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Multi-agent systems are 
(going to be) everywhere

UAV surveillanceDrone delivery Autonomous cars

Cyber security
Smart energy grids

Home robots



Uncertainties

• These real-world problems have several forms of uncertainty:

• Outcome uncertainty

• Sensor uncertainty

• Communication uncertainty



Multiple cooperating agents
• Decentralized partially observable Markov decision process (Dec-POMDP) 

Bernstein et al., 02

• Extension of the single agent MDP and POMDP models

• Multiagent sequential decision-making under uncertainty

• At each stage, each agent takes an action and receives:

• A local observation

• A joint immediate reward



Dec-POMDP model
• A Dec-POMDP can be defined with the tuple: <I, S, {Ai}, T, R, {Ωi}, O>

• I, a finite set of agents

• S, a finite set of states with designated initial state distribution b0

• Ai, each agent’s finite set of actions 

• T, the state transition model:  

• R, the reward model: 

• Ωi, each agent’s finite set of observations

• O, the observation model:

• h, horizon or discount γ

Note: Functions depend on all agents 



Dec-POMDP solutions
• A local policy for each agent,             , maps its observation sequences to actions  

• State is unknown, so beneficial to remember history

• Policy representations:

• one for each agent

• Some examples: Policy trees, finite-state controllers, recurrent networks

• Evaluation:

• Starting from a set of nodes q, taking the associated actions and transitions

• Goal: maximize expected cumulative reward over a finite or infinite horizon (use 
discount factor, γ, in infinite case)



Dec-POMDPs are general
• Any cooperative problem with outcome, sensor and communication uncertainty

• A common framework for multi-agent RL (MARL)

• The only more general framework is the partially observable stochastic game

• This generality means the solution must consider partial observability and other agents



Overview

• How do we learn solutions to Dec-POMDPs?

• Scalable to large domains?

• How do we integrate deep RL methods into MARL?

• How can we scale to large horizons?



Decentralized learning
• Many MARL methods are centralized learning for decentralized execution (e.g., use 

full state information, centralized value function)

• Can also do decentralized learning for decentralized execution

• More scalable

• Can apply to online learning

• Can directly apply single-agent RL to each agent (e.g., independent learning)

• Problem is now non-stationary from the perspective of each agent



Decentralized Hysteretic DQN (Dec-
HDRQN)

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

• Hysteresis (Matignon et al., IROS 07): two learning rates 𝜶𝜶 and 𝜷𝜷 (with 𝜷𝜷 < 𝜶𝜶) 

• Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

• DRQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Helps with nonstationarity

Helps with scalability

Helps with partial observability



Synchronizing samples

• Concurrent Experience Replay Trajectories (CERTs)

• Helps stabilize learning

• Can be implemented in a decentralized manner 



Results

Our method is more stable and scalable 

This paper also developed a multitask version of this algorithm

Target capture

Dec-DRQN
(without hysteresis)

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Dec-HDRQN
(our method)



Scaling up: macro-actions            
Amato, Konidaris and Kaelbling - AAMAS 14

Amato, Konidaris, How and Kaelbling - JAIR 19

• Dec-POMDP methods model and solve at a low level (actions as control inputs)



Scaling up: macro-actions            
Amato, Konidaris and Kaelbling - AAMAS 14

Amato, Konidaris, How and Kaelbling - JAIR 19

• Dec-POMDP methods model and solve at a low level (actions as control inputs)

• This is intractable (and unnecessary!) for real-world systems

• Often easy to plan for subgoals/subtasks

• Set initial and terminal conditions (i.e., states) 

• Have expertly programmed controllers

• Allows for asynchronous decision-making

• Resulting model: MacDec-POMDP (macro-action Dec-POMDP)



Macro-action solution
representations 

• Can extend policy representations to macro-action case

• m = macro-action

• z = high-level observation

• Finite-state controllers 𝜇𝜇 for each agent i defined with node set Qi:

• Action selection, λ: Qi → Mi

• Node transitions, 𝛿𝛿: Qi × Zi → Qi

• An initial node: qi0 ∈ Qi

• But macro-actions finish at different times!

• Developed decentralized partially observable semi-Markov decision process (Dec-POSMDP)

Omidshafiei, Agha, Amato, Liu and How - IJRR 17



Macro-action deep MARL?

