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Machine learning algorithms should
avoid undesirable behaviors.
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Undesirable behavior of ML
algorithms is causing harm.



Supervised Learning
(Classification and Regression)
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Reinforcement Learning
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Can we create algorithms that allow their
users to more easily control their behavior?



Desiderata

 Easy for users to define undesirable behavior.

Tutorial: 21 fairness definitions and their politics Mean Time H Ypo g|yce mic
Arvind Narayanan VS
Update: this tutorial was presented at the Conference on Fairness. We |g hte d Mean Time H Y pOglyCe mic

Accountability, and Transparency, Feb 23 2018. Watch it here.

* Guarantee that the algorithm will not produce this undesirable
behavior.
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Data, D

> Q > 1.7 meters
Predict the average human height, \/

but do not over-estimate. A|gorith m, a Solution, 6
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Desiderata

* Interface for defining undesirable behavior.
* User-specified probability, 9.

* Guarantee that the probability of a solution that produces
undesirable behavior is at most 6.



Notation

e Let D be all of the training data.
D isarandom variable

* Let ® be the set of all possible solutions the algorithm can return.
* Let f: ® = R be the primary objective function.

* Let a be a machine learning algorithm.
*a:D -0
* a(D) is the solution returned by the algorithm when run on data D

* Let g: ® = R be a function that measures undesirable behavior
« g(0) < 0ifand only if 8 does not produce undesirable behavior
* g(0) > 0ifand only if 8 produces undesirable behavior

 Let NSF € O and g(NSF) = 0.



Desiderata

* Provide the user with an interface for defining undesirable behavior
(i.e., defining g).

* Attempt to optimize a (possibly user-provided) objective f.

* Guarantee that
Pr(g(a(D)) < O) >1-94.
* The probability that the algorithm returns a solution that does not produce
undesirable behavior is at least 1 — 4.

* The probability that the algorithm returns a solution that produces
undesirable behavior is at most 6.

* We need a name for algorithms that provide this guarantee.



Pr(g(a(D)) <0)=1-6

* An algorithm that provides this guarantee is safe.
* An algorithm that provides this guarantee is Seldonian.

* Quasi-Seldonian: Reasonable false assumptions
* Appeals to central limit theorem

This Photo by Unknown Author is licensed under CC BY-SA
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Seldonian Framework

* Framework for designing machine learning algorithms.

* Provide the user with an interface for defining undesirable behavior (i.e.,
defining g).

* Attempt to optimize a (possibly user-provided) objective f.
* Guarantee that
Pr(g(a(D)) < O) >1-94.
* This guarantee does not depend on any hyperparameter settings.
* | am not promoting a specific algorithm.
* The algorithms | am going to discuss are extremely simple examples.
* These examples show feasibility.

* | am promoting the framework.



Example Usage

* X is a vector of features describing a person convicted of a crime.

* Yis 1if the person committed a subsequent violent crime and 0
otherwise.

* Find a solution, 8, such that y(X, 0) is a good estimator of Y.
* g(0) = |Pr(¥(X,0) = 1|White) — Pr(y(X,8) = 1|Not White)| — €

* “Demographic Parity”
« g(0) < 0iff Pr(y(X,0) = 1|White) = Pr(y(X, 6) = 1|Not White)

* g(6) = |Pr(FP|White) — Pr(FP|Not White)| — €
* “Predictive Equality”
* g(0) < 0iff Pr(FP|White) = Pr(FP|Not White)
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Minimize classification loss, use \/

9(6) = |Pr(FP|White) — Pr(FP|Not White)| — ¢ Algorlthm a Solution. 6
) 4
OR
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Minimize classification loss, use
g(8) = |Pr(FP|White) — Pr(FP|Not White)| — €

* Provide code for g:
' t Eigen: :VectorXd& the




Minimize classification loss, use
g(8) = |Pr(FP|White) — Pr(FP|Not White)| — €
J

* Provide code for unbiased estimates of g:
template <typename Data>
FlEigen: :VectorXd g(const Eigen::VectorXd& thet const std::vector<Data> D)

{




Minimize classification loss, use
g(8) = |Pr(FP|White) — Pr(FP|Not White)| — €

* Write an equation for g:
g(6) = |Pr(FP|White) — Pr(FP|Not White)| — €
* Can use any of the common variables already provided.
 Classification: FP, FN, TP, TN, conditional FP, accuracy, probability positive, etc.

