
Testing a High Performance, Random Access Priority Queue: A Case Study

James D. McCaffrey

Adrian Bonar

The Microsoft Corporation

Abstract

This paper presents a case study of the functional

verification of a custom implementation of a random

access priority queue which was optimized for

performance. Although data structures have been

used for decades few studies have examined the

effectiveness of different testing strategies applied to

complex data structures. In this study, four different

testing approaches were used to test a priority queue.

The results showed that a state transition testing

approach (13 faults discovered) was clearly superior

with regards to the number of faults found than the

alternatives of a manual testing approach (3 faults

discovered), a unit testing approach (4 faults

discovered), and a classical test harness approach (6

faults discovered). Because the state transition testing

approach used was in essence a modified form of

random input testing, the results of this study suggest

that the notion that random input testing is typically

less effective than other forms of testing may be an

overly broad generalization.

Keywords: Priority queue, software testing, state

transition, test harness, unit testing.

1. Introduction

This paper presents a case study of the design and

functional verification of a high performance, random

access priority queue data structure. Although abstract

data structures implemented in high level programming

languages have been used for decades and many

critical software systems depend upon the correctness

of these data structures, there have been surprisingly

few formal research studies performed which

investigate the effectiveness of various testing

techniques to verify the functionality of these data

structures [1]. A review of the existing literature in the

area suggests that most studies of the functional

verification of data structure implementations are

primarily feasibility studies or studies of the

effectiveness of a single test strategy. A 2009 study by

Deshmukh and Emeerson pointed out that testing data

structures is not trivial and presents formidable

challenges. That study presented a prototype test tool

which had underlying functionality based on tree

automata [2]. A 2006 study by Bousjjani, Habermehl,

and Rogalewicz examined verification of dynamic

linked data structures using shape graphs and abstract

regular tree modeling [3]. A 2006 paper by

Habermehlm, Iosif, and Vojnar presented a feasibility

study of the verification of tree-like data structures

using a classical semi-algorithmic state transition

approach [4]. A 2006 study by Deshmukh, Emerson,

and Gupta presented a technique based on automata

theory and temporal logic to test programs which

modify data structures such as linked lists and directed

graphs [5].

To the best of our knowledge no previous research

studies have explicitly examined the comparative

effectiveness of different testing strategies for

verifying the correctness of a non-trivial data structure.

This case study emerged as part of a research project

which analyzed shortest path metrics on very large

(terabyte scale) graphs. That graph analysis project

required the implementation of a custom, high

performance, random access priority queue. Because

each shortest path analysis could take hours or even

days of processing time on a high performance

computing cluster, it was important that the utility

random access queue was functionally correct. Testing

the correctness of the utility queue data structure was a

challenging task and was approached using four

different testing strategies. The results of this case

study suggest that, in this one scenario at least, a state

transition testing approach was clearly superior to the

other three approaches.

2. Definitions and Design

An early design decision was made to implement

the custom priority queue to support only a very

specific shortest path scenario rather than to implement

the queue in a generalized form which could be used in

2011 Eighth International Conference on Information Technology: New Generations

978-0-7695-4367-3/11 $26.00 © 2011 IEEE

DOI 10.1109/ITNG.2011.56

280

a variety of scenarios. Custom data structures can be

implemented to emphasize performance (typically

using an array approach and auxiliary lookup tables) or

minimize memory usage (typically using a

dynamic/pointer approach). A 2008 paper by Herbordt,

Kosie, and Model presented a priority queue design

which emphasized performance [6]. A 2008 paper by

Dragicevic and Bauer surveyed the designs of custom

priority queues used for concurrent algorithms [7]. The

graph which is the target of the shortest path algorithm

which uses the priority queue is assumed to be

undirected and have vertices each of which has a

unique, ordinal, 0-based vertex ID. Each edge between

a pair of vertices in the graph is assumed to have a

positive, integer-based distance value associated with

the edge.

A generic priority queue abstract data type holds

arbitrary items where each item has an associated

priority value of some kind and supports at least three

basic operations: create, enqueue, and dequeue. A

generic priority queue maintains a state order invariant

such that the item in the queue which has the highest

priority value is always located at the virtual front of

the queue, that is, the location in the queue where the

next item will be removed. The create operation

initializes the queue to an empty state. The enqueue

operation adds an item to the queue in such a way that

the queue maintains its state invariant. In general,

priority queues allow items with identical priority

values to exist in the queue at any given time. The

dequeue operation removes the virtual front item from

the queue, which by definition will be the item in the

queue with the highest priority value.

