
How Should Compilers Explain Problems to Developers?
Titus Barik

Microsoft

Redmond, WA, USA

titus.barik@microsoft.com

Denae Ford

NC State University

Raleigh, NC, USA

dford3@ncsu.edu

Emerson Murphy-Hill

NC State University

Raleigh, NC, USA

emerson@csc.ncsu.edu

Chris Parnin

NC State University

Raleigh, NC, USA

cjparnin@ncsu.edu

ABSTRACT
Compilers primarily give feedback about problems to developers

through the use of error messages. Unfortunately, developers rou-

tinely find these messages to be confusing and unhelpful. In this

paper, we postulate that because error messages present poor ex-

planations, theories of explanation—such as Toulmin’s model of

argument—can be applied to improve their quality. To understand

how compilers should present explanations to developers, we con-

ducted a comparative evaluation with 68 professional software de-

velopers and an empirical study of compiler error messages found

in Stack Overflow questions across seven different programming

languages.

Our findings suggest that, given a pair of error messages, devel-

opers significantly prefer the error message that employs proper

argument structure over a deficient argument structure when nei-

ther offers a resolution—but will accept a deficient argument struc-

ture if it provides a resolution to the problem. Human-authored

explanations on Stack Overflow converge to one of the three argu-

ment structures: those that provide a resolution to the error, simple

arguments, and extended arguments that provide additional evi-

dence for the problem. Finally, we contribute three practical design

principles to inform the design and evaluation of compiler error

messages.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI; •
Software and its engineering→ Integrated and visual devel-
opment environments;

KEYWORDS
communication theory, compilers, debugging, error messages, ex-

planations, Stack Overflow

ACM Reference Format:
Titus Barik, Denae Ford, EmersonMurphy-Hill, and Chris Parnin. 2018. How

Should Compilers Explain Problems to Developers?. In Proceedings of the
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE ’18), November 4–
9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3236024.3236040

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00

https://doi.org/10.1145/3236024.3236040

1 INTRODUCTION
Compilers primarily give feedback about problems to developers

through the use of error messages.
1
Despite the intended utility of

error messages, researchers and practitioners alike have described

their output as “cryptic” [44], “difficult to resolve” [44], “not very

helpful” [48], “appalling” [5], “unnatural” [6], and “basically impen-

etrable” [40].

While poor error messages are paralyzing for novices, even expe-

rienced developers have substantial difficulties when comprehend-

ing and resolving them. A study conducted at Google found that

nearly 30% of builds fail due to a compiler error, and that the median

resolution time for each error is 12 minutes [38]. Surprisingly, the

costly errors that developers make are rather mundane, relating to

basic issues such as dependencies, type mismatches, syntax, and

semantic errors. Barik et al. [2] conducted an eye-tracking study

with developers and found that they spent up to 25% of their task

time on reading error messages. In addition, developers in a study

by Johnson et al. [19] reported that error messages were often not

useful because they did not adequately explain the problem.

It isn’t difficult to come up with instances of poor error message

explanations, even for routine problems. Consider the following

Java code snippet:

2 void m() {
3 final int x;
4 while (true) {
5 x = read();
6 }
7 }

and the resulting error message from the OpenJDK compiler:

F.java:5: error: variable x might be assigned in loop
x = read();
^

1 error

Although the location of the message is reasonable, intuitively,

this is a poor explanation. The problem isn’t just that the variable x
is being assigned in a loop; this particular variable also happens to

be marked final (Line 3). A final variable can only be assigned

once. What if we had received the following error message instead?

F.java:5: error: The blank final variable "x" cannot
be assigned within the body of a loop that may execute
more than once.

x = read();
^

This second message gives a better explanation, and developers

in our study preferred it significantly over the first (Section 5.1).

1
Modern compilers allow developers to turnwarning messages into error messages, for

example, by applying a -Werror flag. Thus, in this paper we treat warning messages

as identical to error messages.

https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1145/3236024.3236040

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin

Specifically, the second message not only indicates that there is

a problem (The blank variable "x" cannot be assigned)
but also supports this claim by offering evidence, or grounds, that

clarify why this is a problem—because "x" cannot be assigned
within the body of a loop that may execute more than
once. That is to say, the second message has a better explanatory

structure than the first. This message also delivers more specific

content. In contrast to the relatively vague variable x in the first

message, it is immediately apparent in the second message that x
is a blank final, without being too verbose.

If compiler error messages are framed as explanations, then it

follows that we can apply theories of explanation to understand
why some error messages are more effective than others. To that end,

this paper applies Toulmin’s model of argumentation (Section 2)—

a theory for the structure and content of messages in everyday

discourse—to the design and evaluation of compiler error messages.

To understand if developers find explanatory error messages

helpful, we conducted a comparative study between two compilers

for the same programming language, and had experienced devel-

opers within a large software company indicate which message

they would prefer in their compiler. Then, to understand why some

error messages produced by compilers are less helpful than others,

we conducted an empirical study through a popular question-and-

answer site, Stack Overflow.
2
From Stack Overflow, we extracted

210 question-answer pairs posted by developers about compiler

error messages, across seven different programming languages. For

every question-answer pair, we qualitatively coded the compiler

error message found within the question, and the accepted human-

authored answer, through the theoretical model of argumentation.

We characterized these question-answer pairs both in terms of the

structure and content of their explanation. From this analysis, we

can better understand the structure and content that compilers

should use in explanations to developers.

The results of our studies provide support for presenting com-

piler error messages to developers as explanations. We find that:

1) developers, when shown a pair of error messages, prefer the

error message with a proper argument structure over the message

with a deficient argument structure, but will prefer the deficient

argument if it provides a resolution to the problem (Section 5.1); and

2) human-authored explanations converge to argument structures

that offer a simple resolution, or to structures with proper argu-

ments (Section 5.2). They do so using a catalog of content within

the structure (Section 5.3). From these results, we contribute three

design principles for compiler authors to inform the design and

evaluation of error messages (Section 8).

2 BACKGROUND ON EXPLANATIONS
Arguments are a form of justification-explanation in which reasons

are used as evidence to support a conclusion [47]. Argumenta-

tion theory provides a lens through which we can evaluate the

effectiveness of arguments [33, 46]. Within argumentation theory,

Toulmin’s model of argument is one such informal reasoning model.

The model characterizes everyday arguments, or how arguments

occur in practice through ordinary human dialogue [43]. Specif-

ically, Toulmin’s model of argument is a macrostructure model.

2
https://www.stackoverflow.com

Grounds Claim

Resolution

Warrant

(a) Simple argument layout

Grounds ClaimQualifier

Rebuttal

Resolution

Warrant

Backing

(b) Extended argument layout

Figure 1: Toulmin’s model of argument for (a) simple argu-
ment layout and (b) extended argument layout. Extended ar-
guments add a rebuttal, backing, or qualifier to a simple ar-
gument.

Macrostructure examines how components combine to support

the larger argument; within this macrostructure, microstructure
examines the phrasing and composition of the “sentence-level”

statements. For clarity, we will refer to macrostructure simply as

structure (or layout) and microstructure as content.
In a simple argument layout (Figure 1a), the first component is a

claim—the assertion, view or judgment to be justified; resolutions

are also a form of claim, though resolutions are optional in an argu-

ment layout. The second component, grounds, are data that provide
evidence for this claim. The third component is a justification or

warrant, which acts as a bridge between the grounds and the claim

(for example, “[claim] because [ground]”). Together, the claim (with

optional resolution), the grounds, and the warrant provide a simple

argument layout. The simple argument layout is the minimal proper
argument structure. Arguments that do not have at least these three

components are considered to be deficient. Specific to error mes-

sages are claim-resolution: the first claim states the problem, and

the second claim states the resolution or fix. Although these are

not proper argument structures, they are nevertheless useful.

