

© Springer International Publishing Switzerland 2015
A. Gelbukh (Ed.): CICLing 2015, Part I, LNCS 9041, pp. 557–569, 2015.
DOI: 10.1007/978-3-319-18111-0_42

Adaptive Tuning for Statistical Machine Translation
(AdapT)

Mohamed A. Zahran1 and Ahmed Y. Tawfik2

1 Computer Engineering Department, Cairo University, Egypt
2 Microsoft Advanced Technology Lab, Cairo, Egypt

moh.a.zahran@gmail.com, atawfik@microsoft.com

Abstract. In statistical machine translation systems, it is a common practice to
use one set of weighting parameters in scoring the candidate translations from a
source language to a target language. In this paper, we challenge the assumption
that only one set of weights is sufficient to pick the best candidate translation
for all source language sentences. We propose a new technique that generates a
different set of weights for each input sentence. Our technique outperforms the
popular tuning algorithm MERT on different datasets using different language
pairs.

Keywords: Statistical Machine Translation, Adaptive Tuning, Sentence
Representation, Per-sentence Translation.

1 Introduction

Tuning statistical machine translation systems (SMT) is a crucial step that has a
significant impact on the overall performance of the system. Tuning is the process of
finding optimal weights used to pick the best translation among the generated
candidate translations. These weights reflect the relative importance of the SMT
building models such as language model, translation model, word penalty, distortion,
and any other additional features affecting the quality of translation.

Minimum error rate training (MERT) [4] is the popular tuning algorithm for many
statistical machine translation systems. Given a parallel corpus {ܨ, ሽܧ of source
language sentences ܨ ൌ ሼ ଵ݂, ଶ݂, ଷ݂ … ሽ and target language sentences ܧ ൌ ሼ݁ଵ, ݁ଶ, ݁ଷ … ሽ, a typical phrasal SMT system undergoes three main steps: training,
tuning and testing. The training phase uses the source language and its parallel target
language sentences to learn phrase translations and compute translation probabilities
to them. These translations from source to target are stored with their probabilities
and some additional information in a phrase table. The translation task requires
building a language model for the target language to favor the translations obeying the
language structure of the target language. The language model can be built with the
target language side of the parallel training data, or it can be built using any additional
target language text. The tuning phase is concerned with generating candidate

558 M.A. Zahran and A.Y. Tawfik

translations ሺ݁௜ଵ, ݁௜ଶ, ݁௜ଷ … ሻ for source language sentence ௜݂ and picking the best
candidate (݁௜כ) as the final translation. ݁୧כ ൌ ୣݔܽ݉݃ݎܽ ܵሺ݁, ݂ሻ (1)

The scoring function ܵሺ݁, ݂ሻ combines the conditional log likelihood probabilities
in the translation model ܶܯሺ݁|݂ሻ the language model ሺ݁ሻܯܮ score, a distortion
model ܦሺ݂, ݁ሻ score, and a word penalty ܹሺ݁ሻ term. The distortion model controls
the amount of reordering of the translated phrases to suite the target language
requirements. Word penalty ensures that the translations do not get too long or too
short. ܵሺ݁, ݂ሻ ൌ ሺ݁ሻܯܮLMߣ ൅ ሺ݁|݂ሻܯTMܶߣ ൅ ,ሺ݂ܦDߣ ݁ሻ ൅ Wܹሺ݁ሻ ൌߣ . ߣ ,ሺ݁ߖ ݂ሻ

(2)

The goal of tuning algorithms like MERT is to find a set of optimal weighting
parameters ሺߣLM, ,TMߣ ,Dߣ Wሻ to weight the four model listed in (2) to achieve theߣ
best translation accuracy measured against a reference translation ሺêሻ using a
measure such as the popular BLEU score [5] such that: ݁ݖ݅݉݅ݔܽܯ: ܵሺ݁כ, ݂ሻ ݂݅ ݏ݅כ݁ ݐݏ݋݉ ݎ݈ܽ݅݉݅ݏ ݋ݐ ê (3)

