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Abstract. In statistical machine translation systems, it is a common practice to 
use one set of weighting parameters in scoring the candidate translations from a 
source language to a target language. In this paper, we challenge the assumption 
that only one set of weights is sufficient to pick the best candidate translation 
for all source language sentences. We propose a new technique that generates a 
different set of weights for each input sentence. Our technique outperforms the 
popular tuning algorithm MERT on different datasets using different language 
pairs. 
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1 Introduction 

Tuning statistical machine translation systems (SMT) is a crucial step that has a 
significant impact on the overall performance of the system. Tuning is the process of 
finding optimal weights used to pick the best translation among the generated 
candidate translations. These weights reflect the relative importance of the SMT 
building models such as language model, translation model, word penalty, distortion, 
and any other additional features affecting the quality of translation.  

Minimum error rate training (MERT) [ 4] is the popular tuning algorithm for many 
statistical machine translation systems. Given a parallel corpus {ܨ, ሽܧ  of source 
language sentences ܨ ൌ  ሼ ଵ݂, ଶ݂, ଷ݂  … ሽ  and target language sentences  ܧ ൌ ሼ݁ଵ, ݁ଶ, ݁ଷ  … ሽ, a typical phrasal SMT system undergoes three main steps: training, 
tuning and testing. The training phase uses the source language and its parallel target 
language sentences to learn phrase translations and compute translation probabilities 
to them. These translations from source to target are stored with their probabilities 
and some additional information in a phrase table. The translation task requires 
building a language model for the target language to favor the translations obeying the 
language structure of the target language. The language model can be built with the 
target language side of the parallel training data, or it can be built using any additional 
target language text. The tuning phase is concerned with generating candidate  
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translations ሺ݁௜ଵ, ݁௜ଶ, ݁௜ଷ  … ሻ  for source language sentence ௜݂  and picking the best 
candidate (݁௜כ) as the final translation. ݁୧כ ൌ ୣݔܽ݉݃ݎܽ ܵሺ݁, ݂ሻ (1) 

The scoring function ܵሺ݁, ݂ሻ combines the conditional log likelihood probabilities 
in the translation model ܶܯሺ݁|݂ሻ  the language model ሺ݁ሻܯܮ   score, a distortion 
model ܦሺ݂, ݁ሻ score, and a word penalty ܹሺ݁ሻ term. The distortion model controls 
the amount of reordering of the translated phrases to suite the target language 
requirements. Word penalty ensures that the translations do not get too long or too 
short. ܵሺ݁, ݂ሻ ൌ ሺ݁ሻܯܮLMߣ  ൅ ሺ݁|݂ሻܯTMܶߣ ൅ ,ሺ݂ܦDߣ ݁ሻ ൅ Wܹሺ݁ሻ       ൌߣ . ߣ ,ሺ݁ߖ ݂ሻ 

(2) 

The goal of tuning algorithms like MERT is to find a set of optimal weighting 
parameters ሺߣLM, ,TMߣ ,Dߣ  Wሻ to weight the four model listed in (2) to achieve theߣ
best translation accuracy measured against a reference translation ሺêሻ  using a 
measure such as the popular BLEU score [ 5] such that: ݁ݖ݅݉݅ݔܽܯ:  ܵሺ݁כ, ݂ሻ ݂݅ ݏ݅כ݁ ݐݏ݋݉ ݎ݈ܽ݅݉݅ݏ ݋ݐ ê (3) 

Practically, ܵሺ݁, ݂ሻ can be viewed as the inner product of the weighting parameter 
vector ߣ with the model vector ߖ. Let ܧ஛ be the set of translations selected by the 
model parameterized by the weight vector ߣ. MERT’s goal is finding an optimal 
weight vector כߣ that minimizes the loss function ܮሺܧ஛ሻ: ܮሺܧ஛ሻ ൌ 1 െ  ஛ሻܧሺܷܧܮܤ

(4) 

