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Abstract

We study the adaptive influence maximization problem with myopic feedback
under the independent cascade model: one sequentially selects k nodes as seeds
one by one from a social network, and each selected seed returns the immediate
neighbors it activates as the feedback available for later selections, and the goal is
to maximize the expected number of total activated nodes, referred as the influence
spread. We show that the adaptivity gap, the ratio between the optimal adaptive
influence spread and the optimal non-adaptive influence spread, is at most 4 and at
least e/(e− 1), and the approximation ratios with respect to the optimal adaptive
influence spread of both the non-adaptive greedy and adaptive greedy algorithms
are at least 1

4 (1− 1
e ) and at most e2+1

(e+1)2 < 1− 1
e . Moreover, the approximation

ratio of the non-adaptive greedy algorithm is no worse than that of the adaptive
greedy algorithm, when considering all graphs. Our result confirms a long-standing
open conjecture of Golovin and Krause (2011) on the constant approximation ratio
of adaptive greedy with myopic feedback, and it also suggests that adaptive greedy
may not bring much benefit under myopic feedback.

1 Introduction

Influence maximization is the task of given a social network and a stochastic diffusion model on
the network, finding the k seed nodes with the largest expected influence spread in the model [11].
Influence maximization and its variants have applications in viral marketing, rumor control, etc. and
have been extensively studied (cf. [6, 12]).

In this paper, we focus on the adaptive influence maximization problem, where seed nodes are
sequentially selected one by one, and after each seed selection, partial or full diffusion results from
the seed are returned as the feedback, which could be used for subsequent seed selections. Two main
types of feedback have been proposed and studied before: (a) full-adoption feedback, where the entire
diffusion process from the seed selected is returned as the feedback, and (b) myopic feedback, where
only the immediate neighbors activated by the selected seed are returned as the feedback. Under
the common independent cascade (IC) model where every edge in the graph has an independent
probability of passing influence, Golovin and Krause [7] show that the full-adoption feedback model
satisfies the key adaptive submodularity property, which enables a simple adaptive greedy algorithm
to achieve a (1− 1/e) approximation to the adaptive optimal solution. However, the IC model with
myopic feedback is not adaptive submodular, and Golovin and Krause [7] only conjecture that in
this case the adaptive greedy algorithm still guarantees a constant approximation. To the best of our
knowledge, this conjecture is still open before our result in this paper, which confirms that indeed
adaptive greedy is a constant approximation of the adaptive optimal solution.
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In particular, our paper presents two sets of related results on adaptive influence maximization with
myopic feedback under the IC model. We first study the adaptivity gap of the problem (Section 3),
which is defined as the ratio between the adaptive optimal solution and the non-adaptive optimal
solution, and is an indicator on how useful the adaptivity could be to the problem. We show that the
adaptivity gap for our problem is at most 4 (Theorem 1) and at least e/(e − 1) (Theorem 2). The
proof of the upper bound 4 is the most involved, because the problem is not adaptive submodular, and
we have to create a hybrid policy that involves three independent runs of the diffusion process in order
to connect between an adaptive policy and a non-adaptive policy. Next we study the approximation
ratio with respect to the adaptive optimal solution for both non-adaptive greedy and adaptive greedy
algorithms (Section 4). We show that the approximation ratios of both algorithms are at least 1

4 (1− 1
e )

(Theorem 3), which combines the adaptivity upper bound of 4 with the results that both algorithms
achieve (1− 1/e) approximation of the non-adaptive optimal solution (the (1− 1/e) approximation
ratio for the adaptive greedy algorithm requires a new proof). We further show that the approximation
ratios for both algorithms are at most e2+1

(e+1)2 ≈ 0.606, which is strictly less than 1− 1/e ≈ 0.632,
and the approximation ratio of non-adaptive greedy is the same as the worst approximation ratio of
the adaptive greedy over a family of graphs (Theorem 4).

In summary, our contribution is the systematic study on adaptive influence maximization with myopic
feedback under the IC model. We prove both constant upper and lower bounds on the adaptivity
gap in this case, and constant upper and lower bounds on the approximation ratios (with respect
to the optimal adaptive solution) achieved by non-adaptive greedy and adaptive greedy algorithms.
The constant approximation ratio of the adaptive greedy algorithm answers a long-standing open
conjecture affirmatively. Our result on the adaptivity gap is the first one on a problem not satisfying
adaptive submodularity. Our results also suggest that adaptive greedy may not bring much benefit
under the myopic feedback model.

Due to the space constraint, full proof details are included in the supplementary material.

Related Work. Influence maximization as a discrete optimization task is first proposed by Kempe
et al. [11], who propose the independent cascade, linear threshold and other models, study their
submodularity and the greedy approximation algorithm for the influence maximization task. Since
then, influence maximization and its variants have been extensively studied. We refer to recent
surveys [6, 12] for the general coverage of this area.

Adaptive submodularity is formulated by Golovin and Krause [7] for general stochastic adaptive opti-
mization problems, and they show that the adaptive greedy algorithm achieves 1− 1/e approximation
if the problem is adaptive monotone and adaptive submodular. They study the influence maximization
problem under the IC model as an application, and prove that the full-adoption feedback under the IC
model is adaptive submodular. However, in their arXiv version, they show that the myopic feedback
version is not adaptive submodular, and they conjecture that adaptive greedy would still achieve a
constant approximation in this case.

Adaptive influence maximization has been studied in [19, 20, 16, 13, 18, 10, 17, 5]. Tong et al. [19]
provide both adaptive greedy and efficient heuristic algorithms for adaptive influence maximization.
Their theoretical analysis works for the full-adoption feedback model but has a gap when applied
to myopic feedback, which is confirmed by the authors. Yuan and Tang [20] introduce the partial
feedback model and develop algorithms that balance the tradeoff between delay and performance,
and their partial feedback model does not coincide with the myopic feedback model. Salha et al. [13]
consider a different diffusion model where edges can be reactivated at each time step, and they show
that myopic feedback under this model is adaptive submodular. Sun et al. [16] study the multi-round
adaptive influence maximization problem, where k seeds are selected in each round and at the end
of the round the full-adoption feedback is returned. Tong [18] introduces a general feedback model
and develops some heuristic algorithms for this model. Han et al. [10] and Tang et al. [17] propose
efficient adaptive algorithms for influence maximization and seed set minimization respectively based
on the reverse influence sampling approach, both for IC models with full-adoption feedback. In
a separate paper [5], we study the adaptivity gap in the IC model with full-adoption feedback for
several classes of graphs such as trees and bipartite graphs. A different two stage seeding process
has also been studied [14, 3, 15], but the model is quite different, since their first stage of selecting a
node set X is only to introduce the neighbors of X as seeding candidates for the second stage.
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Adaptivity gap has been studied by two lines of research. The first line of work utilizes multilinear
extension and adaptive submodularity to study adaptivity gaps for the class of stochastic submodular
maximization problems and give an e/(e− 1) upper bound for matroid constraints [2, 1]. The second
line of work [8, 9, 4] studies the stochastic probing problem and proposes the idea of random-walk
non-adaptive policy on the decision tree, which partially inspires our analysis. However, their analysis
also implicitly depends on adaptive submodularity. In contrast, our result on the adaptivity gap is the
first on a problem that does not satisfy adaptive submodularity (see Section 3.1 for more discussions).

2 Model and Problem Definition

Diffusion Model. In this paper, we focus on the well known Independent Cascade (IC) model
as the diffusion model. In the IC model, the social network is described by a directed influence
graph G = (V,E, p), where V is the set of nodes (|V | = n), E ⊆ V × V is the set of directed
edges, and each directed edge (u, v) ∈ E is associated with a probability puv ∈ [0, 1]. The live edge
graph L = (V,L(E)) is a random subgraph of G, for any edge (u, v) ∈ E, (u, v) ∈ L(E) with
independent probability puv. If (u, v) ∈ L(E), we say edge (u, v) is live, otherwise we say it is
blocked. The dynamic diffusion in the IC model is as follows: at time t = 0 a live-edge graph L
is sampled and nodes in a seed set S ⊆ V are activated. At every discrete time t = 1, 2, . . ., if a
node u was activated at time t − 1, then all of u’s out-going neighbors in L are activated at time
t. The propagation continues until there are no more activated nodes at a time step. The dynamic
model can be viewed equivalently as every activated node u has one chance to activate each of its
out-going neighbor v with independent success probability puv. Given a seed set S, the influence
spread of S, denoted σ(S), is the expected number of nodes activated in the diffusion process from
S, i.e. σ(S) = EL[|Γ(S,L)|], where Γ(S,L) is the set of nodes reachable from S in graph L.

Influence Maximization Problem. Under the IC model, we formalize the influence maximization
(IM) problem in both non-adaptive and adaptive settings. Influence maximization in the non-adaptive
setting follows the classical work of [11], and is defined below.
Definition 1 (Non-adaptive Influence Maximization). Non-adaptive influence maximization is the
problem of given a directed influence graph G = (V,E, p) with IC model parameters {puv}(u,v)∈E
and a budget k, finding a seed set S∗ of at most k nodes such that the influence spread of S∗, σ(S∗),
is maximized, i.e. finding S∗ ∈ argmaxS⊆V,|S|≤kσ(S).

We formulate influence maximization in the adaptive setting following the framework of [7]. Let O
denote the set of states, which informally correspond to the feedback information in the adaptive
setting. A realization φ is a function φ : V → O, such that for u ∈ V , φ(u) represents the feedback
obtained when selecting u as a seed node. In this paper, we focus on the myopic feedback model [7],
which means the feedback of a node u only contains the status of the out-going edges of u being live
or blocked. Informally it means that after selecting a seed we can only see its one step propagation
effect as the feedback. The realization φ then determines the status of every edge in G, and thus
corresponds to a live-edge graph. As a comparison, the full-adoption feedback model [7] is such
that for each seed node u, the feedback contains the status of every out-going edge of every node v
that is reachable from u in a live-edge graph L. This means that after selecting a seed u, we can see
the full cascade from u as the feedback. In the full-adoption feedback case, each realization φ also
corresponds to a unique live-edge graph. Henceforth, we refer to φ as both a realization and a live-
edge graph interchangeably. In the remainder of this section, the terminologies we introduce apply to
both feedback models, unless we explicitly point out which feedback model we are discussing.

Let R denote the set of all realizations. We use Φ to denote a random realization, following the
distributionP over random live-edge graphs (i.e. each edge (u, v) ∈ E has an independent probability
of puv to be live in Φ). Given a subset S and a realization φ, we define influence utility function
f : 2V ×R → R+ as f(S, φ) = |Γ(S, φ)|, where R+ is the set of non-negative real numbers. That
is, f(S, φ) is the number of nodes reachable from S in realization (live-edge graph) φ. Then it is
clear that influence spread σ(S) = EΦ∼P [f(S,Φ)].

In the adaptive influence maximization problem, we could sequentially select nodes as seeds, and
after selecting one seed node, we could obtain its feedback, and use the feedback to guide further
seed selections. A partial realization ψ maps a subset of nodes in V , denoted dom(ψ) for domain of
ψ, to their states. Partial realization ψ represents the feedback we could obtain after nodes in dom(ψ)
are selected as seeds. For convenience, we also represent ψ as a relation, i.e., ψ = {(u, o) ∈ V ×O :
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u ∈ dom(ψ), o = ψ(u)}. We say that a full realization φ is consistent with a partial realization ψ,
denoted as φ ∼ ψ, if φ(u) = ψ(u) for every u ∈ dom(ψ).

An adaptive policy π is a mapping from partial realizations to nodes. Given a partial realization ψ,
π(ψ) represents the next seed node that policy π would select when it sees the feedback represented
by ψ. Under a full realization φ consistent with ψ, after selecting π(ψ), the policy would obtain
feedback φ(π(ψ)), and the partial realization would grow to ψ′ = ψ ∪ {(π(ψ), φ(π(ψ)))}, and
policy π could pick the next seed node π(ψ′) based on partial realization ψ′. For convenience, we
only consider deterministic policies in this paper, and the results we derive can be easily extend to
randomized policies. Let V (π, φ) denote the set of nodes selected by policy π under realization φ.
For the adaptive influence maximization problem, we consider the simple cardinality constraint such
that |V (π, φ)| ≤ k, i.e. the policy only selects at most k nodes. Let Π(k) denote the set of such
policies.

The objective of an adaptive policy π is its adaptive influence spread, which is the expected number
of nodes that are activated under policy π. Formally, we define the adaptive influence spread of π as
σ(π) = EΦ∼P [f(V (π,Φ),Φ)]. The adaptive influence maximization problem is defined as follows.
Definition 2 (Adaptive Influence Maximization). Adaptive influence maximization is the problem
of given a directed influence graph G = (V,E, p) with IC model parameters {puv}(u,v)∈E and a
budget k, finding an adaptive policy π∗ that selects at most k seed nodes such that the adaptive
influence spread of π∗, σ(π∗), is maximized, i.e. finding π∗ ∈ argmaxπ∈Π(k)σ(π).

Note that for any fixed seed set S, we can create a policy πS that always selects set S regardless of
the feedback, which means any non-adaptive solution is a feasible solution for adaptive influence
maximization. Therefore, the optimal adaptive influence spread should be at least as good as the
optimal non-adaptive influence spread, under the same budget constraint.

Adaptivity Gap. Since the adaptive policy is usually hard to design and analyze and the adaptive
interaction process may also be slow in practice, a fundamental question for adaptive stochastic
optimization problems is whether adaptive algorithms are really superior to non-adaptive algorithms.
The adaptivity gap measures the gap between the optimal adaptive solution and the optimal non-
adaptive solution. More concretely, if we use OPTN (G, k) (resp. OPTA(G, k)) to denote the
influence spread of the optimal non-adaptive (resp. adaptive) solution for the IM problem in an
influence graph G under the IC model with seed budget k, then we have the following definition.
Definition 3 (Adaptivity Gap for IM). The adaptivity gap in the IC model is defined as the supremum
of the ratios of the influence spread between the optimal adaptive policy and the optimal non-adaptive
policy, over all possible influence graphs G and seed budget k, i.e.,

sup
G,k

OPTA(G, k)

OPTN (G, k)
. (1)

Submodularity and Adaptive Submodularity. Non-adaptive influence maximization is often
solved via submodular function maximization technique. A set function f : 2V → R is submodular
if for all S ⊆ T ⊆ V and all u ∈ V \ T , f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ). Set function f
is monotone if for all S ⊆ T ⊆ V , f(S) ≤ f(T ). Kempe et al. [11] show that the influence spread
function σ(S) under the IC model is monotone and submodular, and thus a simple non-adaptive
greedy algorithm achieves a (1− 1

e ) approximation of the optimal non-adaptive solution, assuming
function evaluation σ(S) is given by an oracle.

Golovin and Krause [7] define adaptive submodularity for the adaptive stochastic optimization
framework. In the context of adaptive influence maximization, adaptive submodularity can be defined
as follows. Given a utility function f , for any partial realization ψ and a node u 6∈ dom(ψ), we define
the marginal gain of u given ψ as ∆f (u | ψ) = EΦ∼P [f(dom(ψ)∪{u},Φ)−f(dom(ψ),Φ)|Φ ∼ ψ],
i.e. the expected marginal gain on influence spread when adding u to the partial realization ψ. A
partial realization ψ is a sub-realization of another partial realization ψ′ if ψ ⊆ ψ′ when treating
both as relations. We say that the utility function f is adaptive submodular with respect to P if
for any two fixed partial realizations ψ and ψ′ such that ψ ⊆ ψ′, for any u 6∈ dom(ψ′), we have
∆f (u | ψ) ≥ ∆f (u | ψ′), that is, the marginal influence spread of a node given more feedback is
at most its marginal influence spread given less feedback. We say that f is adaptive monotone with
respect to P if for any partial realization ψ with PrΦ∼P(Φ ∼ ψ) > 0, ∆f (u | ψ) ≥ 0.
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Golovin and Krause [7] show that the influence utility function under the IC model with full-adoption
feedback is adaptive monotone and adaptive submodular, and thus the adaptive greedy algorithm
achieves (1 − 1

e ) approximation of the adaptive optimal solution. However, they show that the
influence utility function under the IC model with myopic feedback is not adaptive submodular. They
conjecture that the adaptive greedy policy still provides a constant approximation. In this paper, we
show that the adaptive greedy policy provides a 1

4 (1− 1
e ) approximation, and thus finally address

this conjecture affirmatively.

3 Adaptivity Gap in Myopic Feedback Model

In this section, we analyze the adaptivity gap for influence maximization problems under the myopic
feedback model and derive both upper and lower bounds.

3.1 Upper Bound on the Adaptivity Gap

Our main result is an upper bound on the adaptivity gap for the myopic feedback model, which is
formally stated below.

Theorem 1. Under the IC model with myopic feedback, the adaptivity gap for the influence maxi-
mization problem is at most 4.

Proof outline. We now outline the main ideas and the structure of the proof of Theorem 1. The main
idea is to show that for each adaptive policy π, we could construct a non-adaptive randomized policy
W(π), such that the adaptive influence spread σ(π) is at most four times the non-adaptive influence
spread ofW(π), denoted σ(W(π)). This would immediately imply Theorem 1. The non-adaptive
policyW(π) is constructed by viewing adaptive policy π as a decision tree with leaves representing
the final seed set selected (Definition 4), andW(π) simply samples such a seed set based on the
distribution of the leaves (Definition 5). The key to connect σ(π) with σ(W(π)) is by introducing
a fictitious hybrid policy π̄, such that σ(π) ≤ σ̄(π̄) ≤ 4σ(W(π)), where σ̄(π̄) is the aggregate
adaptive influence spread (defined in Eqs. (2) and (3)). Intuitively, π̄ works on three independent
realizations Φ1,Φ2,Φ3 and it adaptively selects seeds as π working on Φ1. The difference is that
each selected seed has three independent chances to activate its out-neighbors according to the
union of Φ1,Φ2,Φ3. The inequality σ(π) ≤ σ̄(π̄) is immediate and the main effort is on proving
σ̄(π̄) ≤ 4σ(W(π)).

To do so, we first introduce general notations σt(S) and σt(π) with t = 1, 2, 3, where σt(S) is the t-th
aggregate influence spread for a seed set S and σt(π) is the t-th aggregate adaptive influence spread
for an adaptive policy π, and they mean that all seed nodes have t independent chances to activate
their out-neighbors. Obviously, σ̄(π̄) = σ3(π) and σ(W(π)) = σ1(W(π)). We then represent
σt(W(π)) and σt(π) as a summation of k non-adaptive marginal gains ∆ft(u | dom(ψs))’s and
adaptive marginal gains ∆ft(u | ψs)’s, respectively (Definition 6 and Lemma 1), with respect to node
s in different levels of the decision tree. Next, we establish the key connection between the adaptive
marginal gain and the nonadaptive marginal gain (Lemma 3): ∆f3(u | ψ1) ≤ 2∆f2(u | dom(ψ1)).
This immediately implies that σ3(π) ≤ 2σ2(W(π)). Finally, we prove that the t-th aggregate non-
adaptive influence spread σt(S) is bounded by t · σ(S), which implies that σ2(W(π)) ≤ 2σ(W(π)).
This concludes the proof.

We remark that our introduction of the hybrid policy π̄ is inspired by the analysis in [4], which shows
that the adaptivity gap for the stochastic multi-value probing (SMP) problem is at most 2. However,
our analysis is more complicated than theirs and thus is novel in several aspects. First, the SMP
problem is simpler than our problem, with the key difference being that SMP is adaptive submodular
but our problem is not. Therefore, we cannot apply their way of inductive reasoning that implicitly
relies on adaptive submodularity. Instead, we have to use our marginal gain representation and redo
the bounding analysis carefully based on the (non-adaptive) submodularity of the influence utility
function on live-edge graphs. Moreover, our influence utility function is also sophisticated and we
have to use three independent realizations in order to apply the submodularity on live-edge graphs,
which results in an adaptivity bound of 4, while their analysis only needs two independent realizations
to achieve a bound of 2. We now provide the technical proof of Theorem 1. We first formally define
the decision tree representation.
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Definition 4 (Decision tree representation for adaptive policy). An adaptive policy π can be seen as a
decision tree T (π), where each node s of T (π) corresponds to a partial realization ψs, with the root
being the empty partial realization, and node s′ is a child of s if ψs′ = ψs ∪{(π(ψs), φ(π(ψs)))} for
some realization φ ∼ ψs. Each node s is associated with a probability ps, which is the probability
that the policy π generates partial realization ψs, i.e. the probability that the policy would walk on
the tree from the root to node s.

Next we define the non-adaptive randomized policyW(π), which randomly selects a leaf of T (π).
Definition 5 (Random-walk non-adaptive policy [9]). For any adaptive policy π, let L(π) denote the
set of leaves of T (π). Then we construct a randomized non-adaptive policyW(π) as follows: for
any leaf ` ∈ L(π),W(π) picks leaf ` with probability p` and selects dom(ψ`) as the seed set.

Before proceeding further with our analysis, we introduce some notations for the myopic feedback
model. In the myopic feedback model, we notice that the state spaces for all nodes are mutually
independent and disjoint. Thus we could decompose the realization space R into independent
subspace,R = ×u∈VOu, whereOu is the set of all possible states for node u. For any full realization
φ (resp. partial realization ψ), we would use φS (resp. ψS) to denote the feedback for the node set
S ⊆ V . Note that φS and ψS are partial realizations with domain S. Similarly, we would also use PS
to denote the probability space ×u∈SPu, where Pu is the probability distribution over Ou (i.e. each
out-going edge (u, v) of u is live with independent probability puv). With a slight abuse of notation,
we further use φS (resp. ψS) to denote the set of live edges leaving from S under φ (resp. ψ). Then
we could use notation φ1

S ∪ φ2
S to represent the union of live-edges from φ1 and φ2 leaving from S,

and similarly ψ ∪ φ2
S with dom(ψ) = S.