Practically, ܵሺ݁, ݂ሻ can be viewed as the inner product of the weighting parameter
vector ߣ with the model vector ߖ. Let ܧ஛ be the set of translations selected by the
model parameterized by the weight vector ߣ. MERT’s goal is finding an optimal
weight vector כߣ that minimizes the loss function ܮሺܧ஛ሻ: ܮሺܧ஛ሻ ൌ 1 െ ஛ሻܧሺܷܧܮܤ

(4)

כߣ ൌ ஛݊݅݉݃ݎܽ ஛ሻ (5)ܧሺܮ

MERT explores the parameter space using either Powell’s method [12] or Koehn
coordinate descent as adapted by Moses the statistical machine translation package
[8]. MERT finds a series of sub-optimal points (weight vectors) during its search until
no new BLEU gain is achieved or the changes in the weights are less than a certain
threshold. MERT’s objective function is a non-convex piece-wise constant [3]. Which
means that at certain critical points, small changes in the weights will change the
relative ranking between candidate translations. To visualize these critical points, we
will consider two weights only as shown in Figures 1&2, these critical points are on
the boundaries of the shaded regions.

 If we have two source sentences ଵ݂ and ଶ݂ to translate. We will examine the
effect of changing two weights only while holding the rest of weights constant on
changing the relative order of the candidate translations of both ଵ݂and ଶ݂.

By examining Figure 1, if ݁ଵଵ is in fact the best translation for ଵ݂,then the two
weights (λଵ , λଶ) should be assigned values in the dotted region to make ݁ଵଵ the
dominant candidate. Since the same weight values will be used in the translation of all

 Adaptive Tuning for Statistical Machine Translation (AdapT) 559

source sentences in ܨ, there is no guarantee that the best candidate translation of any
other sentence will be in the dotted region of ଵ݂ . In other words, if the candidate
regions of ଶ݂ is as shown in Figure 2, then one set of values for λଵand λଶ will not
translate both ଵ݂ and ଶ݂ optimally, because the dotted regions of ଵ݂ and ଶ݂ do not
overlap.

For one set of weights to translate all source sentences optimally, all the dotted
regions for all source sentences must overlap, which is not a practical assumption as
we explained. In the next sections, we propose new techniques to generate a set of
weighting parameters to be used per input source sentence.

Fig. 1. Changing the relative order between three candidate translations (e11, e12, e13) for the
source sentence f1 with the change of two weights only (λ1, λ2). Each region is labeled with its
dominant candidate.

Fig. 2. Changing the relative order between three candidate translations (e21, e22, e23) for the
source sentence f2 with the change of two weights only (λ1, λ2). Each region is labeled with its
dominant candidate.

560 M.A. Zahran and A.Y. Tawfik

2 Related Work

While MERT is used broadly in many SMT systems, no research has been made –to
the best of our knowledge- that discusses weight adaptation as presented here. Liu et
al. [7] proposed a local training scheme, where the system retunes using a tailored
tuning set for the input test sentence. A number of training sentences most similar to
the input test sentence are appended to the default tuning set then retuning is
performed, and finally the resulting weights are used to decode the test sentence.

Li et al. [6] presented an adaptive data selection, where given a test set, an iterative
algorithm will select sentences from the tuning set most similar to the test set and
using in tuning weights for this test set. Although our technique AdapT shares the
same spirit as these two techniques, unlike them, our sentence specific weights are
obtained without re-tuning. This is a major and important difference as re-tuning is a
time consuming operation that cannot be done on the fly in real-time. Our methods
ensure that decoding happens in real-time and the tuning phase happens only once.

There have been several attempts to enhance upon MERT directly, or enhancing
SMT models. Hildebrand et al. [1] developed a method to adapt the translation model
for the test set. For each test sentence, the corresponding top ݊ similar sentences are
selected from the training data. This selection results in a new subset of the training
data used to build a translation model adapted to this particular test set. They
represented the sentences as vectors using TF- IDF and used cosine the angle between
vectors as the similarity measure between sentences. The amount of data to be
selected from the train data per test sentence (݊) is determined by minimizing the
perplexity (PPL) of the language model built by the selected data.