A random access priority queue is a priority queue

which supports two additional operations: remove and

modify. The remove operation deletes a specified item

from the queue, which may or may not be located at

the virtual front position, and maintains the state order

invariant. The modify operation changes one or more

of the fields of a specified item in the queue, and

maintains the state order invariant. Note that both the

remove and modify operations impose the constraints

that items contained in the queue must have some

unique identification field and the existence of a

location function which returns the position of a

particular item within the queue. The random access

priority queue tested in this study was designed to

emphasize performance; the enqueue, dequeue,

modify, and remove operations were designed to have

O(lg n) performance and the location function was

designed to have O(1) performance.

There are several ways commonly used to design a

priority queue. One typical design choice is to use a

binary heap in part because there is a very close

relationship between the priority queue state order

invariant and the heap state order invariant. A binary

heap is similar to a binary tree structure and has two

important characteristics. First, the heap structure is

ordered with respect to some item key field in such a

way that the key field of any node is less than the key

fields of both of its child nodes, that is, the heap

satisfies a state invariant such that for any node n in the

heap, if node n is the parent of c then n.key >= c.key.

In the case of the shortest path algorithm, the graph

node distance field acts as the priority value. This

means a node with the smallest distance value (where

distance represents the distance from the algorithm

start vertex to the reference node) will always be

located at the root of the binary heap. A second binary

heap property is that the tree structure is complete

meaning that, visually, the tree is filled level-by-level,

from left to right. This shape property allows a binary

heap to be efficiently implemented using an array.

The following pseudocode illustrates the five

operations supported by the random access priority

queue:

(0) graphSize := 15;

(1) pq := NewQueue(graphSize);

(2) pq.Enqueue(NodeInfo(8, 110));

(3) pq.Enqueue(NodeInfo(2, 120));

(4) pq.Enqueue(NodeInfo(6, 100));

(5) if (pq.Contains(2) = true)

(6) Print("Node with ID = 2 is in queue");

(7) pq.Modify(8, 90);

(8) pq.Dequeue();

(9) pq.Remove(2);

Because the priority queue does not support

dynamic resizing, the size of the associated graph must

be known before the queue is instantiated as shown in

lines 0 and 1. Line 2 creates a node with ID = 8 and

distance = 110 and adds it (as the root node) to the

queue. Line 3 adds a node with ID = 2 and distance =

120. Because this node has greater distance (i.e., lower

priority) than the previously added node, it is added

below the existing root node. Line 4 adds another node

but because it has a smaller distance the heap is

modified so that this new node with distance 100 is

now the root node. Line 5 and 6 illustrate the search

function, which will take only O(1) time. Line 7

changes the distance value of the node with ID = 8 to

90. Because this is now the smallest distance, the heap

is modified so that this node becomes the root node.

Line 8 removes the root node. Line 9 removes the node

with ID = 2.

281

3. Implementation

Figure 1 illustrates the implementation of the

random access priority queue which was the target of

the testing approaches examined in this case study. The

top part of Figure 1 represents a binary heap associated

with the shortest path algorithm for a graph which has

15 vertices, numbered from 0 through 14. The data in

each node represent a graph vertex ID and the distance

from the shortest path start vertex to the node vertex.

So, the root node values mean that graph vertex with

ID = 6 has distance = 100 to the start vertex. Note that

not every vertex in the graph is necessarily represented

in the binary heap.

Figure 1. Random access priority queue.

The bottom part of Figure 1 represents the

implementation of a priority queue which corresponds

to the binary heap. Node values are stored in an array

named heap which has size equal to the number of

vertices in the associated heap. Notice that for any

node located at index i in array heap, the index of the

left child is given by i * 2 + 1, and that the index of the

right child is given by i * 2 + 2, and that the index of

the parent is given by (i – 1) / 2. In order to support an

O(1) location function an auxiliary lookup array named

ht is maintained. The index values of ht represent node

IDs and the values in ht represent indexes on the heap

array. So, in Figure 1 because ht[0] = 4, the node with

ID = 0 is located at position [4] in the heap array.

Values of -1 in ht indicate that a node is not in the heap

array. And in Figure 1 because ht[4] = -1, there is no

node with ID = 4 in the heap array.

The bottom part of Figure 1 illustrates that there are

six implementation-dependent state invariants of the

priority queue implementation which can be verified

programmatically to establish the correctness of the

queue. First, the distance value of the node which is

located in position [0] of the heap array must be less

than or equal to the distance value of all nodes at

282

positions [1] through [count-1]. Second, the number of

-1 values in the ht array must equal the quantity

capacity – count. This invariant can be expressed

equivalently as the number of non-negative values in

the ht array must equal the count value. Third, there

cannot be any duplicate non-negative values in the ht

array. Fourth, each of the integer values in the set

[0..count-1] must appear exactly once in the ht array.

Fifth, for each non-negative value i located at index [j]

in the ht array, the ID value at index [i] in the heap

array must equal j. Sixth, the heap property in the heap

array must hold for all values at positions [0] through

[count-1], that is, the distance values at indexes [i*2+1]

and [i*2+2] must be greater than or equal to the

distance value at index [i].

