RDMA:
Provably More Powerful

Communication
Naama Ben-David (CMU)

PODC’18, PODC’19

Marcos Aguilera, Irina Calciu, Rachid Guerraoui, Virendra Marathe,
Erez Petrank, Sam Toueg, Igor Zablotchi

Data Center Technology:
RDMA

Data Center Technology:
RDMA

Data Center Technology:
RDMA

Data Center Technology:
RDMA

Data Center Technology:
RDMA

Data Center Technology:
‘RDMA

Remote Direct Memory Access (RDMA)

Data Center Technology:
RDMA

. Remote Direct Memory Access (RDMA)

(Network Interface Card)

RDMA: No
involvement
of host CPU!

RDMA In Practice

e Huge speedups with RDMA

RDMA In Practice

e Huge speedups with RDMA

_—

LibPaxos - S-Paxos ~
ZooKeeps W DARE @ -
1250 I caanve @ arus © ST e
2 e
b e T — e, 2
g . e e BT,
) v
o e T
" 250‘
-’
& 0415
D T
& ®
Q248 @
S
8.2 &— > - 488
[; ‘
3 5 7 Bl

Number of replicas

[WangdJaingChenYiCui’17]

o

RDMA In Practice

e Huge speedups with RDMA

Lower
IS better
3 LibPaxos = S-Paxos o
. ZooKeweps: W DARE @ -
é 1250 I caanve @ arus © ST e
N i I
o el T e e BT
Q v
T O ol
wn 250‘
@ 415
c e41.
eb} @
g 248 ¢ *
S
B2 $—— S <> 488
[; ‘
3 : 7 g9

Number of replicas

[WangdJaingChenYiCui’17]

o

RDMA In Practice

e Huge speedups with RDMA

Lower
IS better
3 LibPaxos -~ S-Paxos _____-—-"'-'
| ampemoaet
é ~ e ——
= e 223 4
R el ey
@ v
© el
wn 250‘
-
2 | —
eb} @
24 °
o
O
=~ 3 s 7
RDMA-based Number of replicas

[WangdJaingChenYiCui’17]

o

RDMA In Practice

e Huge speedups with RDMA

e But is this improvement fundamental to RDMA?

Lower
IS better
3 LibPaxos - S-Paxos ~ ==
B
ok = e
v
ST
—
o
> 3 - 7
RDMA-based Number of replicas

[WangdJaingChenYiCui’17]

o

RDMA In Practice

e Huge speedups with RDMA

e But is this improvement fundamental to RDMA?

Lower
IS better
3 LibPaxos -~ S-Paxos ~O =
B e e
e Cluster CX3 (InfiniBand) CX4 (Eth) CXS5 (Eth)
S = e L. RDMA read 1.7 s 2.9 s 2.0 s
g ' eRPC 2.1us 3.7us 2.3 us
B 415 Table 2: Comparison of median latency with eRPC and RDMA
—
o
. 3 S - o 7
RDMA-based Number of replicas

[WangdJaingChenYiCui’17]

o

RDMA In Practice

e Huge speedups with RDMA

e But is this improvement fundamental to RDMA?

Lower
IS better
3 LibPaxos -~ S-Paxos ~» =
| milrEml w=l e |
= et Cluster CX3 (InfiniBand) CX4 (Eth) CXS5 (Eth)
ksl e RDMA read 1.7 s 2.9 s 2.0 s
" ' eRPC 2.1us 3.7us 2.3 us
B o TablRComparison of median latency with eRPC and RDMA
° * %
Old technology, optimized software
B IKaliaKaminskiAndersen’19]
3 s - 7 9
RDMA-based Number of replicas

[WangdJaingChenYiCui’17]

o

RDMA In Practice

e Huge speedups with RDMA

e But is this improvement fundamental to RDMA?

| Lower Performance
= b?tter . _ comparable with
| G oame s e U RDMA
et Cluster CX3 (InfiniBand) CX4 (Eth) CXS5 (Eth)
e ____,,—---3'.‘.’_':-—.—_ o - RDMA read 1.7 us 2.9 us 2.0 us
g eRPC 2.1us 3.7 us 2.3 us
o o TablRComparison of median latency with eRPC and RDMA
° 2 %
Old technology, optimized software
B IKaliaKaminskiAndersen’19]
RDMA-based umberof repiicas 9

[WangdJaingChenYiCui’17]

o

PRI DD AT TR P IS W ERTINE S T IS AW E IS TR R SON AP NIA TS PN Q9T i O B S A ST PRGNS e ST v S i £ge U SR Y T NRMM LA, MY T

B, |
{ Is RDMA fundamentally better than i
‘other communication mechanisms?

LMWMW« SRR RGO AL AL 2y Qe X R OGRS R AR Al W AL BT {08 SN ST A ST O G S P ANy N eI A AR SSal NCOTVPITER LTS A PSS

Performance

! PRI ST T TR P T e BINT S BT U NPT I ST O R SO AP NTA SN IO VLA R PO AT AT T 9 P i £2 U R T NP LSRN, T U i

(Is RDMA fundamentally better than
| other communication mechanisms?

LMW&W«WW R OGNV -SRI AP el Wb Al LV o8 SANAH ST R ST e G S P ANy e A A wmwwj

Fault Tolerance

A

Performance

! PRI ST T TR P T e BINT S BT U NPT I ST O R SO AP NTA SN PPV SR PUN AT AT TR S fie U R MMM LB, T U

W , i
{ Is RDMA fundamentally better than i
‘other communication mechanisms?