Hildebrand and Vogel [2] introduced a scheme to leverage the individual strength
of different machine translation systems. For a test sentence, they pool the N-best list
of all machine translation systems together forming a joint N-best list. The best
hypothesis is selected depending on the features scores. These features are based
solely on the hypothesis without any prior knowledge of the corresponding machine
translation systems. Linear combination weighting between features scores is
optimized using MERT. To optimize MERT, Cer et al. [3] presented two alterations
to MERT’s search techniques. The first is introducing a new simple stochastic search
strategy that outperformed Powell’s method and coordinate descent. The second is
presenting a regularization scheme for both Powell’s method and coordinate descent
that lead to performance gain.

3 Adaptive Tuning

Using hypothetical examples, we introduced that using one weight vector cannot
guarantee choosing the best candidate for all source language sentences, so using
different weight vectors in translating different source sentences can –in the best case
scenario- translate all source sentences optimally. Optimal translation in this context
is choosing the best candidate translation. In this paper, we introduce new methods to
generate tailored weight vectors influenced by the input sentence so that the weights
change adaptively according to this particular input sentence. Changing the weight
vector from one sentence to another reveals the relative importance of the SMT

 Adaptive Tuning for Statistical Machine Translation (AdapT) 561

models (LM, TM, D, W) in translating different sentences. The basic idea is to have a
pool of weight vectors preferably diverse enough to explore different relative
importance for the SMT models. Then using features from the input sentence we
choose the appropriate weight vector from the pool specifically for this sentence. Our
technique asks three main questions. First, how to formulate the weights pool.
Second, how to represent the input sentence. Third, how to map a sentence to its
suitable weight vector. We propose answers to these questions in the next sections.

3.1 Input Representation

The idea is to give similar sentences similar representation. Similarity of sentences
can be measured in terms of use of words, topic, length … etc. In the literature term
frequency-inverse document frequency (tf-idf) with cosine similarity were used in the
context of machine translation to compare sentences. However, tf-idf vectors can be
too sparse; instead, we used two techniques to represent input source language
sentences. The first is using Latent Semantic Analysis (LSA) [10] which performs
SVD over tf-idf bag of words representation for the sentences projecting them into
lower dimensionality (200~300 dimensions generally works fine for LSA).

The second representation technique combines semantic projections of individual
word representations to form a sentence representation. Several attempts have been
made in the literature to generate a continuous vectorized representation
(embeddings) for individual words for a given language. Mikolov et al. [11] proposed
new technique for learning vectorized representation for individual words called
continuous bag of words (CBOW). It is a neural network that predicts a word by
using a context window from its history and future. The hidden layer is replaced with
a projection layer into which the context words are projected by averaging their vector
representations, thus decreasing the computational complexity.

We used the source language side of the parallel training data to learn the CBOW
model. Then using the learnt word vectors we represented the source side language
sentences of the development set by combining the individual words representation
per sentence. A simple combining technique is just adding the words vectors together,
but this will not highlight the relative importance of words in the final sentence
representation, therefore we used tf-idf weighting as a measure to stress the impact of
words over others.

The same data used to learn the CBOW is also used to build the tf-idf model so
that the final representation of an N-words sentence is:

෍ ୧ሻݓሺ݂݂݀݅ݐ כ. ∑୧ሻݓሺܿ݁ݒ ୨ሻN୨ୀଵݓሺ݂݂݀݅ݐ
N

୧ୀଵ
(6)

Where ܿ݁ݒሺݓ୧ሻ is the CBOW vector representation for the word ݓ୧ of size ܯ. The ݂݂݀݅ݐሺݓ୧ሻ is a scalar weight for word ݓ୧. The operator .כ is an element-wise
multiplication operator for each element in the vector. The denominator is a
normalizing factor. The result of equation (6) is the vectorized sentence representation
of size ܯ.

562 M.A. Zahran and A.Y. Tawfik

3.2 Weight Vector Pool

The core idea of our technique is that the impact of the SMT models varies from one
sentence to another, these variations are reflected in the choice of weight vector for
each sentence. Since eventually the vectors in the pool will be used as reference
weights to translate sentences, they should satisfy two conditions: diversity and
performance. The first method to fill the pool is via MERT. While MERT’s goal is to
find a single weight vector that maximizes the BLEU score for the whole
development set, it also finds sets of sub-optimal weight vectors along its search for a
single global optimum. These sub-optimal vectors can outperform the final optimal
vector for individual sentences, which means that we can use these sub-optimal
vectors together with the optimal vector in the weights pool. This technique treats the
development set as a whole and finds a series of weight vectors performing globally
well over the whole development set. We will refer to this technique as
“MERTprogress”.