כߣ  ൌ ஛݊݅݉݃ݎܽ  ஛ሻ (5)ܧሺܮ
 

MERT explores the parameter space using either Powell’s method [ 12] or Koehn 
coordinate descent as adapted by Moses the statistical machine translation package 
[ 8]. MERT finds a series of sub-optimal points (weight vectors) during its search until 
no new BLEU gain is achieved or the changes in the weights are less than a certain 
threshold. MERT’s objective function is a non-convex piece-wise constant [ 3]. Which 
means that at certain critical points, small changes in the weights will change the 
relative ranking between candidate translations. To visualize these critical points, we 
will consider two weights only as shown in Figures 1&2, these critical points are on 
the boundaries of the shaded regions. 

 If we have two source sentences ଵ݂  and ଶ݂  to translate. We will examine the 
effect of changing two weights only while holding the rest of weights constant on 
changing the relative order of the candidate translations of both ଵ݂and ଶ݂. 

By examining Figure 1, if ݁ଵଵ is in fact the best translation for ଵ݂,then the two 
weights (λଵ , λଶ ) should be assigned values in the dotted region to make ݁ଵଵ  the 
dominant candidate. Since the same weight values will be used in the translation of all 
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source sentences in ܨ, there is no guarantee that the best candidate translation of any 
other sentence will be in the dotted region of ଵ݂ . In other words, if the candidate 
regions of ଶ݂ is as shown in Figure 2, then one set of values for λଵand λଶ will not 
translate both ଵ݂ and ଶ݂ optimally, because the dotted regions of ଵ݂ and ଶ݂ do not 
overlap.  

For one set of weights to translate all source sentences optimally, all the dotted 
regions for all source sentences must overlap, which is not a practical assumption as 
we explained. In the next sections, we propose new techniques to generate a set of 
weighting parameters to be used per input source sentence. 
 

 

Fig. 1. Changing the relative order between three candidate translations (e11, e12, e13) for the 
source sentence f1 with the change of two weights only (λ1, λ2). Each region is labeled with its 
dominant candidate. 

 

Fig. 2. Changing the relative order between three candidate translations (e21, e22, e23) for the 
source sentence f2 with the change of two weights only (λ1, λ2). Each region is labeled with its 
dominant candidate. 
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2 Related Work 

While MERT is used broadly in many SMT systems, no research has been made –to 
the best of our knowledge- that discusses weight adaptation as presented here. Liu et 
al. [ 7] proposed a local training scheme, where the system retunes using a tailored 
tuning set for the input test sentence. A number of training sentences most similar to 
the input test sentence are appended to the default tuning set then retuning is 
performed, and finally the resulting weights are used to decode the test sentence.  

Li et al. [ 6] presented an adaptive data selection, where given a test set, an iterative 
algorithm will select sentences from the tuning set most similar to the test set and 
using in tuning weights for this test set. Although our technique AdapT shares the 
same spirit as these two techniques, unlike them, our sentence specific weights are 
obtained without re-tuning. This is a major and important difference as re-tuning is a 
time consuming operation that cannot be done on the fly in real-time. Our methods 
ensure that decoding happens in real-time and the tuning phase happens only once. 

There have been several attempts to enhance upon MERT directly, or enhancing 
SMT models. Hildebrand et al. [ 1] developed a method to adapt the translation model 
for the test set. For each test sentence, the corresponding top ݊ similar sentences are 
selected from the training data. This selection results in a new subset of the training 
data used to build a translation model adapted to this particular test set. They 
represented the sentences as vectors using TF- IDF and used cosine the angle between 
vectors as the similarity measure between sentences. The amount of data to be 
selected from the train data per test sentence (݊) is determined by minimizing the 
perplexity (PPL) of the language model built by the selected data.  

Hildebrand and Vogel [ 2] introduced a scheme to leverage the individual strength 
of different machine translation systems. For a test sentence, they pool the N-best list 
of all machine translation systems together forming a joint N-best list. The best 
hypothesis is selected depending on the features scores. These features are based 
solely on the hypothesis without any prior knowledge of the corresponding machine 
translation systems. Linear combination weighting between features scores is 
optimized using MERT. To optimize MERT, Cer et al. [ 3] presented two alterations 
to MERT’s search techniques. The first is introducing a new simple stochastic search 
strategy that outperformed Powell’s method and coordinate descent. The second is 
presenting a regularization scheme for both Powell’s method and coordinate descent 
that lead to performance gain. 