Construction of the hybrid policy π̄. For any adaptive policy π, we define a fictitious hybrid policy
π̄ that works on three independent random realizations Φ1, Φ2 and Φ3 simultaneously, thinking about
them as from three copies of the graphs G1, G2 and G3. Note that π̄ is not a real adaptive policy
— it is only used for our analytical purpose to build connections between the adaptive policy π and
the non-adaptive policy W(π). In terms of adaptive seed selection, π̄ acts exactly the same as π
on G1, responding to partial realizations ψ1 obtained so far from the full realization Φ1 of G1, and
disregarding the realizations Φ2 and Φ3. However, the difference is when we define adaptive influence
spread for π̄, we aggregate the three partial realizations on the seed set together. More precisely, for
any t = 1, 2, 3, we define the t-th aggregate influence utility function as f t : 2V ×Rt → R+

f t
(
S, φ1, · · · , φt

)
:= f

(
S, (∪i∈[t]φ

i
S , φ

1
V \S)

)
, (2)

where (∪i∈[t]φ
i
S , φ

1
V \S) means a new realization φ′ where on set S its set of out-going live-edges is

the same as the union of φ1, · · ·φt, and on set V \ S its set of out-going live-edges is the same as φ1,
and f is the original influence utility function defined in Section 2. The objective of the hybrid policy
π̄ is then defined as the adaptive influence spread under policy π̄, i.e.,

σ̄(π̄) := E
Φ1,Φ2,Φ3∼P

[
f3(V (π,Φ1),Φ1,Φ2,Φ3)

]
= E

Φ1,Φ2,Φ3∼P

[
f
(
V (π,Φ1), (Φ1

V (π,Φ1) ∪ Φ2
V (π,Φ1) ∪ Φ3

V (π,Φ1),Φ
1
V \V (π,Φ1))

)]
. (3)

In other words, the adaptive influence spread of the hybrid policy π̄ is the influence spread of seed
nodes V (π,Φ1) selected in graph G1 by policy π, where the live-edge graph on the seed set part
V (π,Φ1) is the union of live-edge graphs of G1, G2 and G3, and the live-edge graph on the non-seed
set part is only that of G1. It can also be viewed as each seed node has three independent chances to
activate its out-neighbors. Since the hybrid policy π̄ acts the same as policy π on influence graph G1,
we can easily conclude:
Claim 1. σ̄(π̄) ≥ σ(π).

We also define t-th aggregate influence spread for a seed set S, σt(S), as σt(S) =

EΦ1,··· ,Φt∼P
[
f t(S,Φ1, · · · ,Φt)

]
. Then, for the random-walk non-adaptive policyW(π), we define

σt(W(π)) =
∑
`∈L(π) p` · σt(dom(ψ`)), that is, the t-th aggregate influence spread ofW(π) is the

average t-th aggregate influence spread of seed nodes selected byW(π) according to distribution
of the leaves in the decision tree T (π). Similarly, we define the t-th aggregate adaptive influence
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spread for an adaptive policy π as σt(π) = EΦ1,··· ,Φt∼P
[
f t(V (π,Φ1),Φ1, · · · ,Φt)

]
. Note that

σ̄(π̄) = σ3(π).

Now, we could give a definition for the conditional expected marginal gain for the aggregate influence
utility function f t over live-edge graph distributions.
Definition 6. The expected non-adaptive marginal gain of u given set S under f t is defined as:

∆ft(u | S) = E
Φ1,··· ,Φt∼P

[
f t
(
S ∪ {u},Φ1, · · · ,Φt

)
− f t

(
S,Φ1, · · · ,Φt

)]
. (4)

The expected adaptive marginal gain of u given partial realization ψ1 under f t is defined as:

∆ft(u | ψ1) = E
Φ1,··· ,Φt∼P

[
f t
(
dom(ψ1) ∪ {u},Φ1, · · · ,Φt

)
− f t

(
dom(ψ1),Φ1, · · · ,Φt

)
| Φ1 ∼ ψ1

]
.

(5)

The following lemma connects σt(π) (and thus σ̄(π̄)) with adaptive marginal gain ∆ft(u | ψ), and
connects σt(W(π)) with non-adaptive marginal gain ∆ft(u | S). Let Pπi denote the probability
distribution over nodes at depth i of the decision T (π). The proof is by applying telescoping series to
convert influence spread into the sum of marginal gains.
Lemma 1. For any adaptive policy π, and t ≥ 1, we have

σt(π) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | ψs)] , and σt(W(π)) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | dom(ψs))] .

The next lemma bounds two intermediate adaptive marginal gains to be used for Lemma 3. The
proof crucially depend on (a) the independence of realizations Φ1,Φ2,Φ3, (b) the independence of
feedback of different selected seed nodes, and (c) the submodularity of the influence utility function
on live-edge graphs.
Lemma 2. Let S = dom(ψ1) and S+ = S ∪ {u} for any partial realization ψ1 and any u 6∈
dom(ψ1). Then we have

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (6)

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (7)

Combining the two inequalities above, we obtain the following key lemma, which bounds the adaptive
marginal gain ∆f3(u | ψ1) with the non-adaptive marginal gain ∆f2(u | dom(ψ1)).

Lemma 3. For any partial realization ψ1 and node u /∈ dom(ψ1), we have

∆f3(u | ψ1) ≤ 2∆f2(u | dom(ψ1)). (8)

The next lemma gives an upper bound on the t-th aggregate (non-adaptive) influence spread σt(S)
using the original influence spread σ(S). The idea of the proof is that each seed node in S has t
independent chances to active its out-neighbors, but afterwards the diffusion is among nodes not in S
as in the original diffusion.
Lemma 4. For any t ≥ 1 and any subset S ⊆ V , σt(S) ≤ t · σ(S).

Proof of Theorem 1. It is enough to show that for every adaptive policy π, σ(π) ≤ 4σ(W(π)).
This is done by the following derivation sequence: σ(π) ≤ σ̄(π̄) = σ3(π) =∑k−1

i=0 Es∈Pπi
[
∆f3 (π(ψs) | ψs)

]
≤
∑k−1
i=0 Es∈Pπi

[
2∆f2 (π(ψs) | dom(ψs))

]
= 2σ2(W(π)) ≤

4σ(W(π)), where the first inequality is by Claim 1, the second and the third equalities are by
Lemma 1, the second inequality is by Lemma 3 and the last inequality is by Lemma 4.
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3.2 Lower bound

Next, we proceed to give a lower bound on the adaptivity gap for the influence maximization problem
in the myopic feedback model. Our result is stated as follow:

Theorem 2. Under the IC model with myopic feedback, the adaptivity gap for the influence maxi-
mization problem is at least e/(e− 1).

Proof Sketch. We construct a bipartite graph G = (L,R,E, p) with |L| =
(
m3

m2

)
and |R| = m3. For

each subset X ⊂ R with |X| = m2, there is exactly one node u ∈ L that connects to all nodes in X .
We show that for any ε > 0, there is a large enough m such that in the above graph with parameter m
the adaptivity gap is at least e/(e− 1)− ε.

4 Adaptive and Non-Adaptive Greedy Algorithms

In this section, we consider two prevalent algorithms — the greedy algorithm and the adaptive greedy
algorithm for the influence maximization problem. To the best of our knowledge, we provide the first
approximation ratio of these algorithms with respect to the adaptive optimal solution in the IC model
with myopic feedback. We formally describe the algorithms in Figure 1.

Greedy Algorithm:
S = ∅
while |S| < k do
u = argmaxu∈V \S∆f (u|S)

S = S ∪ {u}
end while
return S

Adaptive Greedy Algorithm:
S = ∅,Ψ = ∅
while |S| < k do
u = argmaxu∈V \S∆f (u|Ψ)

Select u as seed and observe Φ(u).
S = S ∪ {u}, Ψ = Ψ ∪ {(u,Φ(u))}

end while

Figure 1: Description for greedy and adaptive greedy.

Our main result is summarized below.

Theorem 3. Both greedy and adaptive greedy are 1
4 (1 − 1

e ) approximate to the optimal adaptive
policy under the IC model with myopic feedback.

Proof Sketch. The proof for the non-adaptive greedy algorithm is straightforward since the non-
adaptive greedy algorithm provides a (1− 1

e ) approximation to the non-adaptive optimal solution,
which by Theorem 1 is at least 1

4 of the adaptive optimal solution. For the adaptive greedy algorithm,
we need to separately prove that it also provides a (1− 1

e ) approximation to the non-adaptive optimal
solution, and then the result is immediate similar to the non-adaptive greedy algorithm.