• All current deep MARL methods assume synchronized (i.e., primitive) 
actions

• It isn’t clear how to incorporate asynchronous macro-actions into deep 
MARL methods



Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Decentralized learning
Xiao, Hoffman and Amato - CoRL 19

We assume we can get macro-action-level information every (primitive) time step 
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Using Mac-CERTs to learn macro-action-value function for each agent

Generating concurrent trajectories
Xiao, Hoffman and Amato - CoRL 19



Generating concurrent trajectories
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

Sample concurrent trajectories for each agent 



Using Mac-CERTs to learn macro-action-value function for each agent

Generating concurrent trajectories
Xiao, Hoffman and Amato - CoRL 19

Sample concurrent trajectories for each agent 



Generating concurrent trajectories
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

Identify when macro-actions change



squeeze

squeeze

Decentralized learning
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

Many possibilities, but we throw away time info



squeeze

squeeze

Can now use Decentralized Hysteretic DRQN (Dec-HDRQN) to learn each agent’s macro-action-value 
function , using squeezed sequential experiences, by minimizing the loss:

,  where

Decentralized learning
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

The double Q version



Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)
➢ Collect the joint macro-action-observation experiences of agents;
➢ Joint transition tuple is defined as                           , where

Example:

Centralized learning
Xiao, Hoffman and Amato - CoRL 19
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Using Mac-JERTs to learn a joint macro-action-value function Xiao, Hoffman and Amato - CoRL 19

Centralized learning

Identify when any agent’s macro-action terminates 



Using Mac-JERTs to learn a joint macro-action-value function

squeeze

Centralized learning
Xiao, Hoffman and Amato - CoRL 19

Sample a joint trajectory Remove the time info



Using Mac-JERTs to learn a joint macro-action-value function

squeeze

We apply Double-DRQN to learn the joint macro-action-value function (referred to as Cen-DDRQN)  
using squeezed joint sequential experiences, by minimizing the loss:

,  where

Considering the asynchronous macro-action executions over agents, we propose conditional target-value 
prediction:

where,                  is the joint macro-action over the agents who have not terminated their macro-actions

Centralized learning
Xiao, Hoffman and Amato - CoRL 19



Results: Target  capture 

Primitive-observations: agent’s location (fully observable), 
target's location (partially observable with a flickering 
probability 0.3)
Macro-observations: same as the primitive

Primitive-actions: up, down, left, right, and stay;
Macro-actions: Move-to-Target (terminates when the agent 
reaches the latest observed target’s position) and Stay

Our decentralized macro-action approach (MA) vs primitive-action 
version for various grid sizes 

The macro-action method can learn much faster and 
converge to the same solution in this simple problem

Xiao, Hoffman and Amato - CoRL 19



Results: Box pushing

Decentralized learning with macro-actions 
(MA) vs primitive-actions

Conditional centralized learning vs 
decentralized learning with macro-actions

Xiao, Hoffman and Amato - CoRL 19

The primitive method can’t learn well in this problem, while the decentralized and centralized methods perform well



Results: Warehouse tool delivery

conditional centralized learning vs decentralized learning

The centralized learner achieves near-optimal performance The decentralized learner performs poorly due to the difficulty 
of learning from only local experiences 

Xiao, Hoffman and Amato - CoRL 19



Warehouse robot results
Xiao, Hoffman, Xia and Amato – under submission






Learning controllers

• Want to learn solutions directly from a limited number of demonstrations

• Demonstration trajectories create possible controllers which are optimized to 
produce a high-valued set of finite-state controllers

• Scalable to large state, macro-action and observation sets

Liu, Amato, Anesta, Griffith and How - AAAI 16

R



Learning controllers
• Trajectories give possible sequences and values

• Since don’t have model use Monte Carlo-based EM to optimize 
controller parameters

• Return a controller with parameters learned from the data 

Liu, Amato, Anesta, Griffith and How - AAAI 16



Search and rescue in simulation

• Used demonstrations from a hand coded ‘expert’ solution (from MIT-Lincoln lab)

• Tested in a simulator

• Outperforms hand coded ‘expert’ solutions, even with a small amount of noisy data

• Can also learn optimal or near optimal policies in benchmarks

Liu, Amato, Anesta, Griffith and How - AAAI 16



Search and rescue in hardware

Georgia tech Tesla

Liu, Sivakumar, Omidshafiei, Amato and How - IROS 17



Why can’t we just use deep RL?
• Using deep RL for Dec-POMDPs has become a hot topic (e.g., Omidshafiei, Pazis, 

Amato, How and Vian, ICML 17, Foerster, Assael, de Freitas, and  Whiteson, NIPS 
16, Gupta, Egorov, Kochenderfer ICML 17, and many others)

• Helps scale to large state/observation spaces, but doesn’t solve other multi-agent 
learning problems

• Centralized vs. decentralized learning

• Sample efficiency/online learning

• Dealing with nonstationarity

• Dealing with partial observability



Conclusions
• Dec-POMDPs represent a powerful probabilistic multi-agent framework

• Considers outcome, sensor and communication uncertainty in a single 
framework

• Can model any multi-agent coordination problem

• Macro-actions provide an abstraction to improve scalability

• Learning methods can remove the need to generate a detailed multi-agent 
model

• Methods also apply when less uncertainty

• Begun demonstrating scalability and quality in a number of domains, but a lot 
of great open questions to solve!
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