LMWMW« SRR RGO AL AL 2y Qe X R OGRS R AR Al W AL BT {08 SN ST A ST O G S P ANy N eI A AR SSal NCOTVPITER LTS A PSS

Fault Tolerance

A

Performance Scalability

. PRI T T TR 2 B RN DT RGP I E IS T T R SN AP NIA SN R = b "—/

(Is RDMA fundamentally better than g
| other communication mechanisms?

LMW&W«WW R OGNV -SRI AP el Wb Al LV o8 SANAH ST R ST e G S P ANy e A A wmwwj

Consensus as a Lens

Consensus: Agreement

Consensus as a Lens

Consensus: Agreement

Replication, shared data structures, blockchains

Consensus as a Lens

Consensus: Agreement

Replication, shared data structures, blockchains

==

e ine

Consensus as a Lens

Consensus: Agreement

Replication, shared data structures, blockchains

== e

G % M
s

Data Structure

Consensus as a Lens

Consensus: Agreement

Replication, shared data structures, blockchains

ey ¢

Data Structure

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something

In: 1

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something

e Agreement: Every process outputs the same value

In: 1

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something

e Agreement: Every process outputs the same value

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something
e Agreement: Every process outputs the same value

e Validity: output value must be input of some process

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something
e Agreement: Every process outputs the same value

e Validity: output value must be input of some process

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something
e Agreement: Every process outputs the same value

e Validity: output value must be input of some process

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something
e Agreement: Every process outputs the same value
e Validity: output value must be input of some process

 Challenges: Asynchrony, processes crash or are Byzantine

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something
e Agreement: Every process outputs the same value
e Validity: output value must be input of some process

 Challenges: Asynchrony, processes crash or are Byzantine

Consensus: Definition

* Input: every process gets input

 Output: Every process outputs something
e Agreement: Every process outputs the same value
e Validity: output value must be input of some process

 Challenges: Asynchrony, processes crash or are Byzantine

Consensus: Definition

* Input: every process gets input

correct
 Qutput: Ever)yprocess outputs something

e Agreement: Every process outputs the same value
e Validity: output value must be input of some process

 Challenges: Asynchrony, processes crash or are Byzantine

Fault Tolerance

A

Performance Scalability

P TR 3 PN BRI ATI AT E I ST AR O AT NN SN e oy ’~/ e o e '

(Is RDMA fundamentally better tha
lother communication mechanisms:

g~

s

Communication Mechanisms

Communication Mechanisms

“Message Passing”

Communication Mechanisms

e Data centers,
Internet

“Message Passing”

Communication Mechanisms

e Data centers,
Internet

“Message Passing”

Fe

“Shared Memory

Communication Mechanisms

-

]
-

[

] e Data centers,

Internet

=il

“Message Passing”

e Multicore machines

“Shared Memory” Ej

Message Passing vs
Shared Memory

Message Passmg Shared Memory

T U

\J\(:I

Message Passing vs
Shared Memory

Message Passmg Shared Memory

Q@ <

\J\(:I

Message Passing vs
Shared Memory

Message Passmg Shared Memory

T G

\J\(:I

Message Passing vs
Shared Memory

Message Passmg Shared Memory

T Gl

\J\(:I

Message Passing vs
Shared Memory

Message Passing Shared Memory

Was
L
E <
L
[

\J\(:I

Message Passing vs
Shared Memory

Message Passing Shared Memory

Was Q
my message
received?

E;I

Message Passing vs
Shared Memory

Message Passing Shared Memory

Was
L
E <
L
[

\J\(:I

Message Passing vs
Shared Memory

Message Passing Shared Memory

Was
L
E <
L
[

\J\(:I

Message Passing vs
Shared ‘Memory

6d others see
Message Passing my message? / Shared Memory
Was
my message)
received? l:]

[

Message Passing vs
Shared ‘Memory

6d others see
Message Passing my message? / Shared Memory
Was
my message)
received? l:]

[

Message Passing vs
Shared ‘Memory

6d others see
Message Passing my message? / Shared Memory

Was
my message)
received? l:]

[

Processes

Message Passing vs
Shared ‘Memory

6d others see
Message Passing my message? / Shared Memory

Was
my message]
received? [:]

[

Processes Processes and memory E

Message Passing vs
Shared Memory

Did others see
Message Passing my message? / Shared Memory

Was =
my message | @
received?
-
- _\
= N
-

Processes Processes and memory E

Rely on other processes to know if
communication was successful

Message Passing vs
Shared Memory

Did others see
Message Passing my message? / Shared Memory

Was =
my message | @
received?
-
- |
= N
-

Processes Processes and memory E

Rely on other processes to know if Rely on memory to know if
communication was successful communication was successful

Message Passing vs
Shared Memory

Did others see
Message Passing my message? / Shared Memory

Was =
my message | @
received?
-
- |
= N
-

Processes Processes and memory E

Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Message Passing vs
Shared Memory

Did others see

Message Passing my message? / Shared Memory
Was =
my message |
received?
L =
Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process

Message Passing vs
Shared Memory

Did others see

Message Passing my message? / Shared Memory
Was =
my message |
received?
L =
Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process Single “ack” from memory

Message Passing vs
Shared Memory

Did others see

Message Passing my message? / Shared Memory
Was =
my message |
received?
L =
Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process @«@ Single “ack” from memory

Message Passing vs
Shared Memory

Did others see

Message Passing my message? / Shared Memory
Was =
my message |
received?
L =
Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process @«@ Single “ack” from memory

“Ack” can have arbitrary information

Message Passing vs
Shared Memory

Did others see

Message Passing my message? / Shared Memory
Was =
my message |
received?
L =
Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process @«@ Single “ack” from memory

“Ack” can have arbitrary information “Ack” has little new information

Message Passing vs
Shared Memory

Did others see

Message Passing my message? / Shared Memory
Was =
my message |
received?
L =
Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process @«@ Single “ack” from memory

“Ack” can have arbitrary information @ “Ack” has little new information

Message Passing vs
Shared Memory

Did others see
my message?