Another idea is to divide the development set into clusters, and then we run MERT
on each cluster so that the final optimal MERT weight vector for each cluster is used
in the weights pool. We used kmeans clustering over the development set sentence
representations. We will refer to this technique as “MERTclusters”.

3.3 Mapping Sentences to Weight Vectors

When decoding a new input test sentence, there should be a method to map this
sentence to an appropriate weight vector from the pool. Here we present two mapping
techniques. The first technique is only applicable to MERTclusters. Using the clusters
formed by MERTclusters on the development set sentences, we can uses the test
sentence representation to assign it to one of these clusters and uses the assigned
cluster’s weight vector in its translation.

The second technique is applicable to both MERTprogress and MERTclusters. It is
building a regression neural network with objective of mapping the representation of
the development set sentences with their corresponding weight vectors. Typical
regression neural networks minimize the mean square error (MSE) between outputs
and reference values. For the problem at hand, we propose the objective function to
maximize the cosine similarity between the predicted weights with the reference
weights. The intuition behind this choice for the objective function is as shown in
Figures 1 & 2 that the optimal candidate is top ranked when the weights allow the
best candidate to dominate (the dotted region). This region extends to infinity, which
means that the relative order of the candidate translations is scale invariant with
respect to the weight values. Consider equation (2) if we multiply the whole equation
by a constant ߙ then the relative ranking of the candidates will remain unchanged.

 ܵሺ݁, ݂ሻ ൌ ߙ ߣ . ,ሺ݁ߖ ݂ሻ ൌ Ø . ,ሺ݁ߖ ݂ሻ݁ݎ݄݁ݓ Ø ൌ ߙ ߣ
(7)

 Adaptive Tuning for Statistical Machine Translation (AdapT) 563

This property illustrates that any scaled version of the weight vector will not
tamper with the relative order of the candidate translations, which means that it is not
important how close in values the predicted weights are from the reference weights as
long as they form a scaled version of the reference weights. This directly follows the
intuition behind maximizing the cosine similarity between the predicted weights and
the reference weights. We used back propagation as a learning algorithm for the
neural network. (Check appendix). It is worth noting that minimizing the Cosine error
between two normalized vectors is equivalent to minimizing half the square error
between them in terms of the objective function.

For MERTclusters, choosing the appropriate weight vector to each sentence in the
development set in order to train the neural network is straight forward; the neural
network will be trained to map sentences representations with their corresponding
cluster weight vector.

On the other hand, for MERTprogress, choosing the best weight vector per
sentence requires some calculations. We used all the MERTprogress weight vectors to
translate the development set, then for each sentence in the development set we
choose which weight vector with the best translation for this particular sentence. The
best translation is one with the highest BLEU score. Calculating the BLEU score per
sentence usually equals zero. This happens when one of the n-gram scores is zero. To
avoid this problem we use equation 8 as a per sentence gauge of translation quality (ݏ)
inspired by BLEU.

ݏ ൌ ܲܤ ෍ ܾ୧୬
୧ୀଵ

(8)

Where ݏ is the score, ܲܤ is the brevity penalty, ܾ୧ are the i-gram score. When
MERT converges after ݇ iterations it finds ݇ points1 in the weight space one after
each iteration. Earlier vectors tend to be associated with lower ܲܤ value. Let ܲ ൌ ሼ݌ଵ, ଶ݌ ௞ሽ݌ … be the set of points ordered by MERT iterations, and ܵ ൌሼݏଵ, ଶݏ ௞ሽ are the scores computed for the translation of a given sentence using theݏ …
weights in set ܲ respectively. The set of points that correspond to best scoring
translations is: ܲכ ൌ ୧ݔܽ݉݃ݎܽ ୧ (9)ݏ

If ܲכ is a singleton, i.e. there is only one point that gives, the best score, then the
corresponding point is optimal for this sentence. If not singleton, i.e. if there is a tie,
selecting one of the candidates affects the results, and in the experiments we
considered two tie resolution mechanisms: the first favors the first or earliest point in ܲכ (lower index) that produces the best score. The other tie resolution strategy favors
the latest point (higher index) in the set ܲכ that produces the best score. Experiments
show, tie resolution, either early or late, affects the performance of the system.