Toulmin also devised an extended model of argument, to ac-

knowledge the possibility of needing to infuse additional compo-

nents within an argument (Figure 1b). In addition to the simple

argument components, the extended argument layout offers a re-
buttal when an exception has to be inserted into the argument. The

claim may also not be absolute: in this case, a qualifier component

can temper the claim. Finally, a warrant may not be immediately

accepted by the other party, in which case additional backing is

https://www.stackoverflow.com

How Should Compilers Explain Problems to Developers? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Error:(31, 58) java: incompatible types
(C)

:

bad return type in lambda expression
(bc W, G)

java.lang.String cannot be converted to void
(B)

Figure 2: A compiler error message from Java, annotated
with argumentation theory components. This particular
message contains all of the simple argument components to
satisfy Toulmin’s model: (C) = Claim, (bc W) = implied “be-
cause” Warrant, (G) = Grounds. It also includes an extended
argument component, (B) = Backing.

needed to support the warrant. If any of these additional compo-

nents are used in the argument, the argument becomes an extended

argument. An example of how a compiler error message is mapped

to an argument structure is illustrated in Figure 2; in this example,

the error message is an extended argument because it has a backing.

3 METHODOLOGY
3.1 Research Questions
In this study, we investigate the following research questions and

offer the motivation for each:

RQ1: Are compiler errors presented as explanations help-
ful to developers? If explanatory compiler error messages are

useful to developers, then given a pair of messages where one of

the messages provides a proper argument and the other message

provides a deficient argument, developers should prefer the mes-

sage with the proper argument. If this is not the case for the pair,

then perhaps developers prefer the error message presentation

because of other factors, such as the verbosity of the error message.

RQ2: How is the structure of explanations in Stack Over-
flowdifferent from compiler errormessages? If compiler error

messages and Stack Overflow accepted answers use significantly

different argument layout components, this would suggest that

structure differences in argument play an important role in the con-

fusion developers facewith compiler errors.While some approaches

to improving compiler error messages focus on the content (for

example, “confusing wording” in the messages [19, 32]), structure

differences emphasize how components combine to support the

larger argument rather than the statements themselves. Content

improvements may be ineffectual without a supporting structure.

Further, the answer to this question helps us to understand the

types of argument layouts that are used in accepted answers. In

other words, toolsmiths can use the design space of argument layout

to model and structure automated compiler error messages for

developers. Importantly, the argument layout space can also be

used as a means to evaluate existing error messages, and to identify

potential gaps in argument components for these messages.

RQ3: How is the content of explanations in Stack Over-
flow different from compiler error messages? Once the argu-
ment layouts are identified, learning how the components within

these layouts are instantiated provide content details for what infor-
mation developers find useful within each component. For example,

one way to instantiate backing for a warrant might be to provide

a link to external documentation—and if we find that accepted

Table 1: OpenJDK and Jikes Error Message Descriptions

Tag Compiler Error Message

E1 OpenJDK Variable x might be assigned in loop.

Jikes The blank final variable "x" cannot
be assigned within the body of a loop
that may execute more than once.

E2 OpenJDK cannot find symbol
symbol: variable varnam
location: class Foo

Jikes No field named "varnam" was found
in type "Foo". However, there
is an accessible field "varname"
whose name closely matches the name
"varnam".

E3 OpenJDK static method should be qualified by
type name, Foo, instead of by an
expression.

Jikes Invoking the class method "f" via
an instance is discouraged because
the method invoked will be the one
in the variable’s declared type, not
the instance’s dynamic type.

E4 OpenJDK method remove in class A.B cannot be
applied to given types
required: no arguments
found: int
reason: actual and formal argument
lists differ in length

Jikes The method "void remove(int x);"
contained in the enclosing type "A"
is a perfect match for this method
call. However, it is not visible in
this nested class because a method
with the same name in an intervening
class is hiding it.

E5 OpenJDK Illegal static declaration in inner
class A.B. Modifier ’static’ is
only allowed in constant variable
declarations.

Jikes This static variable declaration is
invalid, because it is not final, but
is enclosed in an inner class, "B".

answers do so, toolsmiths may also consider incorporating such

information in the presentation of their compiler error messages.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin

3.2 Phase I: Study Design for Comparative
Evaluation

To answer RQ1, we asked professional software developers to indi-

cate their preference between corresponding compiler error mes-

sages that explained the same problem, but were produced by dif-

ferent compilers.

Compiler selection rationale. We needed to compare two

compilers which produced different error messages for the same

problem in the code, preferably where one compiler produced er-

ror messages with better explanatory structure than the other. We

selected the Jikes and OpenJDK compilers for this purpose. Jikes

is a Java compiler created by IBM for professional use, with a pri-

mary design goal of high-quality explanations produced by the

compiler [8]. Though now discontinued, Jikes has been lauded by

the developer community for giving “better error messages than

the JDK compiler” [10].

Task selection. To select candidate error messages, the first

author wrote 49 source code listings that induced an error message

in both Jikes and OpenJDK. Although Jikes has 293 possible com-

piler errors, it is not possible to map all errors directly to OpenJDK

because the compilers are not isomorphic. That is, source code

accepted by one compiler may be rejected by the other.

From this set, the first author examined error messages produced

by Jikes and identified those which contained argument structure.

To determine if an error message contained any elements of argu-

ment structure, the first author tagged each message using labels

from Toulmin’s model of argument: claim (and resolution), grounds,

warrant, qualifier, rebuttal, and backing. We found 30 error mes-

sages which used at least a simple argument in Jikes. We then

examined the corresponding OpenJDK messages and found only 7

error messages used simple arguments.

To keep the study brief, we deliberately selected 5 OpenJDK

and Jikes compiler error messages (Table 1) that address the same

problem, but differ in argument structure. For each pair of error

messages, we consulted with two compiler experts to form a hy-

pothesis on how differences in argument structure would influence

the results:

E1 Deficient argument vs. simple argument. Both OpenJDK and

Jikes make a claim that the variable might be assigned in a

loop. But Jikes completes a simple argument by presenting

a ground for why this problem is actually a problem: if the

loop executes more than once.

E2 Deficient argument vs. extended argument.Again, OpenJDK only

presents a claim. Jikes presents a ground (there is an
accessible field "varname"), which is qualified through

a rebuttal (However).
E3 Claim-resolution vs. extended argument.The should in theOpen-

JDK message would suggest that this is an extended argu-

ment, but the error message has no ground. Thus, it is a

claim-resolution structure, which is not formally consid-

ered an argument. The Jikes message is an extended argu-

ment because of discouraged, but Jikes does not offer a
resolution for how to address the problem.

E4 Different claim, same extended argument. Both messages provide

an extended argument, but for different claims. OpenJDK

assumes that the developer is trying to recursively call the

current method, remove(). Jikes assumes that the developer

wants to a call a class method, remove(int x), from the

method remove(). Since the developer does not know which

fix is actually intended, their judgment about which message

is correct should be influenced by quality of the content, and

not the argument structure. Thus, we expected participants

to prefer Jikes.