Message Passing

Was =
my message | @
received?
L
L]
L]
-

Shared Memory

Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process @«@ Single “ack” from memory

“Ack” can have arbitrary information @ “Ack” has little new information

Message Passing vs
Shared Memory

Did others see
my message?

Message Passing

Was =
my message | @
received?
L
L]
L]
-

Shared Memory

L Ll L L]

Processes Processes and memory
Rely on other processes to know if | Rely on memory to know if
communication was successful communication was successful

Need “ack” from each process @«@ Single “ack” from memory

“Ack” can have arbitrary information @ “Ack” has little new information

RDMA:
Messages and Memory

. Remote Direct Memory Access (RDMA) |

RDMA:
Messages and Memory

. Remote Direct Memory Access (RDMA) |

(Network Interface Card)

RDMA: No
involvement
of host CPU!

RDMA:
Messages and Memory

. Remote Direct Memory Access (RDMA) |

[:I | | i | S Shared-memory-
like capability

(Network Interface Card)

RDMA: No
involvement
of host CPU!

Fault Tolerance

A

Performance Scalability

P TR 3 PN BRI ATI AT E I ST AR O AT NN SN e oy ’~/ e o e '

(Is RDMA fundamentally better tha
i other communication mechanisms:

g~

%

Message Passing Shared Memory

s

11

Main Take-Away

TGS ADETNLS D TSR AECIMANTDON _J0 5~ R ATT TRy W DDAFFAFANT . DI a2 - FHANIO. ADEBNS JO4I O oY R G2 SIS TIAE_ PN BT 3L AL LSRN £ IO

! RDMA improves tradeoff between fault tolerance, g
| ~ performance and scalability ____j

TN AN TS 0 MATLITFNENDD TN

BT T SR TR IPAT TE OTTNR N G SN SO "}

12

Main Take-Away

Byzantine or crash failures of processes

FEIGO ATETNE DR TS TR EHIEANDON JOF - NRATTTRIY W QDG FATDNT . [y T DI Tl o INNIOOD J T NP D) An SR NS J0 ™ T p DY D G2 ST IR TR nmmamkswmmm-mmmv}

! RDMA improves tradeoff between fault tolerance, g
| performance and scalability ____j

PO INTTON Vo T I QST AT Y SR ARSI EVTCTWLN 230 ST DOV P

TN AN TS 0 MATLITFNENDD TN VO G N O AT NN I OIS K (TG D RN Y

12

Main Take-Away

Byzantine or crash failures of processes

! RDMA i |mproves tradeoff between fault tolerance §
T performance and scalability B

7-—c~mmmm

Common-case running time

12

Main Take-Away

Byzantine or crash failures of processes

! RDMA i |mproves tradeoff between fault tolerance §
T performance and scalability B

7-—c~mmmm

Common-case running time

Common case: \

e Synchronous |
* No Failures

Running time (agreement):
\ * Time until first process decidy
12

Main Take-Away

Byzantine or crash failures of processes

RDMA improves tradeoff between fault tolerance §
T performance and scalability B

&4 T e A TN AN 0 S S TF AN DD

IO NR AT TRy WS DDA FAIDNY . ol

Best case performance
Worst case resilience

Common case: \

e Synchronous |
e No Failures

Running time (agreement):
\ * Time until first process decidy
12

Common-case running time

Outline

e RDMA details and previous results
* Improving fault tolerance and performance

* Improving scalability

Previous Results

Previous Results

N = num processes Shared Message

f = num failures Memory Passing

Previous Results

N = NnUM processes Shared Message
f = num failures Memory Passing

Crash
Fault
Tolerance
Byzantine

Previous Results

N = NnUM processes Shared Message
f = num failures Memory Passing

Crash
Fault
Tolerance
Byzantine

Previous Results

N = NnUM processes Shared Message
f = num failures Memory Passing

Crash
Fault
Tolerance
Byzantine

Previous Results

N = NnUM processes Shared Message
f = num failures Memory Passing

Crash
Fault
Tolerance
Byzantine

Previous Results

N = NnUM processes Shared Message
f = num failures Memory Passing

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

Previous Results

N = NnUM processes Shared Message
f = num failures Memory Passing

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

Scalability 10,000 -
(processes in network) 100,000

Previous Results

N = NnUM processes Shared Message RDMA Full
f = num failures Memory Passing B

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

Scalability 10,000 -
(processes in network) 100,000

Previous Results

N = num processes Shared Message RDMA Full RDMA Scale
f = num failures Memory Passing B B

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

Scalability 10,000 -
(processes in network) 100,000

10-100,000

Data Center Technology:
RDMA

Data Center Technology:
RDMA

e Can choose RDMA

Data Center Technology:
RDMA

e Can choose RDMA

Data Center Technology:
RDMA

e Can choose RDMA

Data Center Technology:
RDMA

e Can choose RDMA
and

Data Center Technology:
RDMA

e Can choose RDMA
and

p1: read
p3: write

p6: read & write
p2, pS: none

Data Center Technology:

