Scalable and Robust Multi-Agent Reinforcement Learning

Chris Amato
Northeastern University

Yuchen Xiao

Multi-agent systems are (going to be) everywhere

Uncertainties

- These real-world problems have several forms of uncertainty:
 - Outcome uncertainty
 - Sensor uncertainty
 - Communication uncertainty

Multiple cooperating agents

- Decentralized partially observable Markov decision process (Dec-POMDP)
 Bernstein et al., 02
 - Extension of the single agent MDP and POMDP models
 - Multiagent sequential decision-making under uncertainty
- At each stage, each agent takes an action and receives:
 - A local observation
 - · A joint immediate reward

Dec-POMDP model

- A Dec-POMDP can be defined with the tuple: $\langle I, S, \{A_i\}, T, R, \{\Omega_i\}, O \rangle$
 - *I*, a finite set of agents
 - S, a finite set of states with designated initial state distribution b⁰
 - A_i, each agent's finite set of actions
 - T, the state transition model: $P(s'|s,\vec{a})$
 - R, the reward model: $R(s, \vec{a})$
 - Ω_i , each agent's finite set of observations
 - O, the observation model: $P(\vec{o} | s', \vec{a})$
 - h, horizon or discount γ

Note: Functions depend on all agents

Dec-POMDP solutions

- A *local policy* for each agent, $H \to A$ maps its observation sequences to actions
 - State is unknown, so beneficial to remember history
- Policy representations:
 - one for each agent

• Evaluation:
$$V(q,s) = R(s,a_q) + \gamma \sum_{s',o} \Pr(s'|s,a_q) \Pr(o|s',a) V(q_o,s')$$

- Starting from a set of nodes q, taking the associated actions and transitions
- Goal: maximize expected cumulative reward over a finite or infinite horizon (use discount factor, γ, in infinite case)

Dec-POMDPs are general

- Any cooperative problem with outcome, sensor and communication uncertainty
- A common framework for multi-agent RL (MARL)

- The only more general framework is the partially observable stochastic game
- This generality means the solution must consider partial observability and other agents

Overview

- How do we learn solutions to Dec-POMDPs?
- Scalable to large domains?
 - How do we integrate deep RL methods into MARL?
- How can we scale to large horizons?

- Many MARL methods are *centralized learning for decentralized execution* (e.g., use full state information, centralized value function)
- Can also do decentralized learning for decentralized execution
 - More scalable
 - Can apply to online learning
 - Can directly apply single-agent RL to each agent (e.g., independent learning)
 - Problem is now non-stationary from the perspective of each agent

Decentralized Hysteretic DQN (Dec-HDRQN)

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

• Traditional Q-learning: estimate Q-value with (x can be state, observation or history)

$$Q(x, a) \leftarrow Q(x, a) + \alpha \delta$$
$$\delta = Q(x, a) - (r + \gamma \max_{a'} Q(x', a'))$$

• Hysteresis (Matignon et al., IROS 07): two learning rates α and β (with $\beta < \alpha$) Helps with n

Helps with nonstationarity

$$Q(x, a) \leftarrow Q(x, a) + \beta \delta$$
 if $\delta \leq 0$
 $Q(x, a) + \alpha \delta$ otherwise

Deep Q-Networks (DQN) (Mnih et al., Nature 15) uses a neural net for function approximation

Helps with scalability

DRQN (Hausknecht and Stone, arXiv 15) adds a recurrent layer for memory

Helps with partial observability

Synchronizing samples

- Concurrent Experience Replay Trajectories (CERTs)
- Helps stabilize learning
- Can be implemented in a decentralized manner

Target capture

Dec-DRQN (without hysteresis)

Dec-HDRQN (our method)

Results

Omidshafiei, Pazis, Amato, How and Vian - ICML 17

Our method is more stable and scalable

This paper also developed a multitask version of this algorithm

Scaling up: macro-actions

Amato, Konidaris and Kaelbling - AAMAS 14 Amato, Konidaris, How and Kaelbling - JAIR 19

Dec-POMDP methods model and solve at a low level (actions as control inputs)

Scaling up: macro-actions

Amato, Konidaris and Kaelbling - AAMAS 14 Amato, Konidaris, How and Kaelbling - JAIR 19

- Dec-POMDP methods model and solve at a low level (actions as control inputs)
- This is intractable (and unnecessary!) for real-world systems
- Often easy to plan for subgoals/subtasks
 - Set initial and terminal conditions (i.e., states)
 - Have expertly programmed controllers
- Allows for asynchronous decision-making
- Resulting model: MacDec-POMDP (macro-action Dec-POMDP)

Macro-action solution representations

- · Can extend policy representations to macro-action case
 - *m* = macro-action
 - z = high-level observation
- Finite-state controllers μ for each agent i defined with node set Q_i:
 - Action selection, $\lambda: Q_i \to M_i$
 - Node transitions, $\delta: Q_i \times Z_i \rightarrow Q_i$
 - An initial node: $q_{i^0} \in Q_i$
- But macro-actions finish at different times!
- Developed decentralized partially observable semi-Markov decision process (Dec-POSMDP)

Omidshafiei, Agha, Amato, Liu and How - IJRR 17

$$V^{\mu}(q,s) = R(s,\lambda(q)) + \sum_{k}^{\infty} \gamma^{k} \sum_{s',o} \Pr(s',k|s,\lambda(q)) \Pr(o|s',\lambda(q)) V^{\mu}(\delta(q,o),s')$$

Macro-action deep MARL?

- All current deep MARL methods assume synchronized (i.e., primitive) actions
- It isn't clear how to incorporate asynchronous macro-actions into deep MARL methods

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)

- ➤ Collect the concurrent macro-action-observation experiences of agents;
- ightharpoonup Transition tuple of each agent i is defined as $\langle z,m,z',r^c
 angle_i$, where $r^c = \sum_{t=t_m} r_t$

Note that, the next macro-observation z' is set as same as z if the macro-action is still under running.

We assume we can get macro-action-level information every (primitive) time step

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)

- ➤ Collect the concurrent macro-action-observation experiences of agents;
- ightharpoonup Transition tuple of each agent i is defined as $\langle z,m,z',r^c
 angle_i$, where $r^c = \sum_{t=t-1}^{\infty} r_t$

Note that, the next macro-observation z' is set as same as z if the macro-action is still under running.

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)

- ➤ Collect the concurrent macro-action-observation experiences of agents;
- ightharpoonup Transition tuple of each agent i is defined as $\langle z,m,z',r^c
 angle_i$, where $r^c = \sum_{t=t-1}^{\infty} r_t$

Note that, the next macro-observation z^\prime is set as same as z if the macro-action is still under running.

Time	t=1	t=2
	z_1	z_1
	m_1	m_1
Agent_1	z_1	z_1
	r_1	$\sum_{i=1}^{2} r_i$
	z_6	27
	m_4	m_5
Agent_2	27	27
	r_1	r_2
Joint Reward	r_1	r_2

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)

- ➤ Collect the concurrent macro-action-observation experiences of agents;
- ightharpoonup Transition tuple of each agent i is defined as $\langle z,m,z',r^c
 angle_i$, where $r^c = \sum_{t=t-1}^{\infty} r_t$

Note that, the next macro-observation z' is set as same as z if the macro-action is still under running.

Time	t=1	t=2	t=3
	z_1	z_1	z_1
	m_1	m_1	m_1
Agent_1	z_1	z_1	z_2
	r_1	$\sum_{i=1}^{2} r_{i}$	$\sum_{i=1}^3 r_i$
	z_6	27	27
	m_4	m_5	m_5
Agent_2	27	27	27
	r_1	r_2	$\sum_{i=2}^3 r_i$
Joint Reward	r_1	r_2	r_3

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)

- ➤ Collect the concurrent macro-action-observation experiences of agents;
- ightharpoonup Transition tuple of each agent i is defined as $\langle z,m,z',r^c
 angle_i$, where $r^c = \sum_{t=t_m} r_t$

Note that, the next macro-observation z^\prime is set as same as z if the macro-action is still under running.

