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Our Lab: ML Towards Effective, Interpretable
Health Interventions

Predicting and Optimizing Interventions in
ICU (Wu et al. 2015; Ghassemi et al. 2017;
Peng 2018; Raghu 2018; Gottesman 2018;
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Today: How can reinforcement learning
help solve problems in healthcare?
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Focus: Situations that require a
sequence of decisions




Challenges in the Health Space

* The data are typically available only in batch
* No control over the clinician policy!
* The data give very partial views of the process

* Measurements, confounds missing
* |ntents missing

* Success Is not always easy to quantify

BUT: We still want to extract as much from
these data as we can!



Problem Set-Up

/
ke [0

Agent World

I
’q —
reward L
7



Solutions: Train Model/Value Function

Solves the long-term problem (e.g. Ernst 2005; Parbhoo 2014;
Marivate 2015), often in simulation/simplified settings.
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Solutions: Nonparametric

Use the full patient history to predict immediate outcomes
(e.g. Bogojeska 2012), but often ignore long term effects.
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Our insight: These approaches have
complementary strengths!

Patient Space
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Our insight: These approaches have
complementary strengths!

Patients without
neighbors may be
better modeled
with a parametric
model

Patient Space
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New Solution:
Ensemble the Predictors

Kernel Action
h ( POMDP Action ) — Actual
Action
Patient
Statistics
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Application to HIV Management

* 32,960 patients from EU |approach DR Reward
Resist Database; hold |
out 3,000 for testing. | Random Policy 7.31£3.72
« Observations: CD4s Neighbor Policy 9.35 +2.61

viral loads, mutations Model-Based Policy 3.37 +2.15

* Actions: 312 common  |Policy-Mixture Policy 11.52 + 1.31

drug combinations (from T Tl e T e
20 drugs) odel-Mixture Policy 12.47 + 1.

Parbhoo et al., AMIA 2017; Parbhoo et al., PLoS Medicine 2018
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And: Our hypothesis was correct!
Model used when neighbors are far

History Length 2" Quantile Distance

—_—

Kernel POMDP Kernel POMDP



Application to Sepsis Management

* Cohort of 15,415 patients with sepsis from the
MIMIC dataset (same as Raghu et al. 2017);
contains vitals and some lab tests.

* Actions: focus on vasopressors and fluids, used
to manage circulation.

e Goal: reduce 30-day mortality; rewards based
on probability of 30-day mortality:

flo')
1—f(o’)

f (o)
1—f (o)

f(o')+log

r(o,a,o')=—log

17
Peng et al., AMIA 2018



Minor Adjustment:
Values, not Models

Kernel Actlon
r] LSﬂW+DDQN Adum
Actlon Actlon
Patient
Statistics Generative models hard to

build - LSTM+DDQN

LSTM+DDQN suggests never-
taken actions — hard cap.
18



Application to Sepsis Management

Physician

Kernel
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Application to Sepsis Management
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Application to Sepsis Management

vasopressors dosage
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Just the start: Statistical Methods
have high variance
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Gottesman et al. 2018, Raghu et al. 2018
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T

And select
non-representative cohorts

Sequences useful for IS evaluation
T T

Mean lengths of sequences In data

and sequences useful for IS evaluation
T T T
20

More issues arise

with poor representation
choices and poor
reward functions




How can Iincrease confidence in our
results?

‘ Reward > E : ‘Off-policy Evz>
‘Representatio> ; E ‘ Checks++>
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Off-Policy Evaluation

: ‘ Checks++>
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Off-Policy Evaluation

Core guestion: Given data collected under some behavior policy
1T, can we estimate the value of some other evaluation policy 1 _?

Three main kinds of approaches:
- Importance-sampling: reweight current data (high variance)

_H |s>

- Model-based: build model with current data, simulate (high bias)
- Value-based: apply value evaluation to current data (high bias)

27
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Stitching to Increase
Sample Sizes

Importance sampling-based estimators suffer because importance
weights most importance weights get small very fast:

o H |S )
One way to ameliorate the | |ssue. “stltch” trajectories with zero
weight to get more non-zero weight trajectories.

sl S2 s3 s4

desired sequence TT_

=) =) =)
‘ l 1 real weight-0 sequence
| ==

111

real weight-0 sequence 29
(Sussex et al, ICMLWS 2018)



Stitching to Increase
Sample Sizes

Importance sampling-based estimators suffer because importance
weights most importance weights get small very fast:
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Stitching to Increase
Sample Sizes

Importance sampling-based estimators suffer because importance
weights most importance weights get small very fast:

One way to ameliorat
weight to get more nc

sl s2
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MSE of Value Estimator for Various Off-Policy Methods on Cliffworld
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Off-Policy Evaluation

Core guestion: Given data collected under some behavior policy
1T, can we estimate the value of some other evaluation policy 1 _?

Three main kinds of approaches:
- Importance-sampling: reweight current data (high variance)

_H |s>

- Model-based: build model with current data, simulate (high bias)
- Value-based: apply value evaluation to current data (high bias)
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Better Models: Mixtures help again!

We use RL to bound the long-term accuracy of the value estimate.

Real
Transition
—

Accurate

simulation
—

Inaccurate
simulation

33
(Gottesman et al, ICML 2019)



Better Models: Mixtures help again!

We use RL to bound the long-term accuracy of the value estimate.
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simulation
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Bound on the Quality

T t-1 | T
A t t ' t
|gT_gT‘SLrZ Y Z (Lt) gt(t_t _1)"'2 y e (t)
t=0 £'=0 t=0
Total Error due to Error due to
return state estimation reward estimation

error

L/ - Lipschitz constants of transition/reward functions
et/r(t) - Bound on model errors for transition/reward at time t

T - Time horizon
¥ - Reward discount factor
gr = XF_,ytr(t) - Return over entire trajectory

Closely related to bound in - Asadi, Misra, Littman. “Lipschitz Continuity in
Model-based Reinforcement Learning.” (ICML 2018). 35



Parametric

Estimating Errors

Nonparametric

36
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Example with HIV Simulator

We use RL to bound the long-term accuracy of the value estimate.

Policy value estimation error
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Better Models:
Designed for Evaluation

Main objective: find a model that will minimize error in individual
treatment effects:

(ESO[V][(SO)]_ESO[\}E(50>]>2

Eso[(vﬂ<50)_‘}ﬂ(so)>2]

where the value function is estimated via trajectories from an
approximated model M. Question: Can we do better than just
optimizing M for p(M|data)?

Show this can be optimized via a transfer-learning type objective:

L(M)=>, I(M,n,t)+), p,l(M,n,t)+..

“on-policy” loss “reweighted for 1" loss

39
(Liu et al, NIPS 2018)



Better Models:
Designed for Evaluation

Main objective: find a model that will minimize error in individual

treatment effects:

where the value
approximated m¢

Table 1: Root MSE for Cart Pole

Long Horizon

RepBM DR AM DR(AM) AM(m) MEDRQ MRDR

optimizing M for e
Individual

0.4121 1.359
1.033

0.7535
1.313

1.786 41.80

47.63

I151.1 202
151.9

Short Horizon

RepBM DR AM DR(AM) AM(m) MEDRQ MRDR

Show this can be

Mean
Individual

0.07836  0.02081
0.4811

0.1254 0.1233
0.5506 0.5974

0.0235 3.013

0.258
3.823 -

Table 2: Root MSE for Mountain Car

L(M

RepEM DR

AM DR{AM) AM(m) MRDE(Q MREDE 5

Mean
Individual

12.31
31.38

1358 17.15

36.36

141.6 72.61

79.46

135.4

172.7 149.7
38.1 -




Checking the reasonableness
of our policies

‘ Reward > E : ‘Oﬁ-policy Eva>
‘Representatio> :
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Some Basic Digging



EU Resist

Swiss HIV
Cohort

Positive Evidence:
Reproducing across sites
(robust to covariate shift)

Our HIV results hold across two distinct cohorts.

Doubly Robust

Importance Sampling

Weighted Importance

Random Policy 231 +1.42 3483 +1.36 280+ 1.27
Short-term Kernel 2.17+14 2.18 +1.20 2.16 +1.71

Long-term Kernel 9.47 4+ 1.70 5.72 + 1.81 6.97 + 1.29
POMDP 6.04 + 2.18 415+ 2.28 6.67 + 1.74
Mixture-of-experts 11.83 + 1.26 12.50 + 1.19 11.07 =+ 1.21

Doubly Robust

Importance Sampling

Weighted Importance

Random Policy —6.33 £ 347 5574217 —6.18 + 3.24
Short-term Kernel 1.64 +1.86 2.03 +1.81 2.17 +1.74
Long-term Kernel 9.67 4+ 1.49 7.38 +1.72 7.64 +1.92
POMDP 5.46 4 2.05 6.72 4+ 2.88 7.76 £ 2.10

Mixture-of-experts

10.73 = 1.02

13.59 = 1.57

11.83 = 1.31




Positive Evidence:
Check importance weights, variances

Sepsis: results hold with different control variates

A WDR: MOE_VbOhb - Phy VbOb A WDR: MOE VbOb - Kernel VbQb A WDR: MOE_ViQb - DON_VdQd g WOR: MOE_Vb(b - Random_Vb(b A WDR: MOE_Vb(b - Random_YValq
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Ask the Experts



Asking the Doctors

* HIV: Checking against standard of care:

NNRTIs | NRTIs | Pls | Fusion/Entry Inhibitors

First-line therapy 12 157 3054 774 128

Second-line therapy 4068 8764 | 6082 1042

* As well as three expert clinicians:

Clinician 1 | Clinician 2 | Clinician 3
Agree 18 15 13
Partially Agree 10 I 13

Disagree 2 4 4




* HIV: Checking against standard of care:

Asking the Doctors

First

Secon

What's the best way
to “ask the doctors”?

1hibitors

e ASW

IHado uliecc C)&[JCI L Clirrncially.
Clinician 1 | Clinician 2 | Clinician 3
Agree 18 15 13
Partially Agree 10 I 13
Disagree 2 4 4

47



Detour: Summarizing a
Treatment Policy

How can we best communicate a treatment policy to a
clinical expert? Formalize as the following game:

Us: Present expert with some state-action pairs
Expert: Predict the agent’s action in a new state, s’

Our Goal: choose the state-action pairs so the expert
predicts the best.

48
(Lage et al, IJCAI 2019)



Example 1: Gridworld

Given: What happens in states like:

49



Example

Given:

2: HIV Simulator

&
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Fraction of Respondents

[
o
o

60 1
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201

o

Finding: Humans use different
methods In different scenarios

HIV

IL IRL  Non-Specific
Summary Extraction Method

Fraction of Respondents

[
o
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201

o

Gridworld

IL IRL

Nun-Sbecific

Summary Extraction Method
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...and It's Important to account for It!

Predicted

by Model .
y 7oce Gridworld

o
o
y
=

Prediction Accuracy
o
NN

@

0.6 5 0.8
O
< 0.6 -
=
204
.

U-z - —
D 0.24-
a

0.0 0 -

IRL IL Rand IRL IL
Summary Extraction Method andom Summary Extraction Method
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Offering Options



In Progress: Displaying Diverse
Alternatives

If policies can’t be statistically differentiated,
share all the options.

54
(Masood et al, IJCAI 2019)



In Progress: Displaying Diverse
Alternatives

If policies can’t be statistically differentiated,
share all the options.
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(Masood et al, IJCAI 2019)



Applied to Hypotension
Management
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Applied to Hypotension
Management

Example for a single decision point

Learned & Behavior Policies (action actually taken: v1 )

(1]
i
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‘ Representati

>

Reward Design

‘ Off-policy Evz>
‘ Holistic Checks>
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In Progress: IRL to ldentify Rewards

ARRL Goal
—— AIRL+DNDT
1.0 ==
Car Track pyofile
o
H G5
w
=
1]
m o e e ey
3 00
=
@
@
]
0.5
1.0

Start
-1.0 -0.8 -0.6 -04 -0.2 0.0 0.2 04

Position of Mountaincar

59
(Lee and Srinivasan et al, IJCAI 2019; Srinivasan, in submission)



Going Forward

RL in the health space Is tricky, but has
potential in several settings. Let’s

* Think holistically about how RL can provide
value in a human-agent system.

* Be careful with analyses but not turn away
from messy problems!

Collaborators: Sonali Parbhoo, Maurizio Zazzi, Volker Roth, Xuefeng Peng, David Wihl, Yi Ding, Omer
Gottesman, Liwei Lehman, Matthieu Komorowski, Aldo Faisal, David Sontag, Fredrik Johansson, Leo €&li,
Aniruddh Raghu, Yao Liu, Emma Brunskill, and the CS282 2017 Course
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RL in the health space Is tricky, but has
potential in several settings. Let’s

* Think holistically about how RL can provide
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Modeling Improvement #2:
Personalizing to patient dynamics

Assume that there exists some small latent
vector that would allow us to personalize to the
patient’s dynamics (HIP-MDP).

62
Killian et al. NIPS 2017; Yao et al. ICML LLARLA workshop 2018



Modeling Improvement #2:
Personalizing to patient dynamics

Assume that there exists some small latent
vector that would allow us to personalize to the
patient’s dynamics (HIP-MDP).

Consider two planning approaches:
1. Plan given T(s’|s,a,0)
2. Directly learn a policy a = 11(s,0)

Killian et al. NIPS 2017: Yao et al,




Modeling Improvement #2:
Personalizing to patient dynamics

Results with a (simple) HIV simulator
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Killian et al. NIPS 2017; Yao et al. ICML LLARLA workshop 2018



Off-policy Evaluation Challenges:
Sensitive to Algorithm Choices

I T I T
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Probability

Off-policy Evaluation Challenges:
Sensitive to Algorithm Choices

I T I T
WDR(D) := ZZﬁrthTfi‘ — ZZﬁ;‘f(u@QﬁE(Sﬁ*,Afi} — wLﬂ”e(Sf"))
i=1 =0

i=1 t=0
Distribution of actions from kNN -- ground truth

Distribution of actions from kNN -- ground truth
0.2 1
0.2 1 I I
: 10 15 20 25

20 5 0 2
Distribution of actions from approximate kNN fit on training set

00 - T
10 15

0 5
Distribution of actions from approximate kNN fit on training set

02 I II II
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0 5 10 15 30 2% 0 5 10 15 20 25

Distribution of actions from neural network Distribution of actions from neural network
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—_ s — DG{I ! J 1
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Action number

I} D - T T
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Action number

(a) Overconfident predictions (b) Incorrect predictions

Sepsis: Neural networks definitely not calibrated...



Off-policy Evaluation Challenges:
Sensitive to Algorithm Choices

WDR(D) —ZZwttbtrf ZZ YwiQ™e (S{1, AfY) —wi_ V™ (S{™))

i—=1 t= i=1 t=

KNN Is more calibrated
Severity LR RF NN  Approx kNN

0-4 0.249 0.214 0.213 0.129
5-9 0.269 0.254 0.246 0.152
[0-13 0309 0309 0.399 0.210
14-23 0356 0.337 0.426 0.199

Calibration helps

Behaviour Policy Model | MDP Approximate Model | MSE

Approximate kNN Fitted Q Iteration 3.05

Approximate kNN Kernel-based RL 6.54

Approximate kNN Discrete SARSA 6.53

Neural network Fitted Q Iteration 3.53

Neural network Kernel-based RL 10.2 67




In Progress: Displaying Diverse
Alternatives

If policies can’t be statistically differentiated, give
plausible alternatives.

- an: Multi-Gaal Eny PG P fi: Mul E
T O, o O
O L O Ol (O u__]; B - &
O A C =3
mim i e aaks Er P Sy T DIPG_P G E
- 50 5o 1 )
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SODA-RL Applied to Hypotension
Management

Quantitative Results: Safety, quality are
iImportant to consider

Setting Quantitative Metrics
Diversity | Safety | Quality || #Kept | CWPDIS CE w/ SymEL w/ SymRLbew | ¥ Viomes
Weicht Mask? | Term e S Beh. Beh. Action ESS pairs Agents Allowed
= S AR Actions Probabilities of agents Unseen Actions
High Yes CE 3 34.25 £ 0.07 1.03 £ 0.04 0.58 & 0.06 352.2194.5 1.95 £ 0.21 00
o High Yes SymKL 3 35.43 £ 1.45 1.13 £ 0.11 0.62 &£ 0.13 221511024 | 205X£0.23 | 00
Diverse
d Saf Low Yes CE 0 - - - & 5
el | Low Yes SymKL || 4 36.70 + 0.10 | 0.52+0.00 | 0.06 4 0.00 | 282.94+30.8 | 0.00+0.00 | 040
High Yes None 4 35.86 & 1.51 2.44 £ 0.65 1.39 &£ 0.47 310.7 £ 180.9 3.27 £ 0.00 010
High No CE 0 - - - - - -
N High No SymKL 2 41.74 £+ 0.36 1.14 £ 0.15 0.92 1 0.32 234.7 £ 146.1 2.90 £ 0.00 | 29230 X 12387
Diverse, 5
¢ Safe Low No CE 0 - - - - - -
hinc b Low No SymKL 0 - - - - - -
High No None 0 - - - - - -
Safe, not None Yes CE 4 38.20+£032 | 0.52L£0.00 | 0.08 £ 0.00 | 96.1 +18.8 001 +£000 | 00
Diverse None Yes SymKL B 36.74 £ 0.08 0.52 £ 0.00 0.06 = 0.00 284.1 1 27.2 0.00 000 | 00
Not Safe None No CE i] - - - - -
or Diverse None No SymKL 0 - - - - - -
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