The random access priority queue was implemented

with an object oriented approach using the C#

language as a class library which in turn was realized

as a DLL file suitable for use by programs written in

any .NET-compliant language. However, the

implementation details are independent of the design

for the most part and the priority queue could have

been implemented using any modern language, such as

C++ or Java.

4. Testing

As described in the introduction section of this

paper, there were few guidelines available to suggest

how best to verify the functional correctness of the

random access priority queue. Previous studies have

suggested that in general a pure random testing

approach is less effective than other testing techniques

such as equivalence partition based testing but there

are few studies which provide practical guidance for

testing complex data structures [8].

Four different testing approaches were used to test

the priority queue data structure described in the

previous section of this study. The number of test cases

created using each of the four techniques was

determined by the number of cases which could be

created by an experienced software engineer in four

hours. The first approach was to use a manual coding

technique. In this approach, a short program was

created where the queue was created and one or two

operations were manually coded. The program was

executed and the final state of the queue was examined

using a utility display function. The program was then

manually modified and executed again, and the process

repeated. A total of 36 test cases were created in this

way.

The second testing approach was a unit test

technique. In this approach small auxiliary blocks of

code called unit tests were embedded into the

implementation of the random access priority queue.

Each code block corresponded to a single test case and

the unit tests were run via a unit test harness program.

A total of 23 test cases were created in this way. The

third testing approach was a test harness approach.

Here an external file of test case data was created, and

a small test harness program was written. The test

harness program read each test case, performed the

indicated operations on the queue based on test case

input, and programmatically determined a pass/fail

result based on test case data expected value. A total of

36 test cases were created in this way. The fourth

testing approach was a state transition approach. Here a

dedicated test program was created. The test program

repeatedly selected a queue random operation,

performed that operation, and then performed a state

validation check. Because this approach is effectively a

type of random input testing, the equivalent of a total

of 500,000 test cases were executed.

An example of code in the manual coding test

approach is suggested by the following pseudocode:

pq := NewQueue(8);

pq.Enqueue(Node(0,20));

pq.Enqueue(Node(1,10));

pq.Show();

Here a node with ID = 0 and distance/priority = 20

is added, and then a second node with ID = 1 and

distance/priority = 10 is added. The resulting queue

was then examined manually to verify that the second

node was at the front of the queue.

An example of code in the unit test approach is

suggested by the following pseudocode:

[Test]

public void TestCase001()

{

 pq := NewQueue(8);

 pq.Enqueue(Node(0,20));

 pq.Enqueue(Node(1,10));

 Assert.AreEqual(1, pq.PeekID());

}

An example of test case data used in the test harness

approach is suggested by the following:

001:e0,20:e1,10#p1

002:e0,20,e1,10#c2

The first line of test case data is interpreted by the

test harness program to mean, read test case 001,

enqueue a node with ID = 0 and distance/priority = 20,

283

then enqueue a node with ID = 1 and distance/priority

= 10, then verify the peek (front) node has ID = 1.

An example of code in the state transition test

approach is suggested by the following pseudocode:

loop

 operation = RandomOperation();

 if (operation = "enqueue") enqueue;

 else if (operation = "dequeue") dequeue;

 else if (operation = "modify") modify;

 else if (operation = "remove") remove;

 check internal state of queue

end loop

The key to the state transition approach is the

existence of a function which checks the priority queue

for internal consistency. This verifier function

performed four checks which correspond to four of the

six implementation invariants described in the previous

section of this paper. First, the verifier checked that the

highest priority / minimum distance in the queue is

located at the root node of the underlying binary heap.

Second, the verifier checked that the auxiliary ht /

location array values are consistent with the values in

the heap array. Third, the verifier checked that the

fundamental heap ordering property holds for all value

in the heap array. Fourth, the verifier checked that

there are no nodes which have duplicate ID values in

the heap array.

A 2005 paper by de Nivelle and Piskac present a

formal specification for priority queues. The authors

point out that when data structures are used within a

computer program, state verification of the data

structure can be performed in what they call an on-line

or off-line manner [9]. That paper defines on-line

priority queue verification as verification which takes

place immediately after any operation is performed,

and off-line verification a verification which takes

place at some later point in time, possible after several

operations have been performed. In this context, the

state transition testing approach used in this case study

was performing an on-line verification.

5. Results

Because this study was an empirical case study

rather than an experimental study, there was no a priori

hypothesis with regards to which of the four testing

techniques would be the most effective. An initial, beta

version implementation of the random access priority

queue was tested using each technique. This beta

version was created as a production version and not

modified because it was intended to be part of a case

study. The numbers of faults in each of the four

priority queue operations detected by each testing

strategy are shown in Table 1.