1 A point in the space is a vector of weights.

564 M.A. Zahran and A.Y

4 Phrasal SMT Sy

Using AdapT as tuning alg
normal SMT training w
representations for the sour
source language side of the
The second difference is the
small development set will
will not be enough to giv
cluster members.

If the development data
from the training set to be a
in the order of 10,000 to 20

We performed a numb
schemes (LSA & CBOW),
MERTclusters) and finally

The first experiment u
technique and the regressio
progress_NN). The second
MERTclusters and cluster
(CBOW_MERTclusters_clu
representations with MERT
scheme (CBOW_MERTclu
their results exhaustively. O
combinations, but their in
experiment is (CBOW_M
(LSA_MERT progress_NN
pervious settings is shown i

Fig. 3. The decoding of a te
mapping techniques

Y. Tawfik

ystems Using AdapT

orithm for SMT systems, we will follow the same steps
with few exceptions. The first is the need to bu

rce language (LSA/CBOW), which can be built using
e parallel training data or any other source language d
e need to have a relatively larger development set, beca
l not be enough to fit the mapping neural network, an
e neither adequate number of clusters nor representat

a is small it will be essential to remove parallel senten
added to the development set, an adequate development

0,000 sentences.
er of experiments to utilize both sentence representat
, both weight vectors pooling schemes (MERTprogres
both mapping schemes (Neural Network & Clustering).
using LSA representation with MERTprogress pool
on neural network as the mapping scheme (LSA_ME
d experiment is using the CBOW representations w
ring to map representation to suitable weight vect
ustering). The third experiment is using the CBO

Tclusters and the regression neural network as the mapp
usters_NN). We choose those three experiments to rep
Other possible experiments were carried out using differ
nitial results were redundant. For example, one possi
MERT progress_NN) has almost the same results
N). Testing the SMT system after tuning using one of
in Figure 3.

est sentence using either the clustering or the neural netw

s as
uild
the

data.
ause
nd it
tive

nces
t set

tion
s &
.
ling

ERT
with
tors
OW
ping
port
rent
ible

as
the

work

 Adaptive Tuning for Statistical Machine Translation (AdapT) 565

5 Results and Evaluation

We applied AdapT in comparison with MERT on different language pairs French-
English, Spanish-English, and German-English using different datasets. We used the
European Parliament Proceeding Parallel Corpus (europarl-v7) as the training set2
and used the target side of the parallel data to build the language model and the source
side to build the sentence representations for either LSA or CBOW models.

We used the news test 2008 as the development set. Standard development sets are
usually small around 3000 sentences, so we removed 15000 sentences from the
training set and appended them to the default development set. We build the LSA
model using 300 topics to represent the sentence using gensim [9]. On the other hand,
CBOW model requires large data to be built accurately, since we intended not to use
external data to the WMT datasets, that left us to use the source language side of the
training set (around 1.5~2 million lines). This relatively small dataset suggested to use
smaller vector size to be learnt by CBOW. Thus, we used vectors of size 200. For
MERTclusters pooling technique we used kmeans with k=50 clusters over the
development set. Too few clusters will result in big non-homogeneous clusters, which
can set back exploiting enough weight vectors variations. On the other hand, too
many clusters will result in sparse clusters.

We manually examined the clusters of the development set for the Parliament
Spanish-English dataset. Sentences in each cluster share some characteristics as
semantic scope, topic and domain (Economics, Energy, Money, Middle-east and
conflicts), sentence structure (use of articles, commas, dots and quotations), use of
words (named entities, numbers and quantifications), length (short questions and long
questions) and type (questions, objections, opening statements, closing statements,
question numbers, lists, thank-you sentences, applause and conclusion). Next, in
Table 1 we show sample clusters with representative sentences:

Table 1. Sentences and their clusters for the English-Spanish development set

Short Questions:
Why not?
Whose turn is next?
Any comments?
Can you?
Question Numbers:
question No 28 by (H-0781 / 99).
question No 29 by (H-0786 / 99).
Opening statements:
I would like , first of all , to thank the rapporteur for his exceptionally accurate …
Mr President , Commissioners , first of all , I cannot help but reflect upon …
I call upon you , ladies and gentlemen , to vote in favour of this report …
Closing statements:
the debate is closed.
that concludes Question Time.
the vote will take place tomorrow at 12 p.m.

2 Data available at: http://www.statmt.org/wmt14/

566 M.A. Zahran and A.Y. Tawfik

Table 1. (Continued)
Energy:
we need real cost-effectiveness for our entire energy supply system.
we must reduce CO2 emissions , employ renewable energies , and generally make …
promoting the use of renewables is especially important for the environment.
Conclusion:
Parliament approved the Commission proposal.
the President declared the common position approved (as amended).
Parliament rejected the proposal.
Money:
a special provision of up to EUR 50 million for Greece.
Kyrgyzstan received EUR 17 million.
between EUR 1500 and 2000 billion are traded every day on the financial markets.
Thank-you:
thank you, Mr Poettering.
thank you very much.
thank you, Commissioner, for your statement.
I thank him for that.

Table 2. BLEU scores for MERT and AdapT for different language pairs on different test sets

Test set MERT LSA_MERT
progress_NN

_Early

LSA_MERT
progress_NN

_Late

CBOW_
MERT

clusters_NN

CBOW_MERT
clusters_

Clustering
fr-en 2010 22.07 22.31 (+0.24) 22.08 (+0.01) 22.37 (+0.3) 22.22 (+0.15)
fr-en 2011 23.07 23.30 (+0.23) 23.10 (+0.03) 23.52 (+0.45) 23.55 (+0.48)
es-en 2010 23.73 23.95 (+0.22) 23.97 (+0.24) 24.25 (+0.52) 24.05 (+0.32)
es-en 2011 23.25 23.43 (+0.18) 23.54 (+0.29) 23.69 (+0.44) 23.78 (+0.53)
de-en 2010 17.00 16.83 (-0.17) 17.25 (+0.25) 17.34 (+0.34) 17.53 (+0.53)
de-en 2011 15.82 15.80 (-0.02) 16.17 (+0.35) 16.09 (+0.27) 16.50 (+0.68)

Table 2 shows the BLEU score for different data sets. We can notice the loss in

BLEU score for the “LSA_MERTprogress_NN_Early” in the last two test sets due to
the low ܲܤ associated with the “early” configuration. On the other hand,
“CBOW_MERTclusters_Clustering” shows the best performance in most of the test
sets, which suggests that the SMT systems can leverage information from multiple
domains by considering each cluster as a separate domain and classifying the new test
sentence to one of the domains. Table 3 shows the statistical significance for our
results against MERT using bootstrap resampling techniques [13]. The test aims to
estimate the degree to which the true translations quality lies within a certain
confidence interval (ݍ) around the measurement on test sets. The commonly used
confidence interval is 95%. For a test set of ݉ BLEU score, this test finds an interval ሾ݉ െ ݀, ݉ ൅ ݀ሿ in which the true BLEU score lies with probability ݍ ൌ 0.95. This
test shows that AdapT performs better than MERT with a 95% confidence, and
indicates that they are two independent systems as evidenced by the P-value.

 Adaptive Tuning for Statistical Machine Translation (AdapT) 567

Table 3. Statistical significance results for AdapT in comparison to MERT against different
datasets at ݍ ൌ 0.95 , subsampling size equals to the whole test set, and repeating the
subsampling for 1000 times. The P-value is the probability that both MERT and AdapT
translations are generated from the same system.