* Regression: MSE, ME, conditional MSE, conditional ME, mean prediction, etc.
* Reinforcement learning: Expected return, conditional expected return

e Can use any other variable for which they can provide unbiased estimates
from data.

e Can use any supported operators +, —, %, abs, min, max, etc.
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Algorithm 11

Dcandidate

A 4

Candidate Selection

Candidate solution, 6,
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D safety

Safety Test
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Safety Test

* Consider the earlier example:
g(6) = |Pr(FP|White) — Pr(FP|Not White)| — €

* Given 6, and Dg,fety, OUtput either 6. or NSF

= abs €

—_ =

v v
Pr(FP|White) Pr(FP|White)

= =



Candidate Selection

* Use D ndidate tO pick the solution, 8., predicted to:
* Optimize the primary objective, f
* Pass the subsequent safety test



Reinforcement Learning

* Historical data, D, is data collected from running some current policy, 7T qy-
* A solution, 0, is a policy or policy parameters.

e User can define multiple objectives (reward functions), and can require
improvement (or limit degradation) with respect to all.

* 9(0) = E[XZ20V R; Imcur] — E[XiZ0 VY R, 16]

Pr(E[X¢2g ViR ITeyr] < E[XiZo ViR la(D)D=1-6

 Monte Carlo returns are unbiased estimates of E[X.22 o V¥ R¢ | cyurl-

* Use importance sampling to obtain unbiased estimates of
E[Y20 v R 16.].



Reinforcement Learning

* The ability to require improvement w.r.t. multiple objectives makes
objective specification easier.

* Try to change the current policy to one that reaches the goal quicker
In expectation.

* Do not increase the probability that the agent steps in the water.

Start - Goal




A Powerful Interface for Reinforcement Learning

* Have user label trajectories with a value L € {1,0}:
 Undesirable event: 1
* No undesirable event: O

* E[L] is the probability that the undesirable event will occur.
* Let g(8) = E[L|60] — E[L|my,]

Pr(E[L|a(D)] < E[L|mcyr] ) 21 —6

* The probability that the policy will be changed to one that increases the
probability of an undesirable event is at most 6.

* The user need only be able to identify undesirable events!



Example: Type 1 Diabetes Management

* Undesirable event: the person experienced hypoglycemia during the
day.

* Try to keep blood glucose close to ideal levels (primary reward
function), but guarantee with probability 0.95 that the probability of
a hypoglycemic event will not increase.



Example: Classification (GPA, Disparate Impact)
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Accuracy
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Example: Classification (GPA, Demographic Parity)
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Accuracy

Example: Classification (GPA, Equalized Odds)
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Example: Bandit (Tutoring)
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Reward

10 A

Example: Bandit (Tutoring, Skewed Proportions)
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Reward

Example: Bandit (Loan Approval, Disparate Impact)
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Reward
o

Example: Bandit (Recidivism, Statistical Parity)
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Example: RL (Type 1 Diabetes Management)
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Example: RL (Type 1 Diabetes Management)

Probability of Solution
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Example: RL (Type 1 Diabetes Management)
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Probability of Solution

Example: RL (Type 1 Diabetes Management)
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Example: RL (HCPI, Mountain Car)
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Expected Normalized Return

Example: RL (Daedalus)
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Example: RL (Require significant improvement)
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Future Research Directions

* How to partition data?
 Why NSF (Not enough data? Conflicting constraints? Failed internal prediction? Available 67?)
* How to divide up § among base variables and solutions / intelligence interval propagation?

. How?to trade-off primary objective and predicted-safety-test in candidate selection in a principled
way'’:

e Secure Seldonian algorithms

* Combine with reward machines (specification for g, and perhaps f)?

* Multi-Agent RL, (with different constraints on different agents)?

* Extend Fairlearn to be Seldonian / to settings other than classification?
* Improved off-policy estimators for RL safety tests

e Sequential Seldonian algorithms

* Efficient optimization in candidate selection

e Actual HCl interface (natural language?)

» Better concentration inequalities (sequences?)



Watch For:

* High Confidence Policy Improvement (ICML 2015)

» Offline Contextual Bandits with High Probability Fairness Guarantees
* NeurlPS 2019

* On Ensuring that Intelligent Machines are Well-Behaved
e 2017 Arxiv paper updated soon!
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