Time	t=1	t=2	t=3	t=4
	z_1	z_1	z_1	z_2
	m_1	m_1	m_1	m_2
Agent_1	z_1	z_1	z_2	z_2
	r_1	$\sum_{i=1}^{2} r_{i}$	$\sum_{i=1}^{3} r_i$	r_4
	z_6	27	27	27
	m_4	m_5	m_5	m_5
Agent_2	27	27	27	28
	r_1	r_2	$\sum_{i=2}^3 r_i$	$\sum_{i=2}^4 r_i$
Joint Reward	r_1	r_2	r_3	r_4

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Concurrent Experience Replay Trajectories (Mac-CERTs)

- ➤ Collect the concurrent macro-action-observation experiences of agents;
- ightharpoonup Transition tuple of each agent i is defined as $\langle z,m,z',r^c
 angle_i$, where $r^c = \sum_{t=t_m} r_t$

Note that, the next macro-observation z^\prime is set as same as z if the macro-action is still under running.

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
	z_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	z_3
	m_1	m_1	m_1	m_2	m_2	m_2	m_2	m_3	m_3	m_3
Agent_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	z_3	z_3
	r_1	$\sum_{i=1}^{2} r_i$	$\sum_{i=1}^3 r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8	$\sum_{i=8}^9 r_i$	$\sum_{i=8}^{10} r_i$
	z_6	27	27	27	z_8	<i>z</i> ₉	z_9	z_9	z_{11}	z_{11}
	m_4	m_5	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8
Agent_2	27	27	27	z_8	z_9	z_9	<i>z</i> ₉	z_{11}	z_{11}	z_{12}
	r_1	r_2	$\sum_{i=2}^3 r_i$	$\sum_{i=2}^4 r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^{8} r_i$	r_9	$\sum_{i=9}^{10} r_i$
Joint Reward	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}

Xiao, Hoffman and Amato - CoRL 19

Using Mac-CERTs to learn macro-action-value function for each agent

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
	z_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	z_3
	m_1	m_1	m_1	m_2	m_2	m_2	m_2	m_3	m_3	m_3
Agent_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	z_3	z_3
	r_1	$\sum_{i=1}^{2} r_i$	$\sum_{i=1}^3 r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8	$\sum_{i=8}^9 r_i$	$\sum_{i=8}^{10} r_i$
	z_6	27	27	27	28	<i>z</i> ₉	29	z_9	z_{11}	z_{11}
	m_4	m_5	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8
Agent_2	27	27	27	z_8	z_9	<i>z</i> ₉	z_9	z_{11}	z_{11}	z_{12}
	r_1	r_2	$\sum_{i=2}^3 r_i$	$\sum_{i=2}^4 r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^{8} r_i$	r_9	$\sum_{i=9}^{10} r_i$
Joint Reward	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}

Xiao, Hoffman and Amato - CoRL 19

Using Mac-CERTs to learn macro-action-value function for each agent

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
	z_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	23
	m_1	m_1	m_1	m_2	m_2	m_2	m_2	m_3	m_3	m_3
Agent_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	23	z_3
	r_1	$\sum_{i=1}^{2} r_{i}$	$\sum_{i=1}^{3} r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8	$\sum_{i=8}^{9} r_i$	$\sum_{i=8}^{10} r_i$
	z_6	27	27	27	28	<i>z</i> ₉	29	29	z_{11}	z_{11}
	m_4	m_5	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8
Agent_2	z_7	27	27	z_8	z_9	z_9	z_9	z_{11}	z_{11}	z_{12}
	r_1	r_2	$\sum_{i=2}^3 r_i$	$\sum_{i=2}^4 r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^{8} r_i$	r_9	$\sum_{i=9}^{10} r_i$
Joint Reward	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}