3 Adaptive Tuning 

Using hypothetical examples, we introduced that using one weight vector cannot 
guarantee choosing the best candidate for all source language sentences, so using 
different weight vectors in translating different source sentences can –in the best case 
scenario- translate all source sentences optimally. Optimal translation in this context 
is choosing the best candidate translation. In this paper, we introduce new methods to 
generate tailored weight vectors influenced by the input sentence so that the weights 
change adaptively according to this particular input sentence. Changing the weight 
vector from one sentence to another reveals the relative importance of the SMT 
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models (LM, TM, D, W) in translating different sentences. The basic idea is to have a 
pool of weight vectors preferably diverse enough to explore different relative 
importance for the SMT models. Then using features from the input sentence we 
choose the appropriate weight vector from the pool specifically for this sentence. Our 
technique asks three main questions. First, how to formulate the weights pool. 
Second, how to represent the input sentence. Third, how to map a sentence to its 
suitable weight vector. We propose answers to these questions in the next sections. 

3.1 Input Representation 

The idea is to give similar sentences similar representation. Similarity of sentences 
can be measured in terms of use of words, topic, length … etc. In the literature term 
frequency-inverse document frequency (tf-idf) with cosine similarity were used in the 
context of machine translation to compare sentences. However, tf-idf vectors can be 
too sparse; instead, we used two techniques to represent input source language 
sentences. The first is using Latent Semantic Analysis (LSA) [ 10] which performs 
SVD over tf-idf bag of words representation for the sentences projecting them into 
lower dimensionality (200~300 dimensions generally works fine for LSA).  

The second representation technique combines semantic projections of individual 
word representations to form a sentence representation. Several attempts have been 
made in the literature to generate a continuous vectorized representation 
(embeddings) for individual words for a given language. Mikolov et al. [ 11] proposed 
new technique for learning vectorized representation for individual words called 
continuous bag of words (CBOW). It is a neural network that predicts a word by 
using a context window from its history and future. The hidden layer is replaced with 
a projection layer into which the context words are projected by averaging their vector 
representations, thus decreasing the computational complexity. 

We used the source language side of the parallel training data to learn the CBOW 
model. Then using the learnt word vectors we represented the source side language 
sentences of the development set by combining the individual words representation 
per sentence. A simple combining technique is just adding the words vectors together, 
but this will not highlight the relative importance of words in the final sentence 
representation, therefore we used tf-idf weighting as a measure to stress the impact of 
words over others. 

The same data used to learn the CBOW is also used to build the tf-idf model so 
that the final representation of an N-words sentence is: 

෍ ୧ሻݓሺ݂݂݀݅ݐ כ. ∑୧ሻݓሺܿ݁ݒ ୨ሻN୨ୀଵݓሺ݂݂݀݅ݐ
N

୧ୀଵ  
(6) 

Where ܿ݁ݒሺݓ୧ሻ is the CBOW vector representation for the word ݓ୧ of size ܯ. The ݂݂݀݅ݐሺݓ୧ሻ is a scalar weight for word ݓ୧. The operator .כ  is an element-wise 
multiplication operator for each element in the vector. The denominator is a 
normalizing factor. The result of equation (6) is the vectorized sentence representation 
of size ܯ. 
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3.2 Weight Vector Pool 

The core idea of our technique is that the impact of the SMT models varies from one 
sentence to another, these variations are reflected in the choice of weight vector for 
each sentence. Since eventually the vectors in the pool will be used as reference 
weights to translate sentences, they should satisfy two conditions: diversity and 
performance. The first method to fill the pool is via MERT. While MERT’s goal is to 
find a single weight vector that maximizes the BLEU score for the whole 
development set, it also finds sets of sub-optimal weight vectors along its search for a 
single global optimum. These sub-optimal vectors can outperform the final optimal 
vector for individual sentences, which means that we can use these sub-optimal 
vectors together with the optimal vector in the weights pool. This technique treats the 
development set as a whole and finds a series of weight vectors performing globally 
well over the whole development set. We will refer to this technique as 
“MERTprogress”.  

Another idea is to divide the development set into clusters, and then we run MERT 
on each cluster so that the final optimal MERT weight vector for each cluster is used 
in the weights pool. We used kmeans clustering over the development set sentence 
representations. We will refer to this technique as “MERTclusters”. 

3.3 Mapping Sentences to Weight Vectors 

When decoding a new input test sentence, there should be a method to map this 
sentence to an appropriate weight vector from the pool. Here we present two mapping 
techniques. The first technique is only applicable to MERTclusters. Using the clusters 
formed by MERTclusters on the development set sentences, we can uses the test 
sentence representation to assign it to one of these clusters and uses the assigned 
cluster’s weight vector in its translation.  

The second technique is applicable to both MERTprogress and MERTclusters. It is 
building a regression neural network with objective of mapping the representation of 
the development set sentences with their corresponding weight vectors. Typical 
regression neural networks minimize the mean square error (MSE) between outputs 
and reference values. For the problem at hand, we propose the objective function to 
maximize the cosine similarity between the predicted weights with the reference 
weights. The intuition behind this choice for the objective function is as shown in 
Figures 1 & 2 that the optimal candidate is top ranked when the weights allow the 
best candidate to dominate (the dotted region). This region extends to infinity, which 
means that the relative order of the candidate translations is scale invariant with 
respect to the weight values. Consider equation (2) if we multiply the whole equation 
by a constant ߙ then the relative ranking of the candidates will remain unchanged. 

 ܵሺ݁, ݂ሻ ൌ ߙ ߣ . ,ሺ݁ߖ ݂ሻ ൌ Ø . ,ሺ݁ߖ ݂ሻ݁ݎ݄݁ݓ Ø ൌ ߙ  ߣ
(7) 
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This property illustrates that any scaled version of the weight vector will not 
tamper with the relative order of the candidate translations, which means that it is not 
important how close in values the predicted weights are from the reference weights as 
long as they form a scaled version of the reference weights. This directly follows the 
intuition behind maximizing the cosine similarity between the predicted weights and 
the reference weights. We used back propagation as a learning algorithm for the 
neural network. (Check appendix). It is worth noting that minimizing the Cosine error 
between two normalized vectors is equivalent to minimizing half the square error 
between them in terms of the objective function. 

For MERTclusters, choosing the appropriate weight vector to each sentence in the 
development set in order to train the neural network is straight forward; the neural 
network will be trained to map sentences representations with their corresponding 
cluster weight vector.  

On the other hand, for MERTprogress, choosing the best weight vector per 
sentence requires some calculations. We used all the MERTprogress weight vectors to 
translate the development set, then for each sentence in the development set we 
choose which weight vector with the best translation for this particular sentence. The 
best translation is one with the highest BLEU score. Calculating the BLEU score per 
sentence usually equals zero. This happens when one of the n-gram scores is zero. To 
avoid this problem we use equation 8 as a per sentence gauge of translation quality (ݏ) 
inspired by BLEU. 

ݏ ൌ ܲܤ ෍ ܾ୧୬
୧ୀଵ  

(8) 

Where ݏ is the score, ܲܤ is the brevity penalty, ܾ୧ are the i-gram score. When 
MERT converges after ݇ iterations it finds ݇ points1 in the weight space one after 
each iteration. Earlier vectors tend to be associated with lower ܲܤ  value. Let ܲ ൌ ሼ݌ଵ, ଶ݌ ௞ሽ݌ …  be the set of points ordered by MERT iterations, and ܵ ൌሼݏଵ, ଶݏ  ௞ሽ are the scores computed for the translation of a given sentence using theݏ …
weights in set ܲ  respectively. The set of points that correspond to best scoring 
translations is: ܲכ ൌ ୧ݔܽ݉݃ݎܽ  ୧ (9)ݏ