RDMA

e Can choose RDMA
and

different

* Can give different permissions for

e NIC must store this on its cache

p1: read
p3: write

p6: read & write
p2, p5: none

R1
R1& R2
R2

¥

7

RDMA Scalability

12

10

Requests / us
(o))

0
2 3 45 8 12 16 20

Servers

Figure 5: Impact of connection multiplexing

DragojevicNarayananHodsonCastro’14]

RDMA Scalability

Several connections per server
12

10

Requests / us
N

0
2 3 45 8 12 16 20

Servers

Figure 5: Impact of connection multiplexing

DragojevicNarayananHodsonCastro’14]

RDMA Scalability

Several connections per server
12

10

Requests / us
(o))

0

Servers Approximate number of

connections per machine
Figure 5: Impact of connection multiplexing

DragojevicNarayananHodsonCastro’14]

RDMA Scalability

Several connections per server
12

10
As number of connections

per server increases,
throughput decreases.

Requests / us
(o))

0

Servers Approximate number of

connections per machine
Figure 5: Impact of connection multiplexing

[DragojevicNarayananHodsonCastro’14]

Modeling Scalability

RDMA Full RDMA Scale

B B

n>f ‘ n>f+Xx .
& (xe[0,f])

n>2f

1

10-100 10-100,000

Modeling Scalability

RDMA Full RDMA Scale
:
&

| n>f ‘ n>f+x.
qp, o (xe[0,f])
T n>2f ;
S .@ ‘ ' |
=@

1 -

10-100 10-100,000

Modeling Scalability

RDMA Full RDMA Scale
4 I - R

&
. % n>f ‘n>f+x. @
QP o (xe[0,f]) / \, , =
‘> @ _

/ 3
ey |
17 -‘@‘
i3 -
g _ 5]

10-100 10-100,000

Modeling Scalability

RDMA Full RDMA Scale fShared Memory Gra_p_rj
. B
4 I M]

| & n>f @nix@ @.K,%'
ap ‘@ (XG[O,f])
-
LR A .@ ‘
=@

10-100 10-100,000

17

Modeling Scalability

RDMA Full RDMA Scale fShared Memory Gra__J

o 4 I ; ‘:& |
| n>f @nix@ :‘%‘
T — (xe[0,f])
Y B3 | g
\V/ =g '
Q

!W Féult tolervar;ge Will
| % depend on topology of |
10-100 | 10-100,000 | L. =Y 92P"

17

Outline

RDMA details
e Setting 1: RDMA'’s full power (complete graph)

o . @
e Crash-only algorithm: n>f tolerant, 1 round-trip “;- i@

 Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Setting 2: Scalability: Using RDMA sparingly (incomplete
graph)

* Crash-only Algorithm: tolerance vs topology

.Q

Data Center Technology: /&
RDMA P

e Can choose RDMA
and

 (Can give different permissions for
different

. |pl:read R1

o | p3: write R1& R2
"V |p6:read & write R2
p2, p5: none

.Q

Data Center Technology: /&
RDMA P

* Can choose RDMA

and
E‘.' ® * (Can give different permissions for
) ‘@ different
.—&
@ e — \
LEE’:] ORI s pi: read R1

) |P3: write R1& R2
W |p6: read & write R2
p2, p5: none

Data Center Technology: /5
RDMA

e Can choose RDMA

and |
@0 R * Can give different permissions for
. W5 different ‘

~ |p1:read R1
R1 R2 R3 NIC BLEAUE R1& R2
o Y | p6:read & write R2
p1: read R1 p2, p5: none —_

2 |p3: write R1& R2
Y p6: read & write R2
p2, p4: none —_

Representing an RDMA /2%
L KIS
Network :

Representing an RDMA
Network v

Representing an RDMA | ¥
Network v

eeeeee

JLLLTE

AII to- |I
nnnnnnnn

Representing an RDMA /i
*\.,“
Network i

Kernel-level code executed on “memories”

[Pz

@‘ 2 .\! - - !’ Memories

‘ - - % V a.
" ' - @ -———-—-—.—’ A"'tO'a"
- A :
Connections

gt | 3
/i
Processes
P1 P2 P3 P4 Ps Ps

Representing an RDMA*
Network >

Kernel-level code executed on “memories”

[E

@‘ _0 .!--!ﬂ Memories

‘UD — All-to-all
‘ '

Connections

@—J.

User-level code executed on processes

RDMA Model 40

e Asynchronous network of n processes and

LI

All-to-all

TIXXX,

P1 P2 P3 P4

21

RDMA Model

e Asynchronous network of n processes and

LLIT

All-to-all
Connections

Y Y

P1 P2 P3 P4 Ps Ps

RDMA Model

e Asynchronous network of n processes and

. fail by cras , processes fail by crashing or being Byzantine

LLIT

All-to-all
Connections

Y Y

P1 P2 P3 P4 Ps Ps

RDMA Model

e Asynchronous network of n processes and

. fail by cras , processes fail by crashing or being Byzantine

LLIT

All-to-all
Connections

Y Y

P1 P2 P3 P4 Ps Ps

RDMA Model

e Asynchronous network of n processes and

. fail by cras , processes fail by crashing or being Byzantine

LLIT

All-to-all
Connections

Y Y

P1 P2 P3 P4 Ps Ps

RDMA Model

e Asynchronous network of n processes and

. fail by cras , processes fail by crashing or being Byzantine

LLIT

All-to-all
Connections

Sehoo

P1 P2 P3 P4 Ps Ps

RDMA Model

e Asynchronous network of n processes and

. fail by cras , processes fail by crashing or being Byzantine

e Processes access memories through read, write, and changePermission

LLIT

All-to-all
Connections

Sehoo

P1 P2 P3 P4 Ps Ps

2

‘{.’ i
o Y
RDMA Model <=
&
e Asynchronous network of n processes and
o M s fail by crashing, processes fail by crashing or being Byzantine

