Deisenroth, 2018]



Result 2: dynamics model 

effectively uses multi-task 

structure for rapid 

adaptation

[Sæmundsson, Hofmann & Deisenroth, 2018]



Image credit: Marc Deisenroth

[Sæmundsson, Terenin, 

Hofmann & Deisenroth, 2019]



[Sæmundsson, Terenin, 

Hofmann & Deisenroth, 2019]



[Sæmundsson, Terenin, 

Hofmann & Deisenroth, 2019]

For more details see Steindor’s poster 

at the Bayesian Deep Learning 

workshop: Fri 9:35AM

http://bayesiandeeplearning.org/

http://bayesiandeeplearning.org/


8. New Challenges



Agents 

collaborate to 

catch pig, 

chicken, or other 

mob in a small 

enclosure

One agent 

collects and 

caries treasure to 

a goal, the other 

defends the team 

from attackers

Agents 

collaborate to 

build a structure, 

but the faster 

agent earns 

more rewards

The Multi-Agent 

Reinforcement 

Learning in MalmÖ

(MARLÖ) 

Competition by 

Perez-Liebana et al. 

https://arxiv.org/abs/

1901.08129

https://arxiv.org/abs/1901.08129


Organizing Team

William H. Guss (Carnegie Mellon University)

Mario Ynocente Castro (Preferred Networks)

Cayden Codel (Carnegie Mellon University)

Katja Hofmann (Microsoft Research)

Brandon Houghton (Carnegie Mellon University)

Noboru Kuno (Microsoft Research)

Crissman Loomis (Preferred Networks)

Keisuke Nakata (Preferred Networks)

Stephanie Milani (University of Maryland and CMU)

Sharada Mohanty (AIcrowd)

Diego Perez Liebana (Queen Mary University of London)

Ruslan Salakhutdinov (Carnegie Mellon University)

Shinya Shiroshita (Preferred Networks)

Nicholay Topin (Carnegie Mellon University)

Avinash Ummadisingu (Preferred Networks)

Manuela Veloso (Carnegie Mellon University)

Phillip Wang (Carnegie Mellon University)

Advisory committee

Chelsea Finn (Google Brain and UC Berkeley)

Sergey Levine (UC Berkeley)

Harm van Seijen (Microsoft Research)

Oriol Vinyals (Google DeepMind)

The MineRL

Competition on Sample 

Efficient Reinforcement 

Learning using Human 

Priors



https://www.microsoft.com/en-us/research/video/minerl-competition-2019/

https://www.rarnonalumber.com/en-us/research/video/minerl-competition-2019/


Winners announced this Saturday 

(Competition Track Day 2): 9AM

http://minerl.io/competition/

http://minerl.io/competition/


Enjoy the 

conference!!





References



Reinforcement learning and dynamic programming using function approximators

UCL Course on RL

Reinforcement learning: An introduction

Csaba Szepesvári. Algorithms for reinforcement learning

http://www.rlbook.busoniu.net/
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://incompleteideas.net/book/the-book-2nd.html
https://sites.ualberta.ca/~szepesva/RLBook.html