If  ܲכ is a singleton, i.e. there is only one point that gives, the best score, then the 
corresponding point is optimal for this sentence. If not singleton, i.e. if there is a tie, 
selecting one of the candidates affects the results, and in the experiments we 
considered two tie resolution mechanisms: the first favors the first or earliest point in ܲכ (lower index) that produces the best score. The other tie resolution strategy favors 
the latest point (higher index) in the set ܲכ that produces the best score. Experiments 
show, tie resolution, either early or late, affects the performance of the system. 

                                                           
1 A point in the space is a vector of weights. 
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5 Results and Evaluation 

We applied AdapT in comparison with MERT on different language pairs French-
English, Spanish-English, and German-English using different datasets. We used the 
European Parliament Proceeding Parallel Corpus (europarl-v7) as the training set2 
and used the target side of the parallel data to build the language model and the source 
side to build the sentence representations for either LSA or CBOW models. 

We used the news test 2008 as the development set. Standard development sets are 
usually small around 3000 sentences, so we removed 15000 sentences from the 
training set and appended them to the default development set. We build the LSA 
model using 300 topics to represent the sentence using gensim [ 9]. On the other hand, 
CBOW model requires large data to be built accurately, since we intended not to use 
external data to the WMT datasets, that left us to use the source language side of the 
training set (around 1.5~2 million lines). This relatively small dataset suggested to use 
smaller vector size to be learnt by CBOW. Thus, we used vectors of size 200. For 
MERTclusters pooling technique we used kmeans with k=50 clusters over the 
development set. Too few clusters will result in big non-homogeneous clusters, which 
can set back exploiting enough weight vectors variations. On the other hand, too 
many clusters will result in sparse clusters.  

We manually examined the clusters of the development set for the Parliament 
Spanish-English dataset. Sentences in each cluster share some characteristics as 
semantic scope, topic and domain (Economics, Energy, Money, Middle-east and 
conflicts), sentence structure (use of articles, commas, dots and quotations), use of 
words (named entities, numbers and quantifications), length (short questions and long 
questions) and type (questions, objections, opening statements, closing statements, 
question numbers, lists, thank-you sentences, applause and conclusion). Next, in 
Table 1 we show sample clusters with representative sentences:  

Table 1. Sentences and their clusters for the English-Spanish development set 

Short Questions: 
Why not?  
Whose turn is next?  
Any comments?  
Can you?  
Question Numbers: 
question No 28 by (H-0781 / 99). 
question No 29 by ( H-0786 / 99 ).  
Opening statements: 
I would like , first of all , to thank the rapporteur for his exceptionally accurate … 
Mr President , Commissioners , first of all , I cannot help but reflect upon … 
I call upon you , ladies and gentlemen , to vote in favour of this report … 
Closing statements: 
the debate is closed. 
that concludes Question Time.  
the vote will take place tomorrow at 12 p.m. 

                                                           
2 Data available at: http://www.statmt.org/wmt14/ 
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Table 1. (Continued) 
Energy: 
we need real cost-effectiveness for our entire energy supply system. 
we must reduce CO2 emissions , employ renewable energies , and generally make … 
promoting the use of renewables is especially important for the environment. 
Conclusion: 
Parliament approved the Commission proposal. 
the President declared the common position approved ( as amended ).  
Parliament rejected the proposal. 
Money: 
a special provision of up to EUR 50 million for Greece.  
Kyrgyzstan received EUR 17 million.   
between EUR 1500 and 2000 billion are traded every day on the financial markets. 
Thank-you: 
thank you, Mr Poettering.  
thank you very much. 
thank you, Commissioner, for your statement. 
I thank him for that. 

Table 2. BLEU scores for MERT and AdapT for different language pairs on different test sets 

Test set MERT LSA_MERT 
progress_NN

_Early 

LSA_MERT 
progress_NN

_Late 

CBOW_ 
MERT 

clusters_NN 

CBOW_MERT
clusters_ 

Clustering 
fr-en 2010 22.07 22.31 (+0.24) 22.08 (+0.01) 22.37 (+0.3) 22.22 (+0.15) 
fr-en 2011 23.07 23.30 (+0.23) 23.10 (+0.03) 23.52 (+0.45) 23.55 (+0.48) 
es-en 2010 23.73 23.95 (+0.22) 23.97 (+0.24) 24.25 (+0.52) 24.05 (+0.32) 
es-en 2011 23.25 23.43 (+0.18) 23.54 (+0.29) 23.69 (+0.44) 23.78 (+0.53) 
de-en 2010 17.00 16.83 (-0.17) 17.25 (+0.25) 17.34 (+0.34) 17.53 (+0.53) 
de-en 2011 15.82 15.80 (-0.02) 16.17 (+0.35) 16.09 (+0.27) 16.50 (+0.68) 

 
Table 2 shows the BLEU score for different data sets. We can notice the loss in 

BLEU score for the “LSA_MERTprogress_NN_Early” in the last two test sets due to 
the low ܲܤ  associated with the “early” configuration. On the other hand, 
“CBOW_MERTclusters_Clustering” shows the best performance in most of the test 
sets, which suggests that the SMT systems can leverage information from multiple 
domains by considering each cluster as a separate domain and classifying the new test 
sentence to one of the domains. Table 3 shows the statistical significance for our 
results against MERT using bootstrap resampling techniques [13]. The test aims to 
estimate the degree to which the true translations quality lies within a certain 
confidence interval (ݍ) around the measurement on test sets. The commonly used 
confidence interval is 95%. For a test set of ݉ BLEU score, this test finds an interval ሾ݉ െ ݀, ݉ ൅ ݀ሿ in which the true BLEU score lies with probability ݍ ൌ 0.95. This 
test shows that AdapT performs better than MERT with a 95% confidence, and 
indicates that they are two independent systems as evidenced by the P-value.  
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Table 3. Statistical significance results for AdapT in comparison to MERT against different 
datasets at ݍ ൌ 0.95 , subsampling size equals to the whole test set, and repeating the 
subsampling for 1000 times. The P-value is the probability that both MERT and AdapT 
translations are generated from the same system. 

Test set LSA_MERTprog
ress_NN Late 

CBOW_MERT 
clusters_NN 

CBOW_MERT 
clusters_Clustering 

fr-en 2010 MERT 21.3645 +/- 0.5976 21.3885+/-0.5756 21.3556+/-0.5976 
AdapT 21.3671 +/- 0.6041 21.6333+/-0.5802 21.4953+/-0.5755 
P-value 0.391 0.013 0.11 

fr-en 2011 MERT 22.1985 +/- 0.5763 22.2038+/-0.5730 22.2299+/0.55699 
AdapT 22.25489+/-0.5754 22.6409+/-0.5881 22.7129+/-0.5706 
P-value 0.168 ≈ 0 ≈ 0 

es-en 2010 MERT 23.1678 +/- 0.6198 23.1409+/-0.5969 23.1546+/-0.6275 
AdapT 23.3848 +/- 0.6238 23.4080+/-0.6140 23.3988+/-0.6010 
P-value ≈ 0 0.01 0.008 

es-en 2011 MERT 22.5934 +/-0.5863 22.5888+/-0.5798 22.61975+/0.5818 
AdapT 22.8795 +/- 0.5879 23.0219 +/- 0.577 23.135 +/- 0.5988 
P-value ≈ 0 ≈ 0 ≈ 0 

de-en 2010 MERT 16.3774 +/- 0.5064 16.3504 +/- 0.479 16.3605+/-0.4864 
AdapT 16.5735 +/- 0.494 16.5996+/-0.5202 16.8447+/-0.4822 
P-value 0.001 0.045 ≈ 0 

de-en 2011 MERT 15.2275 +/- 0.446 15.2069+/-0.4389 15.2263+/-0.4457 
AdapT 15.5275 +/- 0.4473 15.4073+/-0.4965 15.7768+/-0.4525 
P-value ≈ 0 0.068 ≈ 0 

6 Conclusion 

In this paper, we showed the limitations of using one set of weighting parameters in 
the SMT systems. We presented a number of experiments to choose weight vectors 
adaptively according to the input sentence. Our preliminary results show that AdapT 
is a promising approach that has outperformed standard MERT on different language 
pairs using different datasets. The results of our analysis suggest that there still more 
room for improvements. We believe that AdapT can influence future research to 
target the area of adaptive tuning. One possible extension is using AdapT with other 
tuning algorithm like MIRA or PRO. 
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Appendix 
 

The objective function is to maximize the cosine similarity between the predicted 
vector (ݕ) and the reference vector (݀). This is equivalent to: ܧ ݁ݖ݅݉݅݊݅ܯ ൌ 1 െ cosሺݕ, ݀ሻ ൌ 1 െ .ݕ   |݀||ݕ| ݀
Let the activation function be ݕ୧୸ ൌ  ,୧୸ሻ. The superscript denotes the layer numberݔሺܨ
and the subscript denotes the input number. The notation ݈ሺݖሻ refers to the number of 
neurons in the layer ݖ. The derivative of the error function ܧ with respect to weights 
at layer ݖ for the training sample ݉: 
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IJ୸ݓ߲ܧ߲    ൌ I୸ାଵݕ߲ܧ߲   ൈ I୸ାଵݔூ୸ାଵ߲ݕ߲ ൈ IJ୸ݓI୸ାଵ߲ݔ߲ ൌ I୸ାଵߜ ൈ IJ୸ݓI୸ାଵ߲ݔ߲  
(10) 

I୸ାଵߜ    ,݁ݎ݄݁ݓ ൌ I୸ାଵݕ߲ܧ߲ ൈ  I୸ାଵݔI୸ାଵ߲ݕ߲
I௭ାଵݕ߲ܧ߲ (11) ൌ  ሺݕ. ݀ሻݕI୸ାଵ െ ݀I୸ାଵ|ݕ|ଶ|݀||ݕ|ଷ  
I୸ାଵݕ (12) ൌ ݂ሺݔI୸ାଵሻ  ݂ሺݔሻ ൌ 1.7159 tanh ൬23  ൰ݔ
 

డ௬I౰శభడ௫I೥శభ ൌ  ݂ᇱሺݔI୸ାଵሻ = ቀ1.7159 ൈ ଶଷቁ ሺ1 െ ቀ ௬I౰శభଵ.଻ଵହଽቁଶሻ 
(13) 

I୸ାଵݔ ൌ  ෍ I୨୸௟ሺ୸ሻݓ
୨ୀଵ ୨୸ݕ ֜ IJ୸ݓI୸ାଵ߲ݔ߲ ൌ  J୸ݕ

(14) 

 

Finally  
డாడ௪IJ౰  is calculated by substituting from (11), (12), (13) and (14) in (10). 

 
Now we will prove that optimizing for a training sample for, Cosine error is 
equivalent for half the square error (ܵܧ) if the both the reference (݀) and the predicted 
vector (ݕ) are normalized. 

|ݕ|  ൌ 1 ܽ݊݀ |݀| ൌ COSܧ1 ൌ 1 െ cosሺݕ, ݀ሻ ൌ 1 െ .ݕ SEܧ݀ ൌ ෍ሺ݀୧ െ ୧ሻଶKݕ
୧ୀ୧ ൌ ሺ݀ െ ሻݕ . ሺ݀ െ ሻ ൌݕ ݀. ݀ െ ݀. ݕ െ .ݕ ݀ ൅ .ݕ ൌݕ |݀|ଶ െ 2݀. ݕ ൅ ଶൌ|ݕ| 2 െ 2 cosሺݕ, ݀ሻ12 ܧSE ൌ 1 െ cosሺݕ, ݀ሻ ൌ  COSܧ
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