e Processes access memories through read, write, and changePermission

/ ¢ ! ‘
All-to-all _
\S Connections Request write

! b b permission for p5

P3 P4 Ps Ps

21

2

‘{.’ i
o Y
RDMA Model <=
&
e Asynchronous network of n processes and
o M s fail by crashing, processes fail by crashing or being Byzantine

e Processes access memories through read, write, and changePermission

/ ¢ ! ‘
All-to-all _
\S Connections Request write

! b b permission for p5

P3 P4 Ps Ps

21

2

‘{.' i
- * .*
RDMA Model <=
&
e Asynchronous network of n processes and
g s fail by cras , processes fail by crashing or being Byzantine

e Processes access memories through read, write, and changePermission

e Men s respond to changePermission requests with

},Qn!/-

All-to-all .
Connections Request write

! b b permission for p5

P3 P4 Ps Ps

21

.'-‘.'\

RDMA Model <3

e Asynchronous network of n processes and
e Memories fail by crashing, processes fail by crashing or being Byzantine
e Processes access memories through read, write, and changePermission

e Memories respond to changePermission requests with accept!
policy

7 p6 is allowed to
m F - ! /. give pS permission
All-to-all
T &e

Connections Request write
P1 P2 P3 P4 Ps Ps

! b b\. permission for p5

21

y.ﬂ *;s‘
O e &5 e B
&
Asynchronous network of n processes and m mema
Nemories fail by crashing, processes fail by crashing or being Byzantine

Processes access memories through read, write, and changePermission

ories respond to changePermission requests with acceptChange

p6 is allowed to

give pS permission

Connections Request write

! b b\. permission for p5
P4 Ps

P1 P2 P3

| got write
permission!

RDMA Model

Asynchronous network of n processes and

fail by cras , processes fail by crashing or being Byzantine

Processes access memories through read, write, and changePermission

- respond to changePermission requests with

LLIT

All-to-all
Connections

Sehoo

P1 P2 P3 P4 Ps Ps

policy
/

2

‘{.' i
- * .*
RDMA Model <=
&
e Asynchronous network of n processes and
g s fail by cras , processes fail by crashing or being Byzantine

e Processes access memories through read, write, and changePermission

e Men s respond to changePermission requests with
policy

[sl

permission from P p2 D3 P4 Ps Ps
| everyone!

21

.'-‘.'\

RDMA Model <3

e Asynchronous network of n processes and
e Memories fail by crashing, processes fail by crashing or being Byzantine
e Processes access memories through read, write, and changePermission

e Memories respond to changePermission requests with accept!
policy

7 Not allov':led to
Q . revoke!
W ﬂ-to’all !

Connections
oo g LA XXX

permission from P P2 P3 P4 Ps Ps
everyone!

21

Handling Memory
Fallures

Replication: Treat all memories the same

T LI

AII to- Il

Handling Memory
Fallures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

T LI

All-to-all

TIXX.

P1 P2 P3 P4 Ps Ps

Handling Memory
Fallures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

T LI

All-to-all

Connections
s LEX).

P1 P2 P3 P4 Ps Ps

Handling Memory
Fallures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

oLl
oo

tions
1 2

IXX.

Handling Memory
Fallures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

L LLLL

All-to-all

TIXX.

P1 P2 P3 P4 Ps Ps

Handling Memory
Failures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear
acknowledgement from majority

Fﬂ:ﬂ!ﬂ
Q. TTXXX,

Handling Memory
Failures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear

acknowledgement from majority |
f Instead of many faulty z

} memories, we can now thin
of one non-faulty memory

Fﬂ:ﬂ!ﬁ
4 TTXXX,

22

Representing an RDMA | ¥
Network v

LLLL LR

AII to- aII
nnnnnnnnn

Representing an RDMA | ¥
Network v

LLLL LR

AII to- aII
nnnnnnnnn

Representing an RDMA | Y
Network -"“'

. - ! B I N i

'[E S— All-to-all

. - Connections
Y & » ‘
= o/o/ 6 ® 0 W

Memory
Processes
P1 P2 P3 P4 Ps Ps

Representing an RDMA | Y
Network -"“'

. - ! B I N i

'[E S— All-to-all

. - Connections
Y & » ‘
= o/o/ 6 ® 0 W

Due to replication
technique

Memory
Processes

Outline

RDMA details
Setting 1: RDMA'’s full power (complete graph)

o . @
e Crash-only algorithm: n>f tolerant, 1 round-trip “;- i@

 Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Setting 2: Scalability: Using RDMA sparingly (incomplete
graph)

* Crash-only Algorithm: tolerance vs topology

OIS DT DR S WIS

"]
t[Lamport’98]
R il

Paxos

Message passing consensus

Representing an RDMA | Y
Network -"“'

. - ! B I N i

'[E S— All-to-all

. - Connections
Y & » ‘
= o/o/ 6 ® 0 W

Memory
Processes
P1 P2 P3 P4 Ps Ps

OIS DT DR S WIS

"]
t[Lamport’98]
R il

Paxos

Message passing consensus

OIS DT DR S WIS

1
t[Lamport’98]
LWMWMMJ

Paxos

Message passing consensus

e Two rounds:

OIS DT DR S WIS

" |
t[Lamport’98]
R e i

Paxos

Message passing consensus
e Two rounds:

1. prepare: | want to propose a value!

g{;;mgjort'98] | Paxos

N A

Message passing consensus
e Two rounds:

1. prepare: | want to propose a value!