Table 1. Effectiveness of testing strategies.

 enqueue dequeue remove modify

manual 0 1 1 1 3

unit 0 2 1 1 4

harness 1 1 2 2 6

state 3 3 4 3 13

Each of the four testing strategies was performed

independently, on the same initial version of the

priority queue implementation and all test approaches

were created before any of the testing approaches were

used to eliminate any bias introduced by running one

set of tests before another. The set of faults detected by

the state transition testing strategy was a proper

superset of the faults found by the combined fault sets

of the other three testing strategies, or in other words,

the manual test strategy and the unit test strategy and

the classical test harness strategy together did not find

any faults which were not detected by the state

transition strategy.

Because the state transition testing strategy used in

this study generates test scenarios where a priority

queue operation is selected at random, the state

transition testing approach can be viewed as an

intelligent form of pure random input testing. In pure

random input testing, pseudorandom input is fed to the

system under test and in most situations there is no

explicit expected value associated with input.

Therefore, the goal of pure random input testing is

typically to cause a severe system fault which will halt

the system [10]. The state transition testing approach

used in this study essentially used a global, dynamic

meta expected value in the form of a consistent internal

state of the priority queue under test. In order to

evaluate the extent to which state transition testing is

related to pure random testing, a pure random input test

harness was created and executed against the beta

implementation of the priority queue. The pure random

testing approach revealed a total of 4 program faults

suggesting that state transition testing is in fact more

than simply a variation of pure random input testing.

6. Conclusions

In terms of the number of faults discovered, the

state transition testing approach was clearly the best

technique in this particular case study. The state

transition approach revealed the most faults for each of

the four fundamental operations. In fact, after this case

study concluded, the priority queue examined here was

used for extensive graph analyses over the course of

284

several months and no additional faults were revealed

suggesting that the state transition testing approach

revealed all significant faults in the priority queue.

Even though the state transition testing approach

was able to execute vastly most test cases than the

other three testing approaches, the fact that the state

transition approach discovered the most faults is

somewhat surprising because this approach is a

relatively unsophisticated approach meaning that little

software testing principles were required to create the

implicit test cases used with this approach. On the

other hand, because the concept of state is such an

inherent part of an abstract data structures, the results

are perhaps not so surprising. Because this was a case

study rather than an experimental study, no broad

conclusions can be drawn from the study's results. This

case study is perhaps best viewed as a preliminary

investigation which lays the groundwork for

experimental investigations of the effectiveness of

different strategies for testing complex data structures.

7. References

[1] J.H. Andrews, "A Case Study of Coverage-Checked

Random Data Structure Testing", Proceedings of the 19th

International Conference on Automated Software

Engineering, September 2004, pp. 316-319.

[2] J. Deshmukh and E.A. Emerson, "Verification of

Recursive Methods on Tree-Like Data Structures", Formal

Methods in Computer-Aided Design, November 2009, pp.

33-40.

[3] A. Bouajjani, P. Habermehl, and A. Rogalewicz,

"Abstract Regular Tree Model Checking of Complex

Dynamic Data Structures", Proceedings of the Static Analysis

Symposium (SAS), 2006, pp. 52-70.

[4] P. Habermehl, R. Iosif, and T. Vojnar, "Automata-Based

Verification of Programs with Tree Updates", Proceedings of

TACAS, Springer Lecture Notes in Computer Science, 2006,

vol. 3920, pp. 350-364.

[5] J. Deshmukh, E. Emerson, and P. Gupta, "Automatic

Verification of Parameterized Data Structures", Proceedings

of the 16th International Symposium on Field-Programmable

Custom Computing Machines, April 2008, pp. 248-257.

[6] M.C. Herbordt, F. Kosie, and J. Model, "An Efficient

O(1) Priority Queue for Large FPGA-Based Discrete Event

Simulations of Molecular Dynamics", Proceedings of the 19th

International Conference on Automated Software

Engineering, September 2004, pp. 316-319.

[7] K. Dragicevic and D. Bauer, "A Survey of Concurrent

Priority Queue Algorithms", Proceedings of the IEEE

International Symposium on Parallel and Distributed

Processing, April 2008, pp. 1-6.

[8] J.D. McCaffrey, "An Empirical Study of the

Effectiveness of Partial Antirandom Testing", Proceedings of

the 18th International Conference on Software Engineering

and Data Engineering, June 2009, pp. 260-265.

[9] H. de Nivelle and R. Piskac, "Verification of an Off-Line

Checker for Priority Queues", Proceedings of the Third IEEE

International Conference on Software Engineering and

Formal Methods, September 2005, pp. 210-219.

[10] J.D. McCaffrey, .NET Test Automation Recipes: A

Problem-Solution Approach, Apress Publishing, New York,

2006.

285