Theorem 3 shows that greedy and adaptive greedy can achieve at least an approximation ratio of
1
4 (1 − 1

e ) with respect to the adaptive optimal solution. We further show that their approximation
ratio is at most e2+1

(e+1)2 ≈ 0.606, which is strictly less than 1 − 1/e ≈ 0.632. To do so, we first

present an example for non-adaptive greedy with approximation ratio at most e2+1
(e+1)2 . Next, we show

that myopic feedback does not help much to adaptive greedy, in that the approximation ratio for the
non-adaptive greedy algorithm is no worse than that of adaptive greedy over a family of graphs.

Theorem 4. The approximation ratio for greedy and adaptive greedy is no better than e2+1
(e+1)2 ≈

0.606, which is strictly less than 1−1/e ≈ 0.632. Moreover, the approximation ratio of non-adaptive
greedy given any influence graph G and budget k is the same as the infimum of the approximation
ratios of adaptive greedy on a family of graphs with the same budget k.
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5 Conclusion and Future Work

In this paper, we systematically study the adaptive influence maximization problem with myopic
feedback under the independent cascade model, and provide constant upper and lower bounds on
the adaptivity gap and the approximation ratios of the non-adaptive greedy and adaptive greedy
algorithms. There are a number of future directions to continue this line of research. First, there is
still a gap between the upper and lower bound results in this paper, and thus how to close this gap
is the next challenge. Second, our result suggests that adaptive greedy may not bring much benefit
under the myopic feedback model, so are there other adaptive algorithms that could do much better?
Third, for the IC model with full-adoption feedback, because the feedback on different seed nodes
may be correlated, existing adaptivity gap results in [1, 4] cannot be applied even though it is adaptive
submodular. For this, our recent study in [5] provides partial answers on several special classes of
graphs such as trees and bipartite graphs, but the adaptivity gap on general graphs is still open. One
may also explore beyond the IC model, and study adaptive solutions for other models such as the
linear threshold model and the general threshold model [11].
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Appendix

We include the missing proofs in this appendix. For convenience, we restate the lemmas and theorems
that we prove here.

A Missing Proofs of Section 3.1, Adaptivity Upper Bound

Lemma 1. For any adaptive policy π, and t ≥ 1, we have

σt(π) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | ψs)] , and σt(W(π)) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | dom(ψs))] .

Proof. We first prove the equality on σt(π). Let V (π,Φ):i (resp. V (π,Φ)i) denote the first i nodes
(resp. the ith node) selected by policy π under realization Φ.

Then we have
k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | ψs)]

=

k−1∑
i=0

E
s∼Pπi

[
E

Φ1,··· ,Φt∼P

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)
| Φ1 ∼ ψs

]]

=

k−1∑
i=0

E
Φ2,··· ,Φt∼P

[
E

s∼Pπi

[
E

Φ1∼P

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)
| Φ1 ∼ ψs

]]]

=

k−1∑
i=0

E
Φ2,··· ,Φt∼P

[
E

Φ1∼P

[(
f t
(
V (π,Φ1):i ∪ V (π,Φ1)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ1):i,Φ

1, · · · ,Φt
))]]

= E
Φ2,··· ,Φt∼P

[
E

Φ1∼P

[
k−1∑
i=0

(
f t
(
V (π,Φ1):i ∪ V (π,Φ1)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ1):i,Φ

1, · · · ,Φt
))]]

= E
Φ2,··· ,Φt∼P

[
E

Φ1∼P

[
f t(V (π,Φ1),Φ1, · · · ,Φt)

]]
=σt(π)

The third equality above is by the law of total expectation, and notice that for any tree node s in T (π)
and any random realization Φ ∼ ψs, we have V (π,Φ):i = dom(ψs) and V (π,Φ)i+1 = π(ψs).

Next, we prove the equality on σt(W(π)).
k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | dom(ψs))]

=

k−1∑
i=0

E
s∼Pπi

[
E

Φ1,··· ,Φt∼P

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)]]

=

k−1∑
i=0

E
Φ1,··· ,Φt∼P

[
E

s∼Pπi

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)]]

=

k−1∑
i=0

E
Φ1,··· ,Φt∼P

[
E

Φ∼P

[
f t
(
V (π,Φ):i ∪ V (π,Φ)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ):i,Φ

1, · · · ,Φt
)]]

= E
Φ∼P

[
E

Φ1,··· ,Φt∼P

[
k−1∑
i=0

(
f t
(
V (π,Φ):i ∪ V (π,Φ)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ):i,Φ

1, · · · ,Φt
))]]

= E
Φ∼P

[
E

Φ1,··· ,Φt∼P

[
f t(V (π,Φ),Φ1, · · · ,Φt)

]]
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= E
Φ∼P

[
σt(V (π,Φ))

]
= σt(W(π)).

The third equality above is because the distribution of dom(ψs) and π(ψs) with s ∼ Pπi is exactly the
same as the distribution of V (π,Φ):i and V (π,Φ)i+1 with Φ ∼ P . Note that this Φ is independent
of Φ1, · · · ,Φt. The last equality is because the distribution of V (π,Φ) with Φ ∼ P is exactly
the distribution of the seed sets taken from the leaves of T (π), which exactly corresponds to the
random-walk non-adaptive policyW(π).

Lemma 2. Let S = dom(ψ1) and S+ = S ∪ {u} for any partial realization ψ1 and any u 6∈
dom(ψ1). Then we have

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (6)

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (7)

Proof. We first prove Inequality (6). To do so, we first expand the RHS of Eq. (6),

∆f2(u | S) = E
Φ2,Φ3∼P

[
f2
(
S+,Φ2,Φ3

)
− f2

(
S,Φ2,Φ3

)]
= E

Φ2,Φ3∼P

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
− f

(
S, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]
= E

Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
−

f
(
S, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
. (9)

The third equality above holds because Φ2
S ,Φ

3
S ,Φ

2
u,Φ

3
u,Φ

2
V \S+ ,Φ3

V \S+ are mutually independent,
and Φ3

V \S+ does not appear inside the expectation term. Next, we expand the LHS of Eq. (6),

LHS of Eq. (6)

= E
Φ1
S ,Φ

2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u,Φ

1
V \S+)

)
| Φ1 ∼ ψ1

]]]
= E

Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u,Φ

1
V \S+)

)]]]
.

= E
Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ3

u,Φ
2
V \S+)

)
− f

(
S, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u,Φ

2
V \S+)

)]]]
.

= E
Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)

12



− f
(
S, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
. (10)

The first equality above holds because all these random variables are independent. The second
equality above holds because Φ1

S = ψ1 implied by Φ1 ∼ ψ1. In the third equality, we replace Φ1
V \S+

with Φ2
V \S+ and replace Φ2

u with Φ3
u, because they follow the same probability distributions and are

independent to the other distributions. In the last equality, we replace Φ1
u with Φ2

u.

Comparing Eq. (9) and Eq. (10), we know that it suffices to prove that for any fixed partial realizations
φ2
S , φ

3
S , φ

2
u, φ

3
u, φ

2
V \S ,

f
(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
− f

(
S, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
≤ f

(
S+, (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
− f

(
S, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
. (11)

Consider any node v ∈ Γ(S+, (ψ1 ∪φ2
S ∪φ3

S , φ
2
u ∪φ3

u, φ
2
V \S+))\Γ(S, (ψ1 ∪φ2

S ∪φ3
S , φ

2
u, φ

2
V \S+)),

we have the following observations: (1) under the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+) (or

equivalently its live-edge graph), node v cannot be reached from nodes in S; and (2) under the
realization (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+) (or equivalently its live-edge graph), node v can be

reached via a path P originated from node u, and P does not contain any node in S.

Now, we are going to prove that v ∈ Γ(S+, (φ2
S∪φ3

S , φ
2
u∪φ3

u, φ
2
V \S+))\Γ(S, (φ2

S∪φ3
S , φ

2
u, φ

2
V \S+)).

Since the path P does not contain any node in S, we know that path P also exists under the
realization (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+), i.e., node v can be reached from node u under realization

(φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+). Moreover, we know that the realization ((φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+) has less

live edges than the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+), so node v can not be reached from set S

under the realization (φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+) . As a result, we have proved

Γ
(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
\Γ
(
S, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
⊆ Γ

(
S+, (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
\Γ
(
S, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
. (12)

This proves Eq. (11) and thus concludes the proof of Inequality (6). Note that the above proof on
Eq. (11) resembles the proof of submodularity of influence utility function f on a live-edge graph,
but Eq. (11) is a bit more complicated because it is on different live-edge graphs.

Next we prove the Inequality (7). Again, we first expand the RHS of Eq. (7).

∆f2(u | S) = E
Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
−f
(
S, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
≥ E

Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
−f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
. (13)

The inequality above is by the monotonicity of f(S, φ) on S. Next, we expand the LHS of Eq. (7).

LHS of Eq. (7)

= E
Φ1
S ,Φ

2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u,Φ

3
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]]]
= E

Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u,Φ

3
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)

13



− f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u,Φ
1
V \S+)

)]]]
.

= E
Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u ∪ Φ3
u,Φ

2
V \S+)

)
− f

(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u,Φ
2
V \S+)

)]]]
. (14)

The last equality holds by replacing Φ1
V \S+ with Φ2

V \S+ , because both have the same distributions
and are independent from the other distributions. Similar to the proof of Eq. (6), comparing Eq. (13)
and Eq. (14), it suffices to prove that for fixed partial realizations φ2

S , φ
3
S , φ

1
u, φ

2
u, φ

3
u and φ2

V \S+ ,

f
(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

1
u ∪ φ2

u ∪ φ3
u, φ

2
V \S+)

)
− f

(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

1
u ∪ φ2

u, φ
2
V \S+)

)
≤f
(
S+, (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
− f

(
S+, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
. (15)

Consider any node v ∈ Γ(S+, (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u ∪ φ3
u, φ

2
V \S+))\Γ(S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

1
u ∪

φ2
u, φ

2
V \S+)), we have the following observations: (1) Node v cannot be reached from any node in

set S+ under the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u, φ
2
V \S+); and (2) node v can be reached via a

simple path P originated from node u under the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u ∪ φ3
u, φ

2
V \S+),

and P does not contain any node in S and any edge in φ1
u ∪ φ2

u.

Now, we prove that v ∈ Γ(S+, (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+))\Γ(S+, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)). Since

path P does not contain any node in S and any edge in φ1
u, we know that path P also exists

under realization (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+), i.e., node v can be reached from node u under

realization (φ2
S∪φ3

S , φ
2
u∪φ3

u, φ
2
V \S+). Moreover, we know that the realization (φ2

S∪φ3
S , φ

2
u, φ

2
V \S+)

has less live edges than the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u, φ
2
V \S+), thus node v cannot be

reached from the set S+ under realization (φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+). Thus we can conclude that

v ∈ Γ(S+, (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+))\Γ(S+, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)), this leads to Eq. (15) and

concludes the proof of Inequality (7).

Lemma 3. For any partial realization ψ1 and node u /∈ dom(ψ1), we have

∆f3(u | ψ1) ≤ 2∆f2(u | dom(ψ1)). (8)

Proof. Again, for ease of notation, we set S = dom(ψ1) and S+ = dom(ψ1) ∪ {u}, then we have

∆f3(u | ψ1) = E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
−f
(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
= E

Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]
+ E

Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u|S) + ∆f2(u|S) = 2∆f2(u|dom(ψ1)). (16)

The inequality above is a direct consequence of Lemmas 2.

Lemma 4. For any t ≥ 1 and any subset S ⊆ V , σt(S) ≤ t · σ(S).

Proof. We have

σt(S) = E
Φ1,··· ,Φt∼P

[
f t(S,Φ1, · · · ,Φt)

]
= E

Φ1,··· ,Φt∼P

[
f
(
S, (∪i∈[t]Φ

i
S ,Φ

1
V \S)

)]
14



= E
Φ1
V \S∼PV \S

[
E

Φ1
S ,··· ,ΦtS∼PS

[
f
(
S, (∪i∈[t]Φ

i
S ,Φ

1
V \S)

)]]
. (17)

We want to show that for any fixed φ1
V \S ,

E
Φ1
S ,··· ,ΦtS∼PS

[
f
(
S, (∪i∈[t]Φ

i
S , φ

1
V \S)

)]
≤
∑
i∈[t]

E
ΦiS

[
f
(
S, (ΦiS , φ

1
V \S)

)]
. (18)

Once Eq.(18) is shown, we can combine it with Eq.(17) to obtain

σt(S) ≤ E
Φ1
V \S∼P

∑
i∈[t]

E
ΦiS

[
f
(
S, (ΦiS ,Φ

1
V \S)

)]
=
∑
i∈[t]

E
Φ1
V \S∼P

[
E
ΦiS

[
f
(
S, (ΦiS ,Φ

1
V \S)

)]]

=
∑
i∈[t]

E
Φ1∼P

[
f(S,Φ1)

]
= t · σ(S).

Thus the lemma holds. Now we prove Inequality (18). To do so, we fix partial realizations φ1
S , · · · , φtS .

If node v ∈ Γ(S,∪i∈[t]φ
i
S , φ

1
V \S)), then we conclude that under the realization (∪i∈[t]φ

i
S , φ

1
V \S),

node v can be reached via a path P originated from some node u ∈ S, and only the starting node of
P is in S and all remaining nodes in P are not from S. Suppose in path P , the edge leaving node
u is contained in edge set φiu for some i ∈ [t]. Then we conclude that node v ∈ Γ(S, (φiS , φ

1
V \S)),

since the path P exists under the realization (φiS , φ
1
V \S). This shows that Γ(S, (∪i∈[t]φ

i
S , φ

1
V \S)) ⊆

∪i∈[t]Γ(S, (φiS , φ
1
V \S)), which is sufficient to prove Inequality (18).

B Missing Proof of Section 3.2, Adaptivity Lower Bound

Theorem 2. Under the IC model with myopic feedback, the adaptivity gap for the influence maxi-
mization problem is at least e/(e− 1).

Proof. Consider the following construction for the influence graph: the influence graph G =

(L,R,E, p) is a bipartite graph with |L| =
(
m3

m2

)
and |R| = m3. All edges (u, v) ∈ E are di-

rected from the left part L to the right part R, associated with probability 1/m. More specifically,
for any subset X ⊆ R with size m2, there is a node uX ∈ L such that the outgoing edges of uX are
exactly (uX , v) for every v ∈ X . Thus the out-degree of every vertex in L is m2.

We first describe the main idea of the proof. The budget for the IM problem ism2, i.e., we are allowed
to select no more than m2 seeds, and we would consider m to be a very large number here. Intuitively,
the expected number of nodes in R that is reachable for a single node u ∈ L is m2 · (1/m) = m, and
the influence spread is concentrated on its expected value for large m. In an adaptive solution, we
could always make the expected marginal gain for the node we select equals the expected influence
spread of a single node in L, by selecting nodes in L such that none of its out-neighbors has been
reached so far, unless there are too few nodes in R that are not reachable. Since m2 ·m = m3, the
seeds we select would reach almost all but except o(m3) nodes in R, thus the influence spread of the
adaptive policy is roughly m3. While for a non-adaptive policy, it can select at most m2 nodes from
L and for each node in R, on average, it is connected with at most m2 ·m2/m3 = m seeds in L, we
can easily prove that it is indeed the best allocation of seeds in L, and the expected probability for
nodes in R to be reached is 1− (1− 1/m)m ≈ 1− 1/e. Moreover, since we are allowed to select
no more than m2 seeds in R and they would not reach any other node, the contribution of this part
is negligible. Thus the expected influence spread for the optimal non-adaptive solution would not
exceed (1− 1/e)m3 and the adaptivity gap is e/(e− 1) on this graph.

The following two claims would make the above intuition formal.

Claim 2. For any ε > 0, when m is large enough, we have OPTA(G,m2) ≥ (1− ε)m3.
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Proof. For any fixed ε > 0, we would take m such that m ≥ 48/ε2 logm. Consider the following
adaptive policy π, which only selects nodes from the left part L. Moreover, for every node u ∈ L
selected by π, at the time of selection, none of u’s out-neighbors inR has been reached yet from nodes
selected by π so far (this condition can be verified by an adaptive policy with myopic feedback). When
there does not exist such node or the size of the seed set already equals to the budget, π would stop. For
i ∈ {1, · · · , (1− ε/2)m2}, let Ei denote the event that after selecting the i-th seed in L, the marginal
gain of the influence spread is between [(1− ε/2)m+ 1, (1 + ε/2)m+ 1]. We would give a lower
bound on the conditional probability Pr[Ei | E1, · · · , Ei−1]. Under the condition ∪i−1

j=1Ej , the current
influence spread on the right partR is less than (1+ε/2)m·(1−ε/2)m2 = (1−ε2/4)m3 < m3−m2,
thus policy π would not stop by now. Thus the marginal gain is the summation of m2 independent
binomial variables with mean m. By the Chernoff bound we have

Pr[Ei | E1, · · · , Ei−1] ≥ 1− exp(−ε2m/12) ≥ 1− 1

m3
. (19)

Consequently,

Pr[∪ti=1Ei] = Πt
i=1 Pr[Ei | E1, · · · , Ei−1] ≥ (1− 1

m3
)m

2

≥ 1− 1

m3
·m2 = 1− 1

m
. (20)

Thus the expected influence is greater than (1− 1
m ) · (1− ε/2)m · (1− ε/2)m2 ≥ (1− ε)m3.

Claim 3. OPTN (G,m2) ≤ (1− (1− 1/m)m)m3 + 2m2.

Proof. Let SL (resp. SR) denote the seed set selected by the optimal non-adaptive policy from the
left part L (resp. right part R). For any node ui ∈ R where i ∈ [m3], let xi denote the number
of ui’s in-neighbors in the seed set SL. Since the out-degree for each node in SL is m2, we have∑
i∈[m3] xi ≤ |SL| ·m2 and the average number of in-neighbors is at most |SL| ·m2/m3 = |SL|/m.

Furthermore, we can calculate the influence spread of SL,

σ(SL) = |SL|+
∑
i∈[m3]

Pr[ui is reachable]

= |SL|+
∑
i∈[m3]

(
1−

(
1− 1

m

)xi)

≤ |SL|+m3 ·

(
1−

(
1− 1

m

)|SL|/m)

≤ m2 +m3 ·
(

1−
(

1− 1

m

)m)
. (21)

The first inequality holds because function g(x) = (1− (1− 1
m )x) is concave. The last inequality

holds because |SL| ≤ m2. Now we have

OPTN (G,m2) = max
SL⊆L,SR⊆R,
|SL|+|SR|≤m2

σ(SL ∪ SR) ≤ max
SL⊆L,
|SL|≤m2

σ(SL) + max
SR⊆L,
|SR|≤m2

σ(SR)

≤ m2 +m3 ·
(

1−
(

1− 1

m

)m)
+m2 =

(
1−

(
1− 1

m

)m)
·m3 + 2m2.

(22)
This concludes the proof.

Combining Claims 2 and 3, we can conclude that for any ε > 0, there exists large enough m such
that OPTA(G,m2)/OPTN (G,m2) ≥ e/(e− 1)− ε. Letting ε→ 0, we obtain the theorem.

C Missing Proofs in Section 4

For the proofs in this section, let GreedyN (G, k) (resp. GreedyA(G, k)) denote the influence spread
for the non-adaptive greedy algorithm (resp. adaptive influence spread for the adaptive greedy
algorithm), on the influence graph G with a budget k.

The proof of Theorem 3 is complete once we prove the following lemma.

16



Lemma 5. Adaptive greedy is (1− 1/e) approximate to the optimal non-adaptive policy.

Proof. For a fixed influence graph G, let S (|S| = k) denote the seed set selected by the optimal
non-adaptive algorithm, where si denotes the ith element in set S. We use A to denote adaptive
greedy and for any t ∈ {0, 1, · · · , k}, we use U(t) to denote the expected adaptive influence spread
of nodes selected by A in the first i rounds, i.e.,

U(t) := E
Φ∼P

[f (V (A,Φ):t,Φ)] , (23)

From the above definition, we can see that U(0) = 0 and U(k) = σ(A). By Lemma 1, we have

U(t) =

t−1∑
i=0

E
s∼PAi

[∆f (A(ψs) | ψs)] . (24)

Now, for any t ∈ {0, 1, · · · , k − 1}

U(t+ 1)− U(t) = E
s∼PAt

[∆f (A(ψs) | ψs)]

≥ 1

k

k∑
i=1

E
s∼PAt

[∆f (si | ψs)]

=
1

k

k∑
i=1

E
s∼PAt

[
E

Φ∼P
[f (dom(ψs) ∪ {si},Φ)− f (dom(ψs),Φ) |Φ ∼ ψs]

]

=
1

k
E

s∼PAt

[
E

Φ∼P

[
k∑
i=1

(f (dom(ψs) ∪ {si},Φ)− f (dom(ψs),Φ)) |Φ ∼ ψs

]]

≥ 1

k
E

s∼PAt

[
E

Φ∼P
[f(dom(ψs) ∪ S,Φ)− f(dom(ψs),Φ)|Φ ∼ ψs]

]
≥ 1

k
E

s∼PAt

[
E

Φ∼P
[f(S,Φ)− f(dom(ψs),Φ)|Φ ∼ ψs]

]
=

1

k
(σ(S)− U(t)) . (25)

The first inequality holds since adaptive greedy A chooses the node that maximizes the expected
marginal gain, i.e., for any partial realization ψ, ∆f (A(ψ) | ψ) ≥ ∆f (si | ψ) for any i ∈ [k].
The second inequality is because the influence utility function f(·,Φ) is submodular under a fixed
realization Φ. The third inequality holds because the influence utility function f(·,Φ) is monotone
under a fixed realization Φ. The last equality utilizes the law of total expectation.

Now via standard argument, Eq. (25) implies that

GreedyA(G, k) = U(k) ≥

(
1−

(
1− 1

k

)k)
σ(S) =

(
1−

(
1− 1

k

)k)
OPTN (G, k)

≥
(

1− 1

e

)
·OPTN (G, k). (26)

This concludes the proof.

We now proceed to prove Theorem 4. Lemma 6 and Lemma 7 together would conclude the proof of
Theorem 4. Thus, in the remaining part, we prove these two lemmas. We first prove Lemma 6 by
presenting an example showing that the non-adaptive greedy achieves at most e2+1

(e+1)2 approximation
ratio.

Lemma 6. Non-adaptive greedy algorithm has ratio at most e2+1
(e+1)2 with respect to the optimal

adaptive solution, in the IC model with myopic feedback.
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Proof. Consider the following influence graph G(V,E, p), where V = V1

⋃
V2

⋃
V3, |V1| = d− 1,

|V2| = d and |V3| = 2d. We would use vij to denote the jth node in Vi. Nodes in V1 and V2 have
unit weight while nodes in V3 have weight w. Note that we could achieve the weight of w by simply
replacing each node with a chain of w nodes with edge probability 1, so that as long as the head of
the chain is activated, the whole chain is activated. There are directed edges from V1 to V2 and from
V2 to V3. More specifically, for any j ∈ [d], l ∈ [d − 1], there is a direct edge from the node v1

l to
the node v2

j , associated with probability 1/d. The node v2
j is connected to node v3

2j−1 and v3
2j , with

probability e/(e+ 1). The budget k = e+3
e+1d. We first consider the optimal adaptive solution and we

observe that the optimal adaptive strategy can reach almost all nodes in V3.

Claim 4. For any ε > 0, if we set d ≥ 2 log(2/ε)/ε2, then we have OPTA(G, k) ≥ (1− ε) · 2dw

Proof. Consider the following adaptive strategy: we first select all d nodes in V2 and observe
which nodes in V3 have not yet been reached, this can be done with myopic feedback. We
would then use the left budget to select nodes in V3 that have not been reached. Let Xj =
I{v3

j not activated by seed nodes in V2} for j ∈ [2d], where I{} is the indicator function. Xj’s
are independent Bernoulli random variables with E[Xj ] = 1

e+1 . Then by the Chernoff bound,

Pr[X1 + · · ·+X2d >
2

e+ 1
d+ εd] ≤ e−

εd·ε(e+1)/2
3 ≤ e−dε

2/2 ≤ ε

2
. (27)

Consequently, the expected number of nodes in V3 that have not been activated by seeds in V2 is at
most ε2 · 2d+ (1− ε

2 ) · ( 2
e+1d+ εd) ≤ 2

e+1d+ 2εd. But the adaptive greedy algorithm still has a
budget of 2

e+1d to directly activate nodes in V3, and thus the expected final number of non-activated
nodes in V3 is at most 2εd. Thus we conclude the proof.

Next, we consider the greedy algorithm and have the following conclusion.

Claim 5. The non-adaptive greedy algorithm would first select all d− 1 nodes in V1, and then select
2
e+1d+ 1 nodes in V2. Consequently, we have that

GreedyN (G, k) = (d− 1) +

[(
2

e+ 1
d+ 1

)
+

(
1−

(
1− 1

d

)d−1
)
·
(
e− 1

e+ 1
d− 1

)]
· (1 +

2e

e+ 1
w),

(28)

when d,w →∞, we know that GreedyN (G,k)
dw → 2e2+2

(e+1)2 .

Proof. We first prove that greedy would first select all d− 1 nodes in V1. Consider that the greedy
algorithm has already selected j nodes in V1 as seeds, with j = 0, 1, . . . , d− 1. Let pj denote the
probability that a node in V2 is activated in this case. We know that pj = 1− (1− 1

d )j . At this point,
we know that the marginal gain for selecting the (j + 1)-th node in V1 is

M1 = 1 + d · 1

d
(1− pj) · (1 +

2e

e+ 1
w) = 1 + (1− pj)(1 +

2e

e+ 1
w). (29)

In contrast, the marginal gain for selecting the first node in V2 as a seed is

M2 = (1− pj)(1 +
2e

e+ 1
w), (30)

and the marginal gain for selecting the first node in V3 as a seed is

M3 = pj(1−
e

e+ 1
)w + (1− pj)w =

(
pj ·

1

e+ 1
+ (1− pj)

)
w. (31)

Therefore M1 > M2. Comparing M1 with M3, we use the fact that for all j < d, pj ≤ 1− 1/e, and
thus

M1 −M3 = 1 + (1− pj)(1 +
2e

e+ 1
w)−

(
pj ·

1

e+ 1
+ (1− pj)

)
w
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> (1− pj)
2e

e+ 1
w −

(
pj ·

1

e+ 1
+ (1− pj)

)
w

=

(
e− 1

e+ 1
− e

e+ 1
pj

)
w

≥ 0. (32)

Thus we conclude that greedy would select all (d− 1) nodes in V1 first. Afterwards, we compare the
marginal gain of selecting a node in V2 versus selecting a node in V3. Notice that if we select a node
in V3, we would definitely not select a node whose in-neighbor in V2 is already selected as a seed,
because it only decreases the marginal. Therefore, the marginal gains of selecting a node in V2 or a
node in V3 are still given us M2 and M3. Thus, the difference of marginal gain is

M2 −M3 = (1− pd−1)(1 +
2e

e+ 1
w)−

(
pd−1 ·

1

e+ 1
+ (1− pd−1)

)
w

> (1− pd−1)
2e

e+ 1
w −

(
pd−1 ·

1

e+ 1
+ (1− pd−1)

)
w

=

(
e− 1

e+ 1
− e

e+ 1
pd−1

)
w

=

(
e− 1

e+ 1
− e

e+ 1

(
1−

(
1− 1

d

)d−1
))

w

≥ 0. (33)

Thus the marginal gain for selecting nodes in V2 is greater than nodes in V3 and greedy would select
2
e+1d+ 1 nodes in V2. All in all, the expected utility for greedy is

GreedyN (G, k) = (d− 1) +

[(
2

e+ 1
d+ 1

)
+

(
1−

(
1− 1

d

)d−1
)
·
(
e− 1

e+ 1
d− 1

)]
· (1 +

2e

e+ 1
w).

(34)

and when d,w →∞, we know that GreedyN (G,k)
dw → 2e2+2

(e+1)2 .

Combining Claim 5 and Claim 4, we conclude that when d,w →∞,

GreedyN (G, k)

OPTA(G)
→ e2 + 1

(e+ 1)2
≈ 0.606. (35)

We then assert that the approximation ratio of the non-adaptive greedy algorithm is no worse than
that of the adaptive greedy algorithm.
Lemma 7. For every influence graph G and budget k, the approximation ratio for the non-adaptive
greedy algorithm with (G, k) is the same as the infimum of the approximation ratios of adaptive
greedy over a family of graphs with the same budget k.

Proof. Fix an influence graph G(V,E, p), and any k ∈ [n]. We use c to denote the approximation
ratio of greedy, i.e.,

c =
GreedyN (G, k)

OPTA(G, k)
.

We construct a family of graph G(w) such that the approximation ratio for adaptive greedy is
approaching to c when w →∞. The influence graph G(w) consists of two parts, G1 and G2. The
graph G1 has same nodes as G, but it does not contain any edges, while the graph G2 is exactly the
same as G, except that the weight for each node is multiplied by a factor of w. Notice that we can
always assign integral weights w to a node by connecting it to a directed chain of length w − 1. For
any node v ∈ G1, v has exactly one outgoing edge, connecting to the corresponding node in G2, the
edge will be live with probability 1.
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Now, consider adaptive greedy on G(w) with the same budget. Our first observation is that adaptive
greedy will never choose nodes from G2. This is because if the corresponding node in G1 has not
been chosen, the marginal gain of choosing the node in G1 is always larger by 1, and if it has already
been chosen, the marginal gain to choose the node in G2 is 0. Consequently, the adaptive greedy
algorithm would always choose nodes in G1. However, because myopic feedback only provides one
step feedback after seed selection, selecting a node in G1 would only provide the activation of its
corresponding node in G2 as the feedback, but this is already known for sure, and thus we do not
get any useful feedback under myopic feedback model on this graph. Therefore, the adaptive greedy
algorithm in this case behaves exactly the same as the non-adaptive greedy algorithm on the influence
graph G, and the performance for adaptive greedy is

GreedyA(G(w), k) = w ·GreedyN (G, k) + k ≤ (w + 1) ·GreedyN (G, k). (36)

Consider the optimal adaptive policy, a feasible adaptive policy is to ignore nodes in graph G1 and
perform the optimal adaptive policy on graph G2, we have

OPTA(G(w), k) ≥ OPTA(G2(w), k) = w ·OPTA(G, k). (37)

By Eq. (36) and Eq. (37), the approximation ratio of adaptive greedy can be bounded as

GreedyA(G(t), k)

OPTA(G(t), k)
≤ (w + 1) ·GreedyN (G, k))

w ·OPTA(G, k)
=
w + 1

w
· c→ c, when w →∞. (38)

This concludes the proof.
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