Sample concurrent trajectories for each agent

Xiao, Hoffman and Amato - CoRL 19

Using Mac-CERTs to learn macro-action-value function for each agent

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10							
	z_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	z_3		z_1	z_2	z_2	z_2	z_2	13
	m_1	m_1	m_1	m_2	m_2	m_2	m_2	m_3	m_3	m_3		m_1	m_2	m_2	m_2	m_2	1
Agent_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	z_3	z_3	Agent_1	z_2	z_2	z_2	z_2	z_3	13
	r_1	$\sum_{i=1}^{2} r_{i}$	$\sum_{i=1}^{3} r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8	$\sum_{i=8}^{9} r_i$	$\sum_{i=8}^{10} r_i$		$\sum_{i=1}^{3} r_i$	r_4	$\sum_{i=4}^5 r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	
	<i>z</i> ₆	27	27	27	z_8	z_9	<i>z</i> ₉	<i>z</i> ₉	z_{11}	z_{11}		27	27	<i>z</i> ₈	<i>z</i> ₉	<i>z</i> ₉	
	m_4	m_5	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8		m_5	m_5	m_6	m_7	m_7	7
Agent_2	z ₇	z_7	27	<i>z</i> ₈	z_9	z_9	z_9	z_{11}	z_{11}	z_{12}	Agent_2	z_7	z_8	z_9	<i>z</i> ₉	z_9	2
	r_1	r_2	$\sum_{i=2}^{3} r_i$	$\sum_{i=2}^{4} r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^{8} r_i$	r_9	$\sum_{i=9}^{10} r_i$		$\sum_{i=2}^3 r_i$	$\sum_{i=2}^{4} r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	
Joint	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}							

Sample concurrent trajectories for each agent

Xiao, Hoffman and Amato - CoRL 19

Using Mac-CERTs to learn macro-action-value function for each agent

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
	z_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	23
	m_1	m_1	m_1	m_2	m_2	m_2	m_2	m_3	m_3	m_3
Agent_1	z_1	z_1	z_2	z_2	z_2	z_2	z_3	z_3	23	z_3
	r_1	$\sum_{i=1}^{2} r_{i}$	$\sum_{i=1}^{3} r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8	$\sum_{i=8}^{9} r_i$	$\sum_{i=8}^{10} r_i$
	z_6	27	27	27	<i>z</i> ₈	z_9	<i>z</i> ₉	<i>z</i> ₉	z_{11}	z_{11}
	m_4	m_5	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8
Agent_2	z_7	27	27	<i>z</i> ₈	<i>z</i> ₉	z_9	z_9	z_{11}	z_{11}	z_{12}
	r_1	r_2	$\sum_{i=2}^3 r_i$	$\sum_{i=2}^4 r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^{8} r_i$	r_9	$\sum_{i=9}^{10} r_i$
Joint Reward	r_1	r_2	r_3	r_4	r_5	r_6	r_7	r_8	r_9	r_{10}

Identify when macro-actions change

Decentralized learning Xiao, Hoffman and Amato - CoRL 19

Using Mac-CERTs to learn macro-action-value function for each agent

	z_1	z_2	z_2	z_2	z_2	z_3			z_1	z_2	
	m_1	m_2	m_2	m_2	m_2	m_3	squeeze 🔪		m_1	m_2	
Agent_1	z_2	z_2	z_2	z_2	z_3	z_3		Agent_1	z_2	z_3	
	$\sum_{i=1}^{3} r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8			$\sum_{i=1}^{3} r_i$	$\sum_{i=4}^{7} r_i$	
	27	27	28	<i>z</i> ₉	<i>z</i> ₉	<i>z</i> 9			27	<i>z</i> ₈	<i>z</i> ₉
	m_5	m_5	m_6	m_7	m_7	m_7	squeeze		m_5	m_6	m_7
Agent_2	27	z_8	<i>z</i> 9	z_9	<i>z</i> ₉	z_{11}		Agent_2	z_8	<i>z</i> ₉	z_{11}
	$\sum_{i=2}^3 r_i$	$\sum_{i=2}^4 r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^8 r_i$			$\sum_{i=2}^4 r_i$	r_5	$\sum_{i=6}^{8} r_i$

Many possibilities, but we throw away time info

Xiao, Hoffman and Amato - CoRL 19

Using Mac-CERTs to learn macro-action-value function for each agent

	z_1	z_2	z_2	z_2	z_2	z_3			z_1	z_2	
	m_1	m_2	m_2	m_2	m_2	m_3	squeeze 🔪		m_1	m_2	
Agent_1	z_2	z_2	z_2	z_2	z_3	z_3		Agent_1	z_2	z_3	
	$\sum_{i=1}^{3} r_i$	r_4	$\sum_{i=4}^{5} r_i$	$\sum_{i=4}^{6} r_i$	$\sum_{i=4}^{7} r_i$	r_8			$\sum_{i=1}^{3} r_i$	$\sum_{i=4}^{7} r_i$	
	27	27	28	29	<i>z</i> ₉	<i>z</i> 9			27	<i>z</i> ₈	29
	m_5	m_5	m_6	m_7	m_7	m_7	squeeze		m_5	m_6	m_7
Agent_2	27	z_8	<i>z</i> 9	<i>z</i> ₉	z_9	z_{11}		Agent_2	z_8	z_9	z_{11}
	$\sum_{i=2}^{3} r_i$	$\sum_{i=2}^4 r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	$\sum_{i=6}^{8} r_i$			$\sum_{i=2}^4 r_i$	r_5	$\sum_{i=6}^{8} r_i$