Test set LSA_MERTprog
ress_NN Late

CBOW_MERT
clusters_NN

CBOW_MERT
clusters_Clustering

fr-en 2010 MERT 21.3645 +/- 0.5976 21.3885+/-0.5756 21.3556+/-0.5976
AdapT 21.3671 +/- 0.6041 21.6333+/-0.5802 21.4953+/-0.5755
P-value 0.391 0.013 0.11

fr-en 2011 MERT 22.1985 +/- 0.5763 22.2038+/-0.5730 22.2299+/0.55699
AdapT 22.25489+/-0.5754 22.6409+/-0.5881 22.7129+/-0.5706
P-value 0.168 ≈ 0 ≈ 0

es-en 2010 MERT 23.1678 +/- 0.6198 23.1409+/-0.5969 23.1546+/-0.6275
AdapT 23.3848 +/- 0.6238 23.4080+/-0.6140 23.3988+/-0.6010
P-value ≈ 0 0.01 0.008

es-en 2011 MERT 22.5934 +/-0.5863 22.5888+/-0.5798 22.61975+/0.5818
AdapT 22.8795 +/- 0.5879 23.0219 +/- 0.577 23.135 +/- 0.5988
P-value ≈ 0 ≈ 0 ≈ 0

de-en 2010 MERT 16.3774 +/- 0.5064 16.3504 +/- 0.479 16.3605+/-0.4864
AdapT 16.5735 +/- 0.494 16.5996+/-0.5202 16.8447+/-0.4822
P-value 0.001 0.045 ≈ 0

de-en 2011 MERT 15.2275 +/- 0.446 15.2069+/-0.4389 15.2263+/-0.4457
AdapT 15.5275 +/- 0.4473 15.4073+/-0.4965 15.7768+/-0.4525
P-value ≈ 0 0.068 ≈ 0

6 Conclusion

In this paper, we showed the limitations of using one set of weighting parameters in
the SMT systems. We presented a number of experiments to choose weight vectors
adaptively according to the input sentence. Our preliminary results show that AdapT
is a promising approach that has outperformed standard MERT on different language
pairs using different datasets. The results of our analysis suggest that there still more
room for improvements. We believe that AdapT can influence future research to
target the area of adaptive tuning. One possible extension is using AdapT with other
tuning algorithm like MIRA or PRO.

References

1. Hildebrand, A., Eck, M., Vogel, S., Waibel, A.: Adaptation of the Translation Model for
Statistical Machine Translation based on Information Retrieval. In: EAMT: Proceedings of
the Tenth, European Association for Machine Translation in Budapest, Hungary,
May 30-31, pp. 133–142 (2005)

2. Hildebrand, A., Vogel, S.: Combination of Machine Translation Systems via Hypothesis
Selection from Combined N-Best Lists. In: AMTA: Proceedings of the Eighth Conference
of the Association for Machine Translation in the Americas, Hawaii, pp. 254–261 (October
2008)

568 M.A. Zahran and A.Y. Tawfik

3. Cer, D., Jurafsky, D., Manning, C.: Regularization and Search for Minimum Error Rate
Training. In: WMT: Proceedings of the Third Workshop on Statistical Machine
Translation, Columbus, Ohio, USA, pp. 26–34 (June 2008)

4. Och, F.: Minimum Error Rate Training in Statistical Machine Translation. In: ACL:
Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics,
Stroudsburg, PA, USA, pp. 160–167 (2003)

5. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU a Method for Automatic Evaluation of
Machine Translation. In: ACL: Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, Philadelphia, 311–318 (July 2002)

6. Li, M., Zhao, Y., Zhang, D., Zhou, M.: Adaptive Development Data Selection for Log-
linear Model in Statistical Machine Translation. In: COLING: Proceedings of the 23rd
International Conference on Computational Linguistics, Beijing, pp. 662–670 (August
2010)

7. Liu, L., Cao, H., Watanabe, T., Zhao, T., Yu, M., Zhu, C.: Locally Training the Log-
Linear Model for SMT. In: EMNLP: Proceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning,
Jeju Island, Korea, pp. 402–411 (July 2012)

8. Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan,
B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses:
Open Source Toolkit for Statistical Machine Translation. In: ACL: Proceedings of the
Association for Computational Linguistics Demo and Poster Sessions, pp. 177–180 (2007)

9. Rehurek, R., Sojka, P.: Software Framework for Topic Modelling with Large Corpora. In:
LREC: Proceedings of the Language Resources and Evaluation Conference workshop on
new challenges for NLP Frameworks, Valletta, Malta, pp. 45–50 (May 2010)

10. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 391–407
(1990)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Distributed Representation of Words and
Phrases and their Compositionality. In (NIPS): Proceedings of Neural Information
Processing Systems, Nevada, United States (2013)

12. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical recipes 3rd edition: The
art of scientific computing. Cambridge University Press (2007)

13. Koehn, P.: Statistical Significance Tests for Machine Translation Evaluation. In: EMNLP:
Proceedings of Empirical Methods in Natural Language Processing, pp. 388–395 (2004)

Appendix

The objective function is to maximize the cosine similarity between the predicted
vector (ݕ) and the reference vector (݀). This is equivalent to: ܧ ݁ݖ݅݉݅݊݅ܯ ൌ 1 െ cosሺݕ, ݀ሻ ൌ 1 െ .ݕ |݀||ݕ| ݀
Let the activation function be ݕ୧୸ ൌ ,୧୸ሻ. The superscript denotes the layer numberݔሺܨ
and the subscript denotes the input number. The notation ݈ሺݖሻ refers to the number of
neurons in the layer ݖ. The derivative of the error function ܧ with respect to weights
at layer ݖ for the training sample ݉:

 Adaptive Tuning for Statistical Machine Translation (AdapT) 569

IJ୸ݓ߲ܧ߲ ൌ I୸ାଵݕ߲ܧ߲ ൈ I୸ାଵݔூ୸ାଵ߲ݕ߲ ൈ IJ୸ݓI୸ାଵ߲ݔ߲ ൌ I୸ାଵߜ ൈ IJ୸ݓI୸ାଵ߲ݔ߲
(10)

I୸ାଵߜ ,݁ݎ݄݁ݓ ൌ I୸ାଵݕ߲ܧ߲ ൈ I୸ାଵݔI୸ାଵ߲ݕ߲
I௭ାଵݕ߲ܧ߲ (11) ൌ ሺݕ. ݀ሻݕI୸ାଵ െ ݀I୸ାଵ|ݕ|ଶ|݀||ݕ|ଷ
I୸ାଵݕ (12) ൌ ݂ሺݔI୸ାଵሻ ݂ሺݔሻ ൌ 1.7159 tanh ൬23 ൰ݔ

డ௬I౰శభడ௫I೥శభ ൌ ݂ᇱሺݔI୸ାଵሻ = ቀ1.7159 ൈ ଶଷቁ ሺ1 െ ቀ ௬I౰శభଵ.଻ଵହଽቁଶሻ
(13)

I୸ାଵݔ ൌ ෍ I୨୸௟ሺ୸ሻݓ
୨ୀଵ ୨୸ݕ ֜ IJ୸ݓI୸ାଵ߲ݔ߲ ൌ J୸ݕ

(14)

Finally
డாడ௪IJ౰ is calculated by substituting from (11), (12), (13) and (14) in (10).

Now we will prove that optimizing for a training sample for, Cosine error is
equivalent for half the square error (ܵܧ) if the both the reference (݀) and the predicted
vector (ݕ) are normalized.

|ݕ| ൌ 1 ܽ݊݀ |݀| ൌ COSܧ1 ൌ 1 െ cosሺݕ, ݀ሻ ൌ 1 െ .ݕ SEܧ݀ ൌ ෍ሺ݀୧ െ ୧ሻଶKݕ
୧ୀ୧ ൌ ሺ݀ െ ሻݕ . ሺ݀ െ ሻ ൌݕ ݀. ݀ െ ݀. ݕ െ .ݕ ݀ ൅ .ݕ ൌݕ |݀|ଶ െ 2݀. ݕ ൅ ଶൌ|ݕ| 2 െ 2 cosሺݕ, ݀ሻ12 ܧSE ൌ 1 െ cosሺݕ, ݀ሻ ൌ COSܧ

	Adaptive Tuning for Statistical Machine Translation (AdapT)
	1 Introduction
	2 Related Work
	3 Adaptive Tuning
	3.1 Input Representation
	3.2 Weight Vector Pool
	3.3 Mapping Sentences to Weight Vectors

	4 Phrasal SMT Sy ystems Using AdapT
	5 Results and Evaluation
	6 Conclusion
	References
	Appendix

