
Scalable and Robust Multi-Agent 
Reinforcement Learning

Chris Amato
Northeastern University

Shayegan Omidshafiei Yuchen Xiao



Multi-agent systems are 
(going to be) everywhere

UAV surveillanceDrone delivery Autonomous cars

Cyber security
Smart energy grids

Home robots



Uncertainties

• These real-world problems have several forms of uncertainty:

• Outcome uncertainty

• Sensor uncertainty

• Communication uncertainty



Multiple cooperating agents
• Decentralized partially observable Markov decision process (Dec-POMDP) 

Bernstein et al., 02

• Extension of the single agent MDP and POMDP models

• Multiagent sequential decision-making under uncertainty

• At each stage, each agent takes an action and receives:

• A local observation

• A joint immediate reward



Dec-POMDP model
• A Dec-POMDP can be defined with the tuple: <I, S, {Ai}, T, R, {Ωi}, O>

• I, a finite set of agents

• S, a finite set of states with designated initial state distribution b0

• Ai, each agent’s finite set of actions 

• T, the state transition model:  

• R, the reward model: 

• Ωi, each agent’s finite set of observations

• O, the observation model:

• h, horizon or discount γ

Note: Functions depend on all agents 



Dec-POMDP solutions
• A local policy for each agent,             , maps its observation sequences to actions  

• State is unknown, so beneficial to remember history

• Policy representations:

• one for each agent

• Some examples: Policy trees, finite-state controllers, recurrent networks

• Evaluation:

• Starting from a set of nodes q, taking the associated actions and transitions

• Goal: maximize expected cumulative reward over a finite or infinite horizon (use 
discount factor, γ, in infinite case)



Dec-POMDPs are general
• Any cooperative problem with outcome, sensor and communication uncertainty

• A common framework for multi-agent RL (MARL)

• The only more general framework is the partially observable stochastic game

• This generality means the solution must consider partial observability and other agents



Overview

• How do we learn solutions to Dec-POMDPs?

• Scalable to large domains?

• How do we integrate deep RL methods into MARL?

• How can we scale to large horizons?



Decentralized learning
• Many MARL methods are centralized learning for decentralized execution (e.g., use 

full state information, centralized value function)

• Can also do decentralized learning for decentralized execution

• More scalable

• Can apply to online learning

• Can directly apply single-agent RL to each agent (e.g., independent learning)

• Problem is now non-stationary from the perspective of each agent



Decentralized Hysteretic DQN (Dec-
HDRQN)

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

• Hysteresis (Matignon et al., IROS 07): two learning rates 𝜶𝜶 and 𝜷𝜷 (with 𝜷𝜷 < 𝜶𝜶) 

• Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

• DRQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Helps with nonstationarity

Helps with scalability

Helps with partial observability



Synchronizing samples

• Concurrent Experience Replay Trajectories (CERTs)

• Helps stabilize learning

• Can be implemented in a decentralized manner 



Results

Our method is more stable and scalable 

This paper also developed a multitask version of this algorithm

Target capture

Dec-DRQN
(without hysteresis)

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Dec-HDRQN
(our method)



Scaling up: macro-actions            
Amato, Konidaris and Kaelbling - AAMAS 14

Amato, Konidaris, How and Kaelbling - JAIR 19

• Dec-POMDP methods model and solve at a low level (actions as control inputs)



Scaling up: macro-actions            
Amato, Konidaris and Kaelbling - AAMAS 14

Amato, Konidaris, How and Kaelbling - JAIR 19

• Dec-POMDP methods model and solve at a low level (actions as control inputs)

• This is intractable (and unnecessary!) for real-world systems

• Often easy to plan for subgoals/subtasks

• Set initial and terminal conditions (i.e., states) 

• Have expertly programmed controllers

• Allows for asynchronous decision-making

• Resulting model: MacDec-POMDP (macro-action Dec-POMDP)



Macro-action solution
representations 

• Can extend policy representations to macro-action case

• m = macro-action

• z = high-level observation

• Finite-state controllers 𝜇𝜇 for each agent i defined with node set Qi:

• Action selection, λ: Qi → Mi

• Node transitions, 𝛿𝛿: Qi × Zi → Qi

• An initial node: qi0 ∈ Qi

• But macro-actions finish at different times!

• Developed decentralized partially observable semi-Markov decision process (Dec-POSMDP)

Omidshafiei, Agha, Amato, Liu and How - IJRR 17



Macro-action deep MARL?

• All current deep MARL methods assume synchronized (i.e., primitive) 
actions

• It isn’t clear how to incorporate asynchronous macro-actions into deep 
MARL methods



Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Decentralized learning
Xiao, Hoffman and Amato - CoRL 19

We assume we can get macro-action-level information every (primitive) time step 



Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Example:

Decentralized learning
Xiao, Hoffman and Amato - CoRL 19



Example:

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Decentralized learning
Xiao, Hoffman and Amato - CoRL 19



Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Decentralized learning

Example:

Xiao, Hoffman and Amato - CoRL 19



Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Decentralized learning

Example:

Xiao, Hoffman and Amato - CoRL 19



Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)
➢ Collect the concurrent macro-action-observation experiences of agents;
➢ Transition tuple of each agent is defined as                           , where

Note that, the next macro-observation      is set as same as      if the macro-action is still under running.

Decentralized learning

Example:

Xiao, Hoffman and Amato - CoRL 19



Using Mac-CERTs to learn macro-action-value function for each agent

Generating concurrent trajectories
Xiao, Hoffman and Amato - CoRL 19



Generating concurrent trajectories
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

Sample concurrent trajectories for each agent 



Using Mac-CERTs to learn macro-action-value function for each agent

Generating concurrent trajectories
Xiao, Hoffman and Amato - CoRL 19

Sample concurrent trajectories for each agent 



Generating concurrent trajectories
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

Identify when macro-actions change



squeeze

squeeze

Decentralized learning
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

Many possibilities, but we throw away time info



squeeze

squeeze

Can now use Decentralized Hysteretic DRQN (Dec-HDRQN) to learn each agent’s macro-action-value 
function , using squeezed sequential experiences, by minimizing the loss:

,  where

Decentralized learning
Using Mac-CERTs to learn macro-action-value function for each agent

Xiao, Hoffman and Amato - CoRL 19

The double Q version



Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)
➢ Collect the joint macro-action-observation experiences of agents;
➢ Joint transition tuple is defined as                           , where

Example:

Centralized learning
Xiao, Hoffman and Amato - CoRL 19



Example:

Centralized learning
Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

➢ Collect the joint macro-action-observation experiences of agents;
➢ Joint transition tuple is defined as                           , where

Xiao, Hoffman and Amato - CoRL 19



Example:

Centralized learning
Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

➢ Collect the joint macro-action-observation experiences of agents;
➢ Joint transition tuple is defined as                           , where

Xiao, Hoffman and Amato - CoRL 19



Example:

Centralized learning
Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

➢ Collect the joint macro-action-observation experiences of agents;
➢ Joint transition tuple is defined as                           , where

Xiao, Hoffman and Amato - CoRL 19



Example:

Centralized learning
Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

➢ Collect the joint macro-action-observation experiences of agents;
➢ Joint transition tuple is defined as                           , where

Xiao, Hoffman and Amato - CoRL 19



Using Mac-JERTs to learn a joint macro-action-value function Xiao, Hoffman and Amato - CoRL 19

Centralized learning

Identify when any agent’s macro-action terminates 



Using Mac-JERTs to learn a joint macro-action-value function

squeeze

Centralized learning
Xiao, Hoffman and Amato - CoRL 19

Sample a joint trajectory Remove the time info



Using Mac-JERTs to learn a joint macro-action-value function

squeeze

We apply Double-DRQN to learn the joint macro-action-value function (referred to as Cen-DDRQN)  
using squeezed joint sequential experiences, by minimizing the loss:

,  where

Considering the asynchronous macro-action executions over agents, we propose conditional target-value 
prediction:

where,                  is the joint macro-action over the agents who have not terminated their macro-actions

Centralized learning
Xiao, Hoffman and Amato - CoRL 19



Results: Target  capture 

Primitive-observations: agent’s location (fully observable), 
target's location (partially observable with a flickering 
probability 0.3)
Macro-observations: same as the primitive

Primitive-actions: up, down, left, right, and stay;
Macro-actions: Move-to-Target (terminates when the agent 
reaches the latest observed target’s position) and Stay

Our decentralized macro-action approach (MA) vs primitive-action 
version for various grid sizes 

The macro-action method can learn much faster and 
converge to the same solution in this simple problem

Xiao, Hoffman and Amato - CoRL 19



Results: Box pushing

Decentralized learning with macro-actions 
(MA) vs primitive-actions

Conditional centralized learning vs 
decentralized learning with macro-actions

Xiao, Hoffman and Amato - CoRL 19

The primitive method can’t learn well in this problem, while the decentralized and centralized methods perform well



Results: Warehouse tool delivery

conditional centralized learning vs decentralized learning

The centralized learner achieves near-optimal performance The decentralized learner performs poorly due to the difficulty 
of learning from only local experiences 

Xiao, Hoffman and Amato - CoRL 19



Warehouse robot results
Xiao, Hoffman, Xia and Amato – under submission






Learning controllers

• Want to learn solutions directly from a limited number of demonstrations

• Demonstration trajectories create possible controllers which are optimized to 
produce a high-valued set of finite-state controllers

• Scalable to large state, macro-action and observation sets

Liu, Amato, Anesta, Griffith and How - AAAI 16

R



Learning controllers
• Trajectories give possible sequences and values

• Since don’t have model use Monte Carlo-based EM to optimize 
controller parameters

• Return a controller with parameters learned from the data 

Liu, Amato, Anesta, Griffith and How - AAAI 16



Search and rescue in simulation

• Used demonstrations from a hand coded ‘expert’ solution (from MIT-Lincoln lab)

• Tested in a simulator

• Outperforms hand coded ‘expert’ solutions, even with a small amount of noisy data

• Can also learn optimal or near optimal policies in benchmarks

Liu, Amato, Anesta, Griffith and How - AAAI 16



Search and rescue in hardware

Georgia tech Tesla

Liu, Sivakumar, Omidshafiei, Amato and How - IROS 17



Why can’t we just use deep RL?
• Using deep RL for Dec-POMDPs has become a hot topic (e.g., Omidshafiei, Pazis, 

Amato, How and Vian, ICML 17, Foerster, Assael, de Freitas, and  Whiteson, NIPS 
16, Gupta, Egorov, Kochenderfer ICML 17, and many others)

• Helps scale to large state/observation spaces, but doesn’t solve other multi-agent 
learning problems

• Centralized vs. decentralized learning

• Sample efficiency/online learning

• Dealing with nonstationarity

• Dealing with partial observability



Conclusions
• Dec-POMDPs represent a powerful probabilistic multi-agent framework

• Considers outcome, sensor and communication uncertainty in a single 
framework

• Can model any multi-agent coordination problem

• Macro-actions provide an abstraction to improve scalability

• Learning methods can remove the need to generate a detailed multi-agent 
model

• Methods also apply when less uncertainty

• Begun demonstrating scalability and quality in a number of domains, but a lot 
of great open questions to solve!


	Scalable and Robust Multi-Agent Reinforcement Learning
	Multi-agent systems are �(going to be) everywhere
	Uncertainties
	Multiple cooperating agents
	Dec-POMDP model
	Dec-POMDP solutions
	Dec-POMDPs are general
	Overview
	Decentralized learning
	Decentralized Hysteretic DQN (Dec-HDRQN)
	Synchronizing samples
	Results
	Scaling up: macro-actions            Amato, Konidaris and Kaelbling - AAMAS 14�Amato, Konidaris, How and Kaelbling - JAIR 19
	Scaling up: macro-actions            Amato, Konidaris and Kaelbling - AAMAS 14�Amato, Konidaris, How and Kaelbling - JAIR 19
	Macro-action solution representations 
	Macro-action deep MARL?
	Decentralized learning
	Decentralized learning
	Decentralized learning
	Decentralized learning
	Decentralized learning
	Decentralized learning
	Generating concurrent trajectories
	Generating concurrent trajectories
	Generating concurrent trajectories
	Generating concurrent trajectories
	Decentralized learning
	Decentralized learning
	Centralized learning
	Centralized learning
	Centralized learning
	Centralized learning
	Centralized learning
	Centralized learning
	Centralized learning
	Centralized learning
	Results: Target  capture 
	Results: Box pushing
	Results: Warehouse tool delivery
	Warehouse robot results
	Learning controllers
	Learning controllers
	Search and rescue in simulation
	Search and rescue in hardware
	Why can’t we just use deep RL?
	Conclusions