Can now use Decentralized Hysteretic DRQN (Dec-HDRQN) to learn each agent's macro-action-value function $Q_{\theta_s}(h,m)$, using squeezed sequential experiences, by minimizing the loss:

$$\mathcal{L}(\theta_i) = \mathbb{E}_{< z, m, r^c, z' >_i \sim \mathcal{D}} \Big[\big(y_i - Q_{\theta_i}(h, m) \big)^2 \Big] \text{, where } y_i = r^c + \gamma Q_{\theta_i^-} \big(h', \arg\max_{m'} Q_{\theta_i}(h', m') \big) \\ \text{The double Q version}$$

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

- ightharpoonup Collect the joint macro-action-observation experiences of agents; $_{ec{ au}}$
- ightharpoonup Joint transition tuple is defined as $\,\langle ec{z},ec{m},ec{z}',ec{r}^c
 angle\,$, where $\,ec{r}^c=\sum_{t=t_{ec{w}}}r_t\,$

Time	t=1
	z_1
Agent_1	m_1
	z_1
	z_6
Agent_2	m_4
	z_6
Joint Reward	r_1

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

- ➤ Collect the joint macro-action-observation experiences of agents; -
- ightharpoonup Joint transition tuple is defined as $\,\langle ec{z},ec{m},ec{z}',ec{r}^c
 angle\,$, where $\,ec{r}^c=\sum_{t=t_{ec{w}}}r_t\,$

Time	t=1	t=2
	z_1	z_1
Agent_1	m_1	m_1
	z_1	z_1
	z_6	z_6
Agent_2	m_4	m_4
	z_6	27
Joint Reward	r_1	$\sum_{i=1}^{2} r_i$

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

- ➤ Collect the joint macro-action-observation experiences of agents; -
- ightharpoonup Joint transition tuple is defined as $\,\langle ec{z},ec{m},ec{z}',ec{r}^c
 angle\,$, where $\,ec{r}^c=\sum_{t=t_{ec{w}}}r_t\,$

Time	t=1	t=2	t=3
	z_1	z_1	z_1
Agent_1	m_1	m_1	m_1
	z_1	z_1	z_1
	z_6	z_6	27
Agent_2	m_4	m_4	m_5
	z_6	27	27
Joint Reward	r_1	$\sum_{i=1}^{2} r_i$	r_3

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

- ➤ Collect the joint macro-action-observation experiences of agents; -
- ightharpoonup Joint transition tuple is defined as $\,\langle ec{z},ec{m},ec{z}',ec{r}^c
 angle\,$, where $\,ec{r}^c=\sum_{t=t_{ec{w}}}r_t\,$

Time	t=1	t=2	t=3	t=4
	z_1	z_1	z_1	z_1
Agent_1	m_1	m_1	m_1	m_1
	z_1	z_1	z_1	z_2
	z_6	z_6	27	27
Agent_2	m_4	m_4	m_5	m_5
	z_6	27	27	z_8
Joint Reward	r_1	$\sum_{i=1}^{2} r_i$	r_3	$\sum_{i=3}^{4} r_i$

Xiao, Hoffman and Amato - CoRL 19

Macro-Action Joint Experience Replay Trajectories (Mac-JERTs)

- ➤ Collect the joint macro-action-observation experiences of agents; -
- ightharpoonup Joint transition tuple is defined as $\,\langle ec{z},ec{m},ec{z}',ec{r}^c
 angle\,$, where $\,ec{r}^c=\sum_{t=t_{ec{x}}}r_t\,$

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
Agent_1	z_1	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3
	m_1	m_1	m_1	m_1	m_2	m_2	m_2	m_3	m_3	m_3
	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3	z_3
	z_6	z_6	27	27	z_8	z_9	<i>z</i> ₉	<i>z</i> ₉	z_{11}	z_{11}
Agent_2	m_4	m_4	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8
	z_6	27	27	z_8	<i>z</i> ₉	z_9	<i>z</i> ₉	z_{11}	z_{11}	z_{12}
Joint Reward	r_1	$\sum_{i=1}^{2} r_i$	r_3	$\sum_{i=3}^{4} r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	r_8	r_9	$\sum_{i=9}^{10} r_i$

Using Mac-JERTs to learn a joint macro-action-value function

Xiao, Hoffman and Amato - CoRL 19

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10
	z_1	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3
Agent_1	m_1	m_1	m_1	m_1	m_2	m_2	m_2	m_3	m_3	m_3
	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3	z_3
	z_6	z_6	27	27	z_8	z_9	z_9	<i>z</i> ₉	z_{11}	z_{11}
Agent_2	m_4	m_4	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8
	z_6	27	27	z_8	z_9	<i>z</i> ₉	<i>z</i> ₉	z_{11}	z_{11}	z_{12}
Joint Reward	r_1	$\sum_{i=1}^{2} r_i$	r_3	$\sum_{i=3}^{4} r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	r_8	r_9	$\sum_{i=9}^{10} r_i$

Identify when *any* agent's macro-action terminates

Using Mac-JERTs to learn a joint macro-action-value function

Xiao, Hoffman and Amato - CoRL 19

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10								
	z_1	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3		Agent_1	z_1	z_2	z_2	-		
Agent_1	m_1	m_1	m_1	m_1	m_2	m_2	m_2	m_3	m_3	m_3			m_1	m_2	m_2	7		
	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3	z_3	squeeze			z_2	z_2	z_3	3	
	z_6	z_6	27	27	z_8	29	<i>z</i> ₉	<i>z</i> ₉	z_{11}	z_{11}		Agent_2			27	z_8	<i>z</i> ₉	3
Agent_2	m_4	m_4	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8			m_5	m_6	m_7	1		
	z_6	27	27	z_8	z_9	<i>z</i> ₉	z_9	z_{11}	z_{11}	z_{12}			z_8	<i>z</i> ₉	z_9	2		
Joint Reward	r_1	$\sum_{i=1}^{2} r_{i}$	r_3	$\sum_{i=3}^{4} r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	r_8	r_9	$\sum_{i=9}^{10} r_i$		Joint Reward	$\sum_{i=3}^{4} r_i$	r_5	$\sum_{i=6}^{7} r_i$			

Sample a joint trajectory

Remove the time info

Using Mac-JERTs to learn a joint macro-action-value function

Xiao, Hoffman and Amato - CoRL 19

Time	t=1	t=2	t=3	t=4	t=5	t=6	t=7	t=8	t=9	t=10							
	z_1	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3		Agent_1	z_1	z_2	z_2	z_3	
Agent_1	m_1	m_1	m_1	m_1	m_2	m_2	m_2	m_3	m_3	m_3			m_1	m_2	m_2	m_3	
	z_1	z_1	z_1	z_2	z_2	z_2	z_3	z_3	z_3	z_3	squeeze			z_2	z_2	z_3	z_3
	z_6	z_6	27	27	z_8	z_9	<i>z</i> ₉	<i>z</i> ₉	z_{11}	z_{11}		Agent_2		27	z_8	<i>z</i> ₉	<i>z</i> ₉
Agent_2	m_4	m_4	m_5	m_5	m_6	m_7	m_7	m_7	m_8	m_8			m_5	m_6	m_7	m_7	
	z_6	27	27	z_8	z_9	z_9	<i>z</i> ₉	z_{11}	z_{11}	z_{12}			z_8	z_9	<i>z</i> ₉	z_{11}	
Joint Reward	r_1	$\sum_{i=1}^{2} r_{i}$	r_3	$\sum_{i=3}^{4} r_i$	r_5	r_6	$\sum_{i=6}^{7} r_i$	r_8	r_9	$\sum_{i=9}^{10} r_i$		Joint Reward	$\sum_{i=3}^{4} r_i$	r_5	$\sum_{i=6}^{7} r_i$	r_8	

We apply Double-DRQN to learn the joint macro-action-value function $Q_{\phi}(\vec{h}, \vec{m})$ (referred to as **Cen-DDRQN**) using **squeezed joint sequential experiences**, by minimizing the loss:

$$\mathcal{L}(\phi) = \mathbb{E}_{<\vec{z},\vec{m},\vec{z}',\vec{r}^c>\sim\mathcal{D}}\Big[\big(y - Q_\phi(\vec{h},\vec{m})\big)^2\Big], \text{ where } y = \vec{r}^c + \gamma Q_{\phi-}\big(\vec{h}^{\,\prime},\arg\max_{\vec{m}'}Q_\phi(\vec{h}^{\,\prime},\vec{m}')\big)$$

Considering the asynchronous macro-action executions over agents, we propose *conditional target-value prediction*:

 $y = \vec{r}^c + \gamma Q_{\phi-}(\vec{h}', \arg\max_{\vec{m}'} Q_{\phi}(\vec{h}', \vec{m}' \mid \vec{m}^{\text{undone}}))$

where, $\vec{m}^{\mathrm{undone}}$ is the joint macro-action over the agents who have not terminated their macro-actions

Results: Target capture

Xiao, Hoffman and Amato - CoRL 19

Primitive-observations: agent's location (fully observable), target's location (partially observable with a flickering probability 0.3)

Macro-observations: same as the primitive

Primitive-actions: up, down, left, right, and stay;

Macro-actions: *Move-to-Target* (terminates when the agent

reaches the latest observed target's position) and Stay

Our decentralized macro-action approach (MA) vs primitive-action version for various grid sizes

The macro-action method can learn much faster and converge to the same solution in this simple problem

Results: Box pushing

Xiao, Hoffman and Amato - CoRL 19

Decentralized learning with macro-actions (MA) vs primitive-actions

Conditional centralized learning vs decentralized learning with macro-actions

The primitive method can't learn well in this problem, while the decentralized and centralized methods perform well

Results: Warehouse tool delivery

The centralized learner achieves near-optimal performance

conditional centralized learning vs decentralized learning

The decentralized learner performs poorly due to the difficulty of learning from only local experiences

Warehouse robot results

Xiao, Hoffman, Xia and Amato – under submission

Learning controllers Liu, Amato, Anesta, Griffith and How - AAAI 16

- Want to learn solutions directly from a limited number of demonstrations
- Demonstration trajectories create possible controllers which are optimized to produce a high-valued set of finite-state controllers
- Scalable to large state, macro-action and observation sets

Learning controllers Liu, Amato, Anesta, Griffith and How - AAAI 16

- Trajectories give possible sequences and values
- Since don't have model use Monte Carlo-based EM to optimize controller parameters
- Return a controller with parameters learned from the data

Search and rescue in simulation

Liu, Amato, Anesta, Griffith and How - AAAI 16

- Used demonstrations from a hand coded 'expert' solution (from MIT-Lincoln lab)
- Tested in a simulator
- Outperforms hand coded 'expert' solutions, even with a small amount of noisy data
- Can also learn optimal or near optimal policies in benchmarks

Search and rescue in hardware Liu, Sivakumar, Omidshafiei, Amato and How - IROS 17

Why can't we just use deep RL?

- Using deep RL for Dec-POMDPs has become a hot topic (e.g., Omidshafiei, Pazis, Amato, How and Vian, ICML 17, Foerster, Assael, de Freitas, and Whiteson, NIPS 16, Gupta, Egorov, Kochenderfer ICML 17, and many others)
- Helps scale to large state/observation spaces, but doesn't solve other multi-agent learning problems
 - Centralized vs. decentralized learning
 - Sample efficiency/online learning
 - Dealing with nonstationarity
 - Dealing with partial observability

Conclusions

- Dec-POMDPs represent a powerful probabilistic multi-agent framework
 - Considers outcome, sensor and communication uncertainty in a single framework
 - Can model any multi-agent coordination problem
- Macro-actions provide an abstraction to improve scalability
- Learning methods can remove the need to generate a detailed multi-agent model
- Methods also apply when less uncertainty
- Begun demonstrating scalability and quality in a number of domains, but a lot of great open questions to solve!