E5 Same claim, same simple argument. Both OpenJDK and Jikes

present the same argument (but is enclosed in an inner
class, "B" is simply the long-form of A.B in the Open-

JDK version). The content of both messages are essentially

the same, with minor variations in wording: final versus
constant.

Participants. We recruited developers at a large software com-

pany to participate in this study. As we were primarily interested

in professional software development, we selected our population

from full-time software developers—excluding interns or roles such

as testers or project managers. We invited 300 developers to par-

ticipate in our study and received 68 responses. The average re-

ported experience of our participants was 6.3 years. 45 participants

self-reported being proficient in Java, and 23 self-reported being

proficient with some other OOP language (e.g, C#).

Procedure. We designed a questionnaire which could be dis-

tributed and answered electronically. In the questionnaire, we asked

demographic questions, including years of programming experi-

ence and proficiency in programming languages.

To measure preference for compiler messages, we presented

participants with a forced binary choice [12] for either the Jikes

or OpenJDK version of the error message, alongside the source

code listing that produced the two error messages. We randomized

error message order. On average, participants took seven minutes

to complete our study.

3.3 Phase II: Study Design for Stack Overflow
To answer RQ2 and RQ3, we conducted a study on Stack Overflow.

Research context. Previous research on Stack Overflow by

Treude et al. [45] identified questions regarding error messages

as being one of the top categories, and other research supports

that Stack Overflow today is a primary resource for software en-

gineering problems [26]. Additionally, Stack Overflow provides

an open-access API, through Stack Exchange Data Explorer,
3
that

allows researchers to mine their database. An initial query against

this dataset confirmed that questions about compiler error mes-

sages exist in Stack Overflow across a diversity of programming

languages and platforms.

Data collection. We extracted all posts of type question or an-

swer, tagged as “compiler-errors” or “compiler-warnings,” yielding

11736 “compiler errors” and 1553 “compiler-warnings” (but not

including “compiler errors”, as some warnings are also tagged as

errors). Because some systems allow developers to flag warnings

as errors, we included these warnings in our set.

A subset of these 13289 questions links to an associated accepted
answer, which in this paper we term question-answer pairs. An
accepted answer is an answer marked by the original questioner as

being satisfactory in resolving or addressing their original question.

3
http://data.stackexchange.com/

http://data.stackexchange.com/

How Should Compilers Explain Problems to Developers? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: Compiler Errors and Warnings Count by Tag

Question Count1

Tag Errors
2

Warnings
3

Total % Acc.
4

% Cov.
5

C++ 3508 421 3929 63% 40%

Java 2078 170 2248 55% 20%

C 1179 286 1465 61% 14%

C# 783 122 905 69% 10%

Obj. C 270 109 379 65% 4%

Swift 246 17 263 56% 2%

Python 211 4 215 53% 2%

Subtotals 8275 1129 9404 61% 92%

Totals 11736 1553 13289 58% 100%

1
Questions may be counted more than once if they have multiple

tags, for example, C and C++.
2
Questions tagged as compiler-errors.

3
Questions tagged with compiler-warnings, but not

compiler-errors.
4
Percentage of questions that have accepted answers.

5
Coverage of tag over the 25 most popular languages from the

Stack Overflow Developer Survey 2018.

Although a question may have multiple answers, only one may

be marked as accepted. We used accepted answers as a proxy to

identify helpful answers. 7741 (58%) of messages have accepted

answers (Table 2).

For each question, we extracted the compiler error message from

the question. If the question did not contain a verbatim compiler

error message, the question-answer pair was dropped from analysis.

Sampling strategy. To target diversity (rather than representa-

tiveness) in programming languages [29], we used stratified sam-

pling across the top programming languages in our corpus, until we

covered over 90% of the 25 most popular languages from the Stack

Overflow Developer Survey 2018 [42]. This threshold was exceeded

at Python (92%, Table 2). Within each stratum, we used simple

random sampling for selecting question-answer pairs to analyze,

in which each question-answer pair has an equal probability of

being selected. As we sampled, we discarded questions that: did not

refer to or display a specific error message, were incorrectly tagged

(for example, not relating to an error message), were related to

issues in not being able to invoke the compiler in the first place (for

example, “g++ not found”), or were unambiguously “trolling,” [15]

such as through deliberately bogus questions.
4
The time required to

manually categorize question-answer pairs has high variance, from

5-15 minutes, depending on the complexity of the pair. Thus, to

balance breadth of languages and depth of error messages in each

language—while still keeping categorization tractable—we contin-

ued this process until we obtained 30 question-answer pairs for

each of the top seven languages, for a total of 210 question-answer

pairs.

4
For example, the post “Why is this program erroneously rejected by three C++

compilers?” attempts to compile a hand-written C++ program scanned as an im-

age, through three different compilers. The offered answers are equally sardonic.

(http://stackoverflow.com/questions/5508110/)

Qualitative closed coding. The first and second authors per-

formed closed coding, that is, coding over pre-defined labels, for

each compiler error message extracted from the Stack Overflow

question and over the complete Stack Overflow accepted answer for

that question. We tagged these using labels from Toulmin’s model

of argument: claim (and resolutions as claim), grounds, warrant,

qualifier, rebuttal, and backing. Thus, we had a total of seven labels,

and a compiler error message or Stack Overflow accepted answer

may be assigned more than one label.

During the coding process, we employed the technique of nego-
tiated agreement as a means to address the reliability of coding [7].

Using this technique, the first and second authors collaboratively

code to achieve agreement and to clarify the definitions of the codes;

thus, measures such as inter-rater agreement are not applicable.

Validity of negotiated agreement. Though negotiated agree-

ment is established in other disciplines, this qualitative coding

technique has only recently been applied to software engineering

research (notably, by Hilton et al. [16]). Thus, to assess the validity

of negotiated agreement, we recruited two independent evaluators

(IEV1/IEV2) to classify 20 random question-answer pairs (that is,

40 messages, or approximately 10% of the pairs). Evaluators were

provided with the definitions of argument layout components (Ta-

ble 4) as well as a diagram of proper and deficient argument layouts

(Figure 3).

Evaluators classified messages in the question-answer pairs as

either claim-only, claim-resolution, simple argument, or extended

argument. We then calculated Cohen’s κ between the evaluators

and against our negotiated agreement classifications: IEV1 and IEV2

(κ = 0.96), IEV1 and negotiated agreement (κ = 0.78), and IEV2

and negotiated agreement (κ = 0.71). Cohen’s κ supports the va-

lidity of negotiated agreement (κ > 0.70 is considered “substantial

agreement” by Landis and Koch [24], “good” by Bland and Altman

[4], and “fair–good” by Fleiss et al. [14]). Follow-up revealed that

evaluators were hesitant to apply the tag “backing” due to inex-

perience with Toulmin’s model of argument. Therefore, cases of

disagreement between independent evaluators can be explained by

evaluators shifting extended arguments to simple arguments.

Supporting verifiability. If using a supported PDF reader, quo-
tations from Stack Overflow are hyperlinked and can be clicked to

take the reader to the corresponding Stack Overflow page.
5

4 ANALYSIS
4.1 RQ1: Are compiler errors presented as

explanations helpful to developers?
For the analysis of RQ1, we performed a Chi-squared test on each

of the five error messages (E1–E5, Table 1), using the developer

responses as the observed values for OpenJDK and Jikes. If we

use a null hypothesis where both messages are equally acceptable,

then the expected values would be split such that OpenJDK and

Jikes receive roughly half of the counts. In effect, this situation

is essentially analogous to a coin toss problem, where heads is,

say, OpenJDK, and tails is Jikes. The null hypothesis is rejected

(α = 0.05) if the observed values are significantly different from

the expected values.

5
These references are indicated as Q:id or A:id, and can be directly accessed through

https://www.stackoverflow.com/questions/:id

http://stackoverflow.com/questions/5508110/
https://www.stackoverflow.com/questions/:id

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin

4.2 RQ2: How is the structure of explanations
in Stack Overflow different from compiler
error messages?

To answer this research question, we applied a statistical permu-

tation testing approach by Simpson et al. [41] that tests if pairs

of compiler error messages between the group of Stack Overflow

questions and the group of corresponding Stack Overflow accepted

human-authored answers are significantly non-overlapping in ar-

gument structure. To translate these compiler errors and answers

into a form suitable for statistical analysis, we represented them as

an ordered set of argument components, E:

E = ⟨a1,a2, . . . ,an⟩ (1)

where a1,a2, . . . ,an are labels for the seven argument components,

such as grounds, warrants, backing, and so on. For each component,

a binary true or false indicates the presence or absence of the

component within the argument.

Then, given any two error messages, E1 and E2, the Jaccard index
quantifies the similarity between the two sets; essentially, this index

is the intersection over the union of the sets, ranging from 0 (no

overlap between the sets) to 1 (perfect overlap between the sets).

Next, we perform the permutation testing procedure (PNF-J)

fully described in Simpson et al. [41]. Essentially, the procedure

computes the Jaccard index between every pair of error messages,

within and between the two groups. The test statistic is the mean

Jaccard ratio, defined as the mean Jaccard index within groups di-

vided by the mean Jaccard index between groups. This statistic is

recomputed after permuting the group labels such that the group-

ing is essentially at random, and this computation is repeatedly

performed over some large number of trials. A p-value is obtained

from the number of random trials that yield a larger statistic than

the true grouping. If the p-value is small (α = 0.05), then the two

groups are significantly non-overlapping.

To characterize what types of argument structures are found

in accepted answers, we used quasi-statistics [27]—essentially, a

process of transforming qualitative data to simple counts—to aid in

the interpretation of the Stack Overflow data. We once again used

the error messages as ordered sets to perform this task. First, we

removed negligible components in the set—those components with

few counts—and ignored them in any subsequent operations. Sec-

ond, we grouped identical sets—that is, sets with the same ordered

values, and counted them. In practice, because there are only a fi-

nite number of reasonable ways to present explanations, we expect

there to be few variations in argument structure from Toulmin’s

prototypical structures (Section 2).

4.3 RQ3: How is the content of explanations in
Stack Overflow different from compiler
error messages?

To identify the content of arguments, that is, the techniques de-

velopers use within the argument components, we performed a

second qualitative coding exercise over the first closed coding. For

this analysis, we performed descriptive coding to label the types of

evidence provided within the accepted answers [37]. As a concrete

example, the argument component of backing can be provided by

pointing to a location or program element in the code, through a

Table 3: OpenJDK and Jikes Error Message
Preferences

OpenJDK Jikes

Tag p1 n % n %

E1 .001* 2 3% 66 97%

E2 .014* 20 29% 48 71%

E3 .037* 46 68% 22 32%

E4 .014* 20 29% 48 70%

E5 .732 36 53% 32 47%

1
* indicates a statistically significant result.

code example that provides evidence for the problem, or through

external resources, such as programming language specifications.

To further characterize the content, we performed an additional

purposive sampling, or non-probabilistic sampling, on question-

answer pairs from the entire Stack Overflow dataset and com-

posedmemos [3]. These memos, or author annotations on question-

answer pairs, capture interesting exchanges or properties of the

question-answer pairs, promote depth and credibility, and frame

the posters’ information needs and responses through their re-

ported experiences. That is, the memos provide a thick description
to contextualize the findings [35].

5 RESULTS
5.1 RQ1: Are compiler errors presented as

explanations helpful to developers?
From Table 3, developers significantly preferred Jikes over OpenJDK

for E1, E2, and E4; they preferred OpenJDK over Jikes for E3. Green

bars indicate the greater preference of error tags with a significant

difference. We did not identify significant differences in E5.

E1 Deficient argument vs. simple argument. As we expected, devel-
opers significantly preferred the simple argument from Jikes

to the deficient argument in OpenJDK.

E2 Deficient argument vs. extended argument. As we expected, de-
velopers significantly preferred the extended argument from

Jikes to the deficient argument in OpenJDK.

E3 Claim-resolution vs. extended argument. We did not know if

developers would prefer a claim-resolution structure or an

extended argument, given that the extended argument did

not provide a resolution. Developers significantly preferred

having a resolution over a more elaborate argument.

E4 Different claim, same extended argument. Given two different

claims, we expected developers to prefer Jikes because the

argument is presented in natural language. In other words,

given the same claim, the content of the argument would

influence their preference, not the structure. Developers sig-

nificantly preferred the natural language presentation of the

content.

E5 Same claim, same simple argument. Given only minor variations

in the wording of the content, we expected that the prefer-

ence would essentially be a coin flip. Indeed, developers did

not significantly prefer OpenJDK or Jikes.

How Should Compilers Explain Problems to Developers? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Claim

(a) Claim-only
(CEM = 191, SO = 0)

Claim

Resolution

(b) Claim-resolution
(CEM = 10, SO = 59)

Grounds Claim

Resolution

Warrant

(c) Simple argument layout
(CEM = 8, SO = 49)

Grounds Claim

Resolution

Warrant

Backing

(d) Extended argument layout
(CEM = 1, SO = 102)

Figure 3: Identified argument layouts for compiler errormessages (CEM) and their associated StackOverflow accepted answers
(SO). Counts are indicated in parentheses. Problematic compiler error messages predominantly present a claim with no addi-
tional information, and occasionally present a resolution. In contrast, Stack Overflow accepted answers use proper extended
argument and simple argument layouts, as well as the claim-resolution layout.

5.2 RQ2: How is the structure of explanations
in Stack Overflow different from compiler
error messages?

Permutation testing identified that the compiler error messages

from the questions and the Stack Overflow accepted answers are

significantly non-overlapping in terms of their argument structure

(Jaccard ratio Rj = 1.6, for repeated iterations, p = 0.008 ± 0.001).

Because the questioner asked a question about the compiler error

message, this indicates some confusion with the error message they

were presented with. Because the same questioner also marked the

Stack Overflow answer as accepted, we can assume that the answer

has resolved whatever confusion they had in the original question.

Since the argument layout between the compiler error message

and the accepted answer is significantly different, we can conclude

that differences in the argument layout structure contributed to the

acceptance of the Stack Overflow answer.

The identified argument layouts are found in Figure 3, for com-

piler error messages and for Stack Overflow accepted answers. In

this quasi-statistical reporting, it becomes clear why the argument

layouts for compiler errors and Stack Overflow accepted answers

were found to be significantly different: problematic compiler er-

ror messages predominantly present a claim with no additional

information, and occasionally present a resolution (that is, a fix) to

resolve the claim. In contrast, the most frequent argument layout

in Stack Overflow accepted answers are extended arguments (d),

followed by claim-resolution (b) and simple argument (c) in compa-

rable frequencies. In our investigation, we did not find any instances

in which Stack Overflow accepted answers solely rephrased the

compiler error message (that is, the claim-only layout).

Thus, not only do Stack Overflow accepted answers more closely

align with Toulmin’s model of argument, these answers satisfac-

torily resolved the confusion of the developer when the original

compiler error message did not.

Table 4: Argument Layout Components for Error Messages

Attribute Description

Simple Argument Components

Claim

(Section 5.3.1)

The claim is the concluding assertion or

judgment about a problem in the code.

Resolution

(Section 5.3.2)

Resolutions suggest concrete actions to

the source code to remediate the problem.

Grounds

(Section 5.3.3)

Facts, rules, and evidence to support the

claim.

Warrant

(Section 5.3.4)

Bridging statements that connect the

grounds to the claim. Provides justifica-

tion for using the grounds to support the

claim.

Extended Argument Components

Backing

(Section 5.3.5)

Additional evidence to support the war-

rant, if the warrant is not accepted.

Qualifier

(Section 5.3.6)

This is the degree of belief for a claim,

often used to weaken a claim.

Rebuttal

(Section 5.3.7)

Exceptions to the claim or other compo-

nents of the argument.

5.3 RQ3: How is the content of explanations in
Stack Overflow different from compiler
error messages?

In this section, we describe the content of the components of argu-

ment structure. An overview of these argument components are

presented in Table 4.

5.3.1 Claim. Because of the layout of Stack Overflow, accepted

answers assume that the developer has read the error message in

the question, and will refer to the claim without explicit antecedent.

For instance, the answer may say “this problem” (A1225726) or

http://stackoverflow.com/questions/1225726

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin

“this issue” (A32831677) or immediately chain from the question to

connect their ground and warrant (A28880386). We did, however,

encounter instances where developers explained error messages by

first rephrasing it, such as “it means that” (A16686321) and “is saying”

(A20858493)—usually for the purpose of simplifying the jargon in

the message or making an obtuse message more conversational.

For example, the compiler error message:

foreach statement cannot operate on variables of type
'E' because 'E' does not contain a public
definition for 'GetEnumerator'

↪→

↪→

is rephrased by the accepted answer as “it means that you can-

not do foreach on your desired object, since it does not expose a

GetEnumerator method” (A16686321).

5.3.2 Resolution. A resolution is a second form of claim. Typically,

Stack Overflow accepted answers provide these resolutions in a

style similar to “Quick Fixes” in IDEs—they briefly describe what

will be changed, show the resulting code after applying the change,

and demonstrate that the compiler defect will be removed as a

result. An example of how answers provide resolutions is found

in A8783031. Here, the answer notes, “you’re missing an & in the

definition.” The answer then proceeds to show the original code:

float computeDotProduct3(Vector3f& vec_a, Vector3f

vec_b) {↪→

against the suggested fix:

float computeDotProduct3(Vector3f& vec_a, Vector3f&

vec_b) {↪→

5.3.3 Grounds. Grounds are an essential building block for con-

vincing arguments; they are the substrate of declarative facts—

which, bridged by the warrant—support the claim, that is, the

compiler error message. For example, “[the variable] is a non-

static private field” (A4114098), “foo<T> is a base class of bar<T>”
(A27417378), and “local variables cannot have external linkage”

(A5185870) all refer to grounds about the state of the program or

rules about what the compiler will accept.

Consider the use of gets() in a C program, in which the GCC

compiler generates the message:

test.c:27:2: warning: ‘gets’ is deprecated
(declared at /usr/include/stdio.h:638)
[-Wdeprecated-declarations]

gets(temp);
^

The poster of the compiler error wants to suppress this warning

(Q26192934), but the accepted answer explains the grounds for this

warning through the warrant because: “gets is deprecated because
it’s dangerous, it may cause a buffer overflow” (A26193030).

5.3.4 Warrant. In argumentation theory, warrants are bridge terms,

such as “since” or “because” that connect the ground to the claim.

Often, the warrant is not explicitly expressed, and the connection

between the ground and the claim must be implicitly identified [46].

During our analysis, we would insert implicit “since” or “because”

phrases during our reading of the error messages.

In some compilers, messages can bridge grounds with warrants

through explicit concatenation, such as with the “reason:” error
template in Java:

Test.java:6: error: method b in class Test cannot
be applied to given types;

b(newList(type));
^

required: List<T>
found: CAP#1
reason:

inference variable L has incompatible bounds
equality constraints: CAP#2
upper bounds: List<CAP#3>,List<?>

where T,L are type-variables:
T extends Object declared in method <T>b(List<T>)
...

Unfortunately, the grounds for this warrant are particularly dense

in itself. However, warrants need not always be this obtuse, as the

following C++ message from OpenCV demonstrates:

OpenCV Error: Image step is wrong
(The matrix is not continuous,
thus its number of rows can not be changed).

Here, the warrant is bridged through the use of the parenthetical

statement.

5.3.5 Backing. A backing may be required in an argument if the

warrant is not accepted; in this case, the backing is additional evi-

dence needed to support the warrant. In practice, one should selec-

tively support warrants; otherwise, the argument structure grows

recursively and quickly becomes intractable [46]. For presenting

error messages, we found that while grounds were typically nat-

ural language statements, backing was provided through the use

of code examples (A51962187) and external resources. These re-

sources include references to programming language specifications

(A5005384), and occasionally, bug reports (A37835991) and tutorials

(A2640747).

5.3.6 Qualifiers. Despite the usefulness of static analysis tech-

niques for reporting compiler error messages to developers, many

types of analysis are undecidable or computationally hard and ne-

cessitate the use of unsound simplifications [23]. Qualifiers include

statements like “should” (A29189792), “likely” (A17980660), “try”

(A7316556), and “probably” (A2841668, A7329198, A7942848). Al-

though we found such usages throughout Stack Overflow, it was

difficult for us to determine if these usages were simply used as

casual linguistic constructs (essentially, fillers) or if the answers ac-

tually intended to convey a judgment about belief. We did, however,

find several examples when developers were confused because the

wording of the compiler error made the developer believe that their

own judgment was in error (Q5013194, Q36476599).

5.3.7 Rebuttal. We found few instances of rebuttals within Stack

Overflow accepted answers, and one of the reasons we believe rebut-

tals to be relatively infrequent is that any disagreements between

participants are primarily relegated to meta-discussions attached to

the accepted answer in order to reach consensus, rather than being

http://stackoverflow.com/questions/32831677
http://stackoverflow.com/questions/28880386
http://stackoverflow.com/questions/16686321
http://stackoverflow.com/questions/20858493
http://stackoverflow.com/questions/16686321
http://stackoverflow.com/questions/8783031
http://stackoverflow.com/questions/4114098
http://stackoverflow.com/questions/27417378
http://stackoverflow.com/questions/5185870
http://stackoverflow.com/questions/26192934
http://stackoverflow.com/questions/26193030
http://stackoverflow.com/questions/51962187
http://stackoverflow.com/questions/5005384
http://stackoverflow.com/questions/37835991
http://stackoverflow.com/questions/2640747
http://stackoverflow.com/questions/29189792
http://stackoverflow.com/questions/17980660
http://stackoverflow.com/questions/7316556
http://stackoverflow.com/questions/2841668
http://stackoverflow.com/questions/7329198
http://stackoverflow.com/questions/7942848
http://stackoverflow.com/questions/5013194
http://stackoverflow.com/questions/36476599

How Should Compilers Explain Problems to Developers? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

incorporated within the answer itself. Thus, we interpreted rebut-

tals liberally as statements in which an answer would retract some

ground or resolution due to some constraint—for example, due to a

bug in the compiler (A2858800). Another means of rebuttal occurs

when the accepted answer provides reasons for ignoring a claim,

as in A11180128. Here, the accepted answer suggests downgrading

a ReSharper warning from a warning to a hint in order to not get

“desensitized to their warnings, which are usually useful.”

6 LIMITATIONS
The selection of error messages in our comparative study, along

with the qualitative research approaches used in the Stack Overflow

study, introduces trade-offs and limitations.

Comparative evaluation with Jikes and OpenJDK. We did

not evaluate all combinations of the argument design space, for

example, if developers prefer simple arguments against extended

arguments. Thus, the error messages we asked participants to eval-

uate are not necessarily representative in terms of either difficulty

or type of error message. Because we (the authors) selected the ex-

planations to present, we may have also unintentionally introduced

a bias in the selection process, favoring certain argument structures

over others. Furthermore, the participants in this study were re-

cruited from a single company, and processes and tools specific to

this company may influence developers’ expectations about error

messages. The subsequent Stack Overflow study to some extent

mitigates these threats, but does not eliminate them entirely.

Identifying argument content. The design space of argument

content is constrained to available affordances in Stack Overflow.

For example, answers in Stack Overflow must use mostly text nota-

tion, although past research has found that developers sometimes

place diagrammatic annotations on their code to help with error

message comprehension [1]. Similarly, Flanagan et al. [13] use a

diagrammatic representation on the source code to help develop-

ers understand code flow for an error. Other tools like Path Pro-

jection [21] and Theseus [25] use visual overlays on the source

code, which are also not expressible within Stack Overflow ex-

cept through rudimentary methods like adding comments to the

source. Thus, the design space of attributes is biased towards linear,

text-based representations of compiler error messages, as typically

found in terminal environments.

Generalizability. As a qualitative approach, our findings do

not offer external validity in the traditional sense of nomothetic,

sample-to-population, or statistical generalization. Rather, our find-
ings are embedded within Stack Overflow and contextualized to

how developers comprehend and resolve compiler error messages

within these question-answer pairs. As one example of this limi-

tation, the argument layout for compiler error messages is likely

to significantly underrepresent claim-resolution layouts, as resolu-

tions in integrated development environments appear in a different

location—such as Quick Fixes in the editor margin—than the com-

piler error message. In place of statistical generalization, our quali-

tative findings support an idiographic means of satisfying external

validity: analytic generalization [34]. In analytic generalization, we

generalize from individual statements within question-answer pairs

to higher-order abstractions such as argumentation theory.

7 RELATEDWORK
The work by Nasehi et al. [30] is the closest related work in terms

of research approach and methodology. Nasehi and colleagues in-

spected Stack Overflow questions and accepted answers to identify

components of good code examples: we use a similar methodology

to understand how components of good compiler error messages

correspond to structure and content drawn from argumentation

theory.

Design criteria and guidelines. Several researchers have iden-
tified guidelines for compile errors. However, the history of design

criteria for improving compiler error messages is both long and

sometimes sordid; many of these guidelines are today considered

to be pedestrian [5, 28].

Early work by Horning [17] suggested guidelines for the dis-

play of error messages, such as a “coordinate system” for relating

the error message back to the source code listing, and revealing

“memory addresses” relating to the error message. Shneiderman

[39] focused less on the structural design of the error message and

more on the holistic presentation, recommending that errors should

have a positive tone, be specific using the developer’s language,

provide actionable information, and have a consistent, comprehen-

sible format. In 1982, Dean [11] argued for design guidelines that

emphasize humans goals and give people control over the messages

they receive.

More recently, Traver [44] adapted criteria from Nielsen’s heuris-

tic evaluation [31] to compiler error messages, suggesting princi-

ples such as clarity, specificity, context-insensitivity, as well as

previously-seen guidelines such as positive tone and matching the

developers’ language. Similarly, Sadowski et al. [36] present four

design guidelines that inform when and how to incorporate new

error messages into a static analysis platform, Tricoder. Like Kan-

torowitz and Laor [20], they suggest that program analysis tools

minimize errors messages that are false positives.

Barriers to error message comprehension. Johnson et al.

[19] conducted an interview study with developers to identify bar-

riers to using static analysis tools. Their interviewers reported

barriers such as “poorly presented” tool output and “false positives”

as contributing to comprehension difficulties. One interviewee sug-

gested that error messages be presented in some “distinct structure”

to facilitate comprehension [19]. A follow-up study by Johnson

et al. [18] identified that mismatches between developers’ program-

ming knowledge against information provided by the error message

contribute to this confusion. A large-scale multi-method study at

Microsoft identified several presentation “pain points,” such as “bad

warnings messages” and “bad visualization of warnings” [9].

Ko and Myers [22] found that many comprehension difficulties

are due to programmers’ false assumptions formed while trying

to resolve errors [22]. Similarly, Lieber et al. [25] postulated that

difficulties in resolving errors were due to faulty mental models,

or misconceptions, that remained uncorrected until the developer

manually requested information explicitly from their programming

environment; they developed an always-on visualization in the IDE

to proactively address misconceptions.

http://stackoverflow.com/questions/2858800
http://stackoverflow.com/questions/11180128

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin

8 DESIGN PRINCIPLES
We synthesize and discuss our results through three design prin-

ciples, which compiler authors can use to inform the design and

evaluation of error messages:

Principle I—Allow developers the autonomy to elaborate ar-
guments. From our comparative evaluation in Phase I, we found

that with E3 developers preferred the OpenJDK version of the error

message, despite the fact that the Jikes version is more explana-

tory (RQ1, Section 5.1). However, novice developers may still find

the explanation from Jikes useful, and expert developers may still

find the Jikes presentation useful if they want to understand the

rationale for the fix. Thus, developers may selectively need more

or less help in comprehending the problem, and we should support

mechanisms to progressively elaborate error messages. The static

analysis tool Error Prone implements such an approach; the tool

initially provides a simple argument for the error messages, but

also enables additional backing through a supporting link:

ShortSet.java:9: error: [CollectionIncompatibleType]
Argument 'i - 1' should not be passed to this method;
its type int is not compatible with its collection's
type argument Short

s.remove(i - 1);
^

(see http://errorprone.info/bugpattern/
CollectionIncompatibleType)

Similarly, the Rust and Dotty compilers initially provide a simple

argument, but the developer can invoke an extended argument by

passing a --explain flag to the compiler.

Principle II—Distinguish fixes from explanations. Accepted
answers from Stack Overflow identified a dichotomy in argument

structure: 1) claim-resolutions, which we can think of essentially as

quick fixes that immediately resolve the problem for the developer,

and 2) simple to extended arguments, which provide an explanation
of the problem (Figure 3).

Both styles of argument structure are useful (RQ2, Section 5.2).

A claim-resolution structure is appropriate when the resolution is

obvious. For example, consider a C file with a missing semi-colon,

as presented through the LLVM:

hello.c:4:26: error: expected ';' after expression
printf("Hello, world!")

^
;

For an expert, it is clear what the problem is and the developer

does not need an explanation for how semi-colons work in C. By

constrast, consider the error message E4 from our comparative

evaluation. Here, there is a design choice that depends on which

remove method the developer intends to call; consequently, a sim-

ple argument structure would perhaps be more appropriate.

Principle III—Apply argument structure and content to the
design and evaluation of error messages. The theory of argu-

mentation can guide the design of error messages as well as assess

potential problems with existing error messages. For instance, con-

sidering the following Haskell code snippet:

let y = [True, 'a']

which produces this error message in the Haskell interpreter, ghci:

Couldn't match expected type ‘Bool’ with actual type

‘Char’↪→

* In the expression: 'a'
* In the expression: [True, 'a']

In an equation for ‘y’: y = [True, 'a']

Inspecting this error message through the lens of argumentation

theory immediately reveals a problem: the error message does

not present a claim. Couldn’t match expected type ‘Bool’
with actual type ‘Char’ is actually a ground masquerading
as a claim. The rest of the explanation is backing to support the

ground. This deficiency is easy to spot if we compare it against a

similarly-produced F# (let y = [true; ’a’];;) error message:

let y = [true; 'a'];;
---------------^^^

error FS0001: All elements of a list constructor
expression must have the same type. This
expression was expected to have type 'bool', but
here has type 'char'.

↪→

↪→

↪→

Now, it is apparent the actual claim is that all elements of a
list constructor expression must have the same type, and
the remainder of the error message is evidence to support that claim.

There are also content differences (RQ3, Section 5.3): F# helpfully

provides a code snippet that points to the position of the error in

the result, whereas ghci indicates the location narratively through

a series of In the expression statements.

9 CONCLUSION
In this paper, we conducted studies on compiler error messages,

through Toulmin’s model of argumentation. Our results suggest

that generalizable, theory-driven approaches to the design and

evaluation of error messages will lead to more explainable, human-

friendly errors—across a variety of programming languages and

compilers.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Grant Nos. 1559593 and 1714538.

REFERENCES
[1] T. Barik, K. Lubick, S. Christie, and E. Murphy-Hill. 2014. How Developers

Visualize Compiler Messages: A Foundational Approach to Notification Con-

struction. In IEEE Working Conference on Software Visualization (VISSOFT). 87–96.
https://doi.org/10.1109/VISSOFT.2014.24

[2] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-

son Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error

messages?. In International Conference on Software Engineering (ICSE). 575–585.
https://doi.org/10.1109/ICSE.2017.59

[3] Melanie Birks, Ysanne Chapman, and Karen Francis. 2008. Memoing in qualitative

research: Probing data and processes. Journal of Research in Nursing 13, 1 (Jan.

2008), 68–75. https://doi.org/10.1177/1744987107081254

[4] J Martin Bland and Douglas G Altman. 1986. Statistical methods for assessing

agreement between two methods of clinical measurement. The Lancet 327, 8476
(1986), 307–310. https://doi.org/10.1016/S0140-6736(86)90837-8

https://doi.org/10.1109/VISSOFT.2014.24
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1177/1744987107081254
https://doi.org/10.1016/S0140-6736(86)90837-8

How Should Compilers Explain Problems to Developers? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

[5] P. J. Brown. 1983. Error messages: The neglected area of the man/machine

interface. Commun. ACM 26, 4 (April 1983), 246–249. https://doi.org/10.1145/

2163.358083

[6] Joshua Charles Campbell, Abram Hindle, and José Nelson Amaral. 2014. Syntax

errors just aren’t natural: Improving error reporting with language models. In

Mining Software Repositories (MSR). 252–261. https://doi.org/10.1145/2597073.

2597102

[7] John L. Campbell, Charles Quincy, Jordan Osserman, and Ove K. Pedersen. 2013.

Coding in-depth semistructured interviews: Problems of unitization and inter-

coder reliability and agreement. Sociological Methods & Research 42, 3 (Aug. 2013),
294–320. https://doi.org/10.1177/0049124113500475

[8] Philippe Charles and David Shields. 1998. Frequently asked questions about Jikes.

https://www.cc.gatech.edu/data_files/public/doc/jikesfaq.html

[9] Maria Christakis and Christian Bird. 2016. What developers want and need from

program analysis: An empirical study. In Automated Software Engineering (ASE).
332–343. https://doi.org/10.1145/2970276.2970347

[10] Ian F Darwin. 2004. Java Cookbook. O’Reilly.
[11] M. Dean. 1982. How a computer should talk to people. IBM Systems Journal 21, 4

(1982), 424–453. https://doi.org/10.1147/sj.214.0424

[12] Sara Dolnicar, Bettina Grün, and Friedrich Leisch. 2011. Quick, simple and reliable:

Forced binary survey questions. International Journal of Market Research 53, 2

(2011), 231–252. https://doi.org/10.2501/IJMR-53-2-231-252

[13] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich,

and Matthias Felleisen. 1996. Catching bugs in the web of program invariants.

In Programming Language Design and Implementation (PLDI), Vol. 31. 23–32.
https://doi.org/10.1145/231379.231387

[14] Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical Methods
for Rates and Proportions. John Wiley & Sons.

[15] Claire Hardaker. 2010. Trolling in asynchronous computer-mediated commu-

nication: From user discussions to academic definitions. Journal of Polite-
ness Research. Language, Behaviour, Culture 6, 2 (Jan. 2010), 215–242. https:

//doi.org/10.1515/jplr.2010.011

[16] Michael Hilton, Nicholas Nelson, Danny Dig, Timothy Tunnell, and Darko Mari-

nov. 2016. Continuous integration (CI) needs and wishes for developers of proprietary
code. Technical Report. Oregon State University.

[17] James J. Horning. 1974. What the compiler should tell the user. In Compiler
Construction. Vol. 21. Springer, 525–548. https://doi.org/10.1007/3-540-06958-5

[18] Brittany Johnson, Rahul Pandita, Justin Smith, Denae Ford, Sarah Elder, Emerson

Murphy-Hill, Sarah Heckman, and Caitlin Sadowski. 2016. A cross-tool commu-

nication study on program analysis tool notifications. In Foundations of Software
Engineering (FSE). 73–84. https://doi.org/10.1145/2950290.2950304

[19] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.

2013. Why don’t software developers use static analysis tools to find bugs?.

In International Conference on Software Engineering (ICSE). 672–681. https:

//doi.org/10.1109/ICSE.2013.6606613

[20] E. Kantorowitz and H. Laor. 1986. Automatic generation of useful syntax error

messages. Software: Practice and Experience 16, 7 (July 1986), 627–640. https:

//doi.org/10.1002/spe.4380160703

[21] Yit Phang Khoo, Jeffrey S. Foster, Michael Hicks, and Vibha Sazawal. 2008. Path

projection for user-centered static analysis tools. In Program Analysis for Software
Tools and Engineering (PASTE). 57–63. https://doi.org/10.1145/1512475.1512488

[22] Andrew J. Ko and Brad A. Myers. 2003. Development and evaluation of a model of

programming errors. In Human Centric Computing Languages and Environments
(HCC). 7–14. https://doi.org/10.1109/HCC.2003.1260196

[23] William Landi. 1992. Undecidability of static analysis. ACM Letters on Program-
ming Languages and Systems 1, 4 (Dec. 1992), 323–337. https://doi.org/10.1145/

161494.161501

[24] J. Richard Landis and Gary G. Koch. 1977. The measurement of observer

agreement for categorical data. Biometrics 33, 1 (1977), 159–174. https:

//doi.org/10.2307/2529310

[25] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing misconceptions

about code with always-on programming visualizations. In Human Factors in
Computing Systems (CHI). 2481–2490. https://doi.org/10.1145/2556288.2557409

[26] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-

mann. 2011. Design lessons from the fastest Q&A site in the west. In Human
Factors in Computing Systems (CHI). 2857–2866. https://doi.org/10.1145/1978942.

1979366

[27] Joseph A. Maxwell. 2010. Using numbers in qualitative research. Qualitative
Inquiry 16, 6 (July 2010), 475–482. https://doi.org/10.1177/1077800410364740

[28] P. G. Moulton and M. E. Muller. 1967. DITRAN—a compiler emphasizing diag-

nostics. Commun. ACM 10, 1 (Jan. 1967), 45–52. https://doi.org/10.1145/363018.

363060

[29] Meiyappan Nagappan, Thomas Zimmermann, and Christian Bird. 2013. Diversity

in software engineering research. In Foundations of Software Engineering (FSE).
466–476. https://doi.org/10.1145/2491411.2491415

[30] Seyed Mehdi Nasehi, Jonathan Sillito, Frank Maurer, and Chris Burns. 2012.

What makes a good code example? A study of programming Q&A in Stack

Overflow. In International Conference on Software Maintenance (ICSM). 25–34.
https://doi.org/10.1109/ICSM.2012.6405249

[31] Jakob Nielsen. 1994. Heuristic evaluation. In Usability Inspection Methods. John
Wiley & Sons, 25–64.

[32] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-

piler error messages: What can help novices?. In ACM Technical Symposium on
Computer Science Education (SIGCSE). 168–172. https://doi.org/10.1145/1352322.

1352192

[33] Niels Pinkwart, Kevin Ashley, Collin Lynch, and Vincent Aleven. 2009. Evaluating

an intelligent tutoring system for making legal arguments with hypotheticals.

International Journal of Artificial Intelligence in Education 19, 4 (Dec. 2009), 401–

424.

[34] Denise F. Polit and Cheryl Tatano Beck. 2010. Generalization in quantitative

and qualitative research: Myths and strategies. International Journal of Nursing
Studies 47, 11 (2010), 1451–1458. https://doi.org/10.1016/j.ijnurstu.2010.06.004

[35] Joseph Ponterotto. 2006. Brief note on the origins, evolution, and meaning of

the qualitative research concept thick description. The Qualitative Report 11, 3
(2006), 538–549.

[36] Caitlin Sadowski, Jeffrey van Gogh, Ciera Jaspan, Emma Soderberg, and Collin

Winter. 2015. Tricorder: Building a program analysis ecosystem. In International
Conference on Software Engineering (ICSE). 598–608. https://doi.org/10.1109/

ICSE.2015.76

[37] Johnny Saldaña. 2009. The Coding Manual for Qualitative Researchers. SAGE
Publications.

[38] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and

Robert Bowdidge. 2014. Programmers’ build errors: A case study (at Google).

In International Conference on Software Engineering (ICSE). 724–734. https:

//doi.org/10.1145/2568225.2568255

[39] Ben Shneiderman. 1982. Designing computer system messages. Commun. ACM
25, 9 (Sept. 1982), 610–611. https://doi.org/10.1145/358628.358639

[40] Jeremy Siek and Andrew Lumsdaine. 2000. Concept checking: Binding parametric

polymorphism in C++. In Workshop on C++ Template Programming.
[41] Sean L. Simpson, Robert G. Lyday, Satoru Hayasaka, Anthony P. Marsh, and

Paul J. Laurienti. 2013. A permutation testing framework to compare groups of

brain networks. Frontiers in Computational Neuroscience 7 (2013), 171:7–171:13.
https://doi.org/10.3389/fncom.2013.00171

[42] Stack Overflow. 2018. Stack Overflow Developer Survey. https://insights.

stackoverflow.com/survey/2018/

[43] Stephen Toulmin. 2003. The Uses of Argument. Cambridge University Press.

[44] V. Javier Traver. 2010. On compiler error messages: What they say and what they

mean. Advances in Human-Computer Interaction 2010 (2010), 602570:1–602570:26.

https://doi.org/10.1155/2010/602570

[45] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do

programmers ask and answer questions on the web?. In International Conference
on Software Engineering (ICSE). 804–807. https://doi.org/10.1145/1985793.1985907

[46] Frans H. van Eemeren, Bart Garssen, Erik C. W. Krabbe, A. Francisca Snoeck

Henkemans, Bart Verheij, and Jean H. M. Wagemans. 2014. Handbook of Argu-
mentation Theory. Springer Netherlands, Dordrecht. https://doi.org/10.1007/

978-90-481-9473-5

[47] Douglas Walton. 2009. Explanations and arguments based on practical reasoning.

In International Joint Conferences on Artificial Intelligence (IJCAI). 72–83.
[48] Mitchell Wand. 1986. Finding the source of type errors. In Principles of Program-

ming Languages (POPL). 38–43. https://doi.org/10.1145/512644.512648

https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/2163.358083
https://doi.org/10.1145/2597073.2597102
https://doi.org/10.1145/2597073.2597102
https://doi.org/10.1177/0049124113500475
https://www.cc.gatech.edu/data_files/public/doc/jikesfaq.html
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1147/sj.214.0424
https://doi.org/10.2501/IJMR-53-2-231-252
https://doi.org/10.1145/231379.231387
https://doi.org/10.1515/jplr.2010.011
https://doi.org/10.1515/jplr.2010.011
https://doi.org/10.1007/3-540-06958-5
https://doi.org/10.1145/2950290.2950304
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1002/spe.4380160703
https://doi.org/10.1002/spe.4380160703
https://doi.org/10.1145/1512475.1512488
https://doi.org/10.1109/HCC.2003.1260196
https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/161494.161501
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/1978942.1979366
https://doi.org/10.1145/1978942.1979366
https://doi.org/10.1177/1077800410364740
https://doi.org/10.1145/363018.363060
https://doi.org/10.1145/363018.363060
https://doi.org/10.1145/2491411.2491415
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.1145/1352322.1352192
https://doi.org/10.1016/j.ijnurstu.2010.06.004
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.1109/ICSE.2015.76
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/358628.358639
https://doi.org/10.3389/fncom.2013.00171
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://doi.org/10.1155/2010/602570
https://doi.org/10.1145/1985793.1985907
https://doi.org/10.1007/978-90-481-9473-5
https://doi.org/10.1007/978-90-481-9473-5
https://doi.org/10.1145/512644.512648

	Abstract
	1 Introduction
	2 Background on Explanations
	3 Methodology
	3.1 Research Questions
	3.2 Phase I: Study Design for Comparative Evaluation
	3.3 Phase II: Study Design for Stack Overflow

	4 Analysis
	4.1 RQ1: Are compiler errors presented as explanations helpful to developers?
	4.2 RQ2: How is the structure of explanations in Stack Overflow different from compiler error messages?
	4.3 RQ3: How is the content of explanations in Stack Overflow different from compiler error messages?

	5 Results
	5.1 RQ1: Are compiler errors presented as explanations helpful to developers?
	5.2 RQ2: How is the structure of explanations in Stack Overflow different from compiler error messages?
	5.3 RQ3: How is the content of explanations in Stack Overflow different from compiler error messages?

	6 Limitations
	7 Related Work
	8 Design Principles
	9 Conclusion
	Acknowledgments
	References