1.lwantto

| propose

g{;;mgjort'98] | Paxos

N A

Message passing consensus
e Two rounds:

1. prepare: | want to propose a value!

1.lwantto

| propose

g{;;mgjort'98] | Paxos

N A

Message passing consensus
e Two rounds:

1. prepare: | want to propose a value!

1.lwantto

| propose

[Lamportsa Paxos

Message passing consensus

e Two rounds:

1. prepare: | want to propose a value!

- 1.l want to
propose

ready for p1 ’S'
value

[Lamportsa Paxos

Message passing consensus

e Two rounds:

1. prepare: | want to propose a value!

- 1.l want to
propose

ready for p1 ’S'
value

[Lamportsa Paxos

Message passing consensus

e Two rounds:

1. prepare: | want to propose a value!

- 1.l want to
propose

ready for p1 ’S'
value

[Lamportsa Paxos

Message passing consensus

e Two rounds:
1. prepare: | want to propose a value!

2. accept: Here is my value!

- 1.l want to
propose

ready for p1 ’S'
value

[Lamportsa Paxos

Message passing consensus

e Two rounds:
1. prepare: | want to propose a value!

2. accept: Here is my value!

2. Propose v

ready for p1 ’S'
value

[Lamportsa Paxos

Message passing consensus

e Two rounds:
1. prepare: | want to propose a value!

2. accept: Here is my value!

2. Propose v

ready for p1 ’S'
value

[Lamportsa Paxos

Message passing consensus

e Two rounds:
1. prepare: | want to propose a value!

2. accept: Here is my value!

2. Propose v

| accept v

[Paxos

Message passing consensus

 Two rounds:
1. prepare: | want to propose a value!

2. accept: Here is my value!

e Complications: If multiple processes try, accept only last prepared

2. Propose v

| accept v

[Paxos

Message passing consensus

e Two rounds:

1. prepare: | want to propose a value!

2. accept: Here is my value!

e Complications: If multiple processes try, accept only last prepared

flaea:]

e Choose leader a priori, |

2 let it skip prepare
phase

e If leader is slow, ,
others start executing

| prepare

2. Propose v

| accept v

25

[Paxos

Message passing consensus

e Two rounds:

1. prepare: | want to propose a value!

2. accept: Here is my value!

e Complications: If multiple processes try, accept only last prepared

; In the best case, only need one round!}

flaea:]

e Choose leader a priori, |

2 let it skip prepare
phase

e If leader is slow, ,
others start executing

| prepare

2. Propose v

| accept v

25

gereee, ‘

* [Ggmeamportoz DlSk PaXOS

ldea: run Paxos on shared memory

mw‘«\a

To send: write your message in your slot in disk
To receive: read others’ slots in disk

()
(®))

gereee, ‘

* [Ggmeamportoz DlSk PaXOS

Fault tolerance
n>f instead of n>2f

mw‘«\a

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

()
(®))

gereee, ‘

* [Ggmeamportoz DlSk PaXOS

Fault tolerance
n>f instead of n>2f

mw‘«\a

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

()
(®))

gereee, ‘

* [Ggmeamportoz DlSk PaXOS

Fault tolerance
n>f instead of n>2f

mw‘«\a

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?

()
(®))

gereee, ‘

* [Ggmeamportoz DlSk PaXOS

Fault tolerance
n>f instead of n>2f

mw‘«\a

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?

* pl1 proposes by writing

()
(®))

![GameamportOZ DlSk PaXOS

Fault tolerance
n>f instead of n>2f

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?

* pl1 proposes by writing

5.0.

" Propose 1 P4

![GameamportOZ DlSk PaXOS

Fault tolerance
n>f instead of n>2f

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?

* pl1 proposes by writing

" Propose 1 P4

![GameamportOZ DlSk Paxos

Fault tolerance
n>f instead of n>2f

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?

* pl1 proposes by writing

* p1 must read all slots to
ensure it’s the only proposer

" Propose 1 P4

![GameamportOZ DlSk Paxos

Fault tolerance
n>f instead of n>2f

ldea: run Paxos on shared memory

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?

* pl1 proposes by writing

* p1 must read all slots to
ensure it’s the only proposer

" Propose 1 P4

rI;1 doesn’t know it’s
f a good execution! g
‘Mm'* E

![GameamportOZ! DlSk PaXOS

Fault tolerance

ldea: run Paxos on shared memory n>f instead of n>2f

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common-
case execution?
* pl1 proposes by writing

* p1 must read all slots to
ensure it’s the only proposer

NG |
rw1 doesn’t know it’s e
f a good execution! g Read all
R slots

![GameamportOZ DlSk PaXOS

Fault tolerance

ldea: run Paxos on shared memory n>f instead of n>2f

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common- Time
case execution? (in round trips):

* p1 proposes by writing

* p1 must read all slots to
ensure it’s the only proposer

NG |
rw1 doesn’t know it’s e
f a good execution! g Read all
R slots

![GameamportOZ! DlSk PaXOS

Fault tolerance

ldea: run Paxos on shared memory n>f instead of n>2f

To send: write your message in your slot in disk
To receive: read others’ slots in disk

Paxos:
 Leader proposes its value by sending it to everyone.
« Everyone tells leader whether they heard from anyone else

What happens in common- Time

case execution? (in round trips):

* pl1 proposes by writing 1

* p1 must read all slots to |

ensure it’s the only proposer

et total: 2 |
r~1 doesn’t know it’s A=iagm
f a good execution! g Read all

&@ Disk Paxos with .\,“?::

Permissions o

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

PR SN T TG _FUOR a0 L CTNND S QIINFN S P ST

! ldea: leverage RDMA dynamic permissions to get rid of this step.

—t—- NG < i B Il M R L e R B e N R R Ut e LY

B aian ey

& RN O

S ey O

Memory

27

&GMZ#@)]} Disk Pa.XO.S with
. Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

Idea leverage RDMA dynamic permlssnons to get r|d of thls step ;

oo S b = L g o A e N U e L R Y R e e

PN AT WG JUNAGIE B ST D SERUMNNNRG POSTUST)

ka2

& RN O

S ey NI

~ | will give wrife
permission only to
Memory the last person who

22—~ Ioqieslea I

~—— DISK Paxos with
{[ABGMZ'19] | _ '
Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

CEL PN MR CIOL AT DTS RIS AL IO SO LTI EEIO SIVANTI AN ST s

E ldea: leverage RDMA dynamic permissions to get rid of this step. l

meww

GNP SEQMINHNET P TS

St

o T ENTHT D

~ | will give wrife
permission only to
Memory the last person who

requested it.

VA e il oo
P P2 F’ pa
Request permission)

e it g

~—— DISK Paxos with
{[ABGMZ'19] | _ '
Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

CEL PN MR CIOL AT DTS RIS AL IO SO LTI EEIO SIVANTI AN ST s

E ldea: leverage RDMA dynamic permissions to get rid of this step. l

meww

GNP SEQMINHNET P TS

St

o T ENTHT D

~ | will give wrife
permission only to
Memory the last person who

requested it.

VA e il peneteac o
P P2 F’ pa
Request permission)

e it g

~—— DISK Paxos with
{[ABGMZ'19] | _ '
Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

CEL PN MR CIOL AT DTS RIS AL IO SO LTI EEIO SIVANTI AN ST s

E ldea: leverage RDMA dynamic permissions to get rid of this step. l

meww

GNP SEQMINHNET P TS

St

o T ENTHT D

~ | will give wrife
permission only to
Memory the last person who

requested it.

L—-’”’\q

i, P2 F’ P4
VO OBt oW . from memory _~
permission S Y

&\Pemzw]i Disk Pa-XO'S with
T Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

CEL PN MR CIOL AT DTS RIS AL IO SO LTI EEIO SIVANTI AN ST s

E ldea: leverage RDMA dynamuc permlssaons to get nd of thls step. i

meww

Lost permussnon }g ~ | will give write
iff permission only to
contention j Memory the last person who

. requested it.

R s e

St

o T ENTHT D

L—-’”’\q

i, P2 F’ P4
VO OBt oW . from memory _~
permission S Y

&\Pemzw]i Disk Pa-XO'S with
T Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

ELPN A

E ldea: leverage RDMA dynamic permissions to get rid of this step.

TN AT GNP SEQMINHNET P TS

ATTAT CPNA I

St

o T ENTHT D

Lost permissioh }g ~ | will give write
iff permission only to
contention j Memory the last person who
PUSSENG requested it.

- ; L—-’”’\q
i If wrote successfully, no need
to read!
. B2 F’ P4
NG sty . from memory _~
permission S Y

&\Pemzw]i Disk Pa-XO'S with
T Permissions

In Disk, proposer must read every value from disk to know whether
someone is competing with it.

ELPN A

E ldea: leverage RDMA dynamic permissions to get rid of this step.

TN AT GNP SEQMINHNET P TS

ATTAT CPNA I

St

o T ENTHT D

Lost permissioh }g ~ | will give write
iff permission only to
contention j Memory the last person who
PUSSENG requested it.

g ' L—-’”’\q
i If wrote successfully, no need
to read!
2 round trips —>] .
1 round trip
pavomsncad P1 /1\p2 P3 Pa

: Request permission®
I've lost my G />

Outline

RDMA details
e Column 1: RDMA’s full power (complete graph)

o . @
Crash-only algorithm: n>f tolerant, 1 round-trip “;- i@

 Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Column 2: Scalability: Using RDMA sparingly (incomplete
graph)

* Crash-only Algorithm: tolerance vs topology

— Byzantine Algorithm

%.f.\..BGMZ 19]
o Breakdown

Two pieces:

— Byzantine Algorithm

%ABGMZ19 «. . e

e Breakdown ®

Two pieces:

e CheapQuorum: Fast (1 round trip)
algorithm that aborts at first sign of trouble

29

i[ABGMZ19 Byzantlne A|90I‘Ithm
i Breakdown

Two pieces:

e CheapQuorum: Fast (1 round trip)

algorithm that aborts at first sign of trouble CheapQuorum

i[ABGMZ19 Byzantlne A|90I‘Ithm
i Breakdown

Two pieces:

e CheapQuorum: Fast (1 round trip)

algorithm that aborts at first sign of trouble CheapQuorum

 Use permissions to get speed

i[ABGMZ19 Byzantlne A|90I‘Ithm
i Breakdown

Two pieces:

e CheapQuorum: Fast (1 round trip)

algorithm that aborts at first sign of trouble CheapQuorum

 Use permissions to get speed

e Robust Backup: Slow algorithm that is
tolerant to n > 2f Byzantine failures

e Byzantine Algorithm
i’;\;GMZ‘w
e Breakdown

Two pieces:

e CheapQuorum: Fast (1 round trip)

algorithm that aborts at first sign of trouble CheapQuorim

 Use permissions to get speed

e Robust Backup: Slow algorithm that is Robust
tolerant to n > 2f Byzantine failures Backup

e Shared memory algorithm

G eI

=] Robust Algorlthm &3

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

G eI

=] Robust Algorlthm &3

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

g
P e ”-“

=2=|Robust Algorithm &3

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

g
P e ”-“

=2=|Robust Algorithm &3

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

g
P e ”-“

=2=|Robust Algorithm &3

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

,Q
— P

»=1]Robust Algorithm «...":.

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

‘ﬁ.,._

§~éroadcast prlmltlve prevents this behavuori

Lw# iww‘w

g
SR E SrIET “.\-. .\.‘"

we=-0|Robust Algorithm 2%

TAINTE a3 s =l

e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

- I

;{Eroadcast primitive prevents this behavior%

e o

e |f we can prevent equivocation, then we can solve
Byzantine agreement with n > 2f [ClementJunqueirakateRodrigues’12]

30

Preventing .
Equivocation "

Single Writer Multi Reader region per process

[ABGMZ’'19]

Each process gets its own SWMR region

31

Preventing .
Equivocation ¥

Single Writer Multi Reader region per process

[ABGMZ’'19]

Each process gets its own SWMR region

Protocol: Sign and copy over everything that you see

31

Preventing
Equivocation

Single Writer Multi Reader region per process

[ABGMZ’'19]

Each process gets its own SWMR region

Protocol: Sign and copy over everything that you see

Preventing

[ABGMZ’'19]

Equivocation

Single Writer Multi Reader region per process
R1 R2 R3 '

/, 1 ((V, p1)!
(v, p1) h3)

Each process gets its own SWMR region
Protocol: Sign and copy over everything that you see

Can now verify that others read the same value

Preventing

[ABGMZ’'19]

Equivocation

Single Writer Multi Reader region per process
R1 R2 R3 '

/, 1 ((V, p1)!
(v, p1) h3)

Each process gets its own SWMR region
Protocol: Sign and copy over everything that you see

Can now verify that others read the same value

Preventing

[ABGMZ’'19]

Equivocation

Single Writer Multi Reader region per process
R1 R2 R3 '

/, 1 ((V, p1)!
(v. p1) 03)

Each process gets its own SWMR region
Protocol: Sign and copy over everything that you see

Can now verify that others read the same value

. Preventing o e
[ABGMZ'19] LS C;‘ »

— Equivocation 5

Single Writer Multi Reader region per process
R1 R2 R3

£ 1 ((V, p1)!
(v, p1) 03)

p3 read the same
Each process gets its own SWMR region value | did from p1

Protocol: Sign and copy over everything that you see

Can now verify that others read the same value

31

RDMA vs Previous Results

N = numM processes Shared Message RDMA Full |RDMA Scale
f = num failures Memory Passing B

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

10,000 - l
100,000 | 10-100 'l0-100,000

| - L

Scalability

(processes in network) 10-100

RDMA vs Previous Results

N = numM processes Shared Message | RDMA Full* |RDMA Scale
f = num failures Memory Passing B

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

10,000 - l
100,000 | 10-100 'l0-100,000

| - L

Scalability

(processes in network) 10-100

*With up to half of the memories crashing

Fault Tolerance

A

Performance Scalability

. PRI T T TR 2 B RN DT RGP I E IS T T R SN AP NIA SN R = b "—/

(Is RDMA fundamentally better than g
| other communication mechanisms?

LMW&W«WW R OGNV -SRI AP el Wb Al LV o8 SANAH ST R ST e G S P ANy e A A wmwwj

Fault Tolerance

A

Performance Scalability

PO STD TR 0 T RN BTV NPAD T E I ST ST SOMAG NN PPt a ’~/ L

(Is RDMA fundamentally better than
‘other communication mechanisms?

i

280

Yes!
RDMA gives us the power of shared memory
without compromising performance

Fault Tolerance

A

Performance Scalability

PO STD TR 0 T RN BTV NPAD T E I ST ST SOMAG NN PPt a ’~/ L

(Is RDMA fundamentally better than
‘other communication mechanisms?

i

280

Yes!
RDMA gives us the power of shared memory
without compromising performance

Plus better Byzantine algorithms

Fault Tolerance

A

Performance Scalability

(Is RDMA fundamentally better than
| other communication mechanisms?

LMWMW«WW R OGNV -SRI AP el Wb Al LV o8 SANAH ST R ST e G S P ANy e A A SSal NCOTVPITER LTS A PSS

TS ERINI 22l CLATRLTAAG AP R ATl T

Yes!
RDMA gives us the power of shared memory
without compromising performance

Plus better Byzantine algorithms

Fault Tolerance

A

Performance Scalability

(Is RDMA fundamentally better than
| other communication mechanisms?

LMWMW«WW R OGNV -SRI AP el Wb Al LV o8 SANAH ST R ST e G S P ANy e A A SSal NCOTVPITER LTS A PSS

TS ERINI 22l CLATRLTAAG AP R ATl T

Yes!
RDMA gives us the power of shared memory
without compromising performance

Plus better Byzantine algorithms

Fault Tolerance

A

Performance Scalability

PRI ASTD AT TR TS NS RT BN E I ST TR SOMAF NI NN B =t b ’~/

{—Is RDMA fundamentally better than %
other communication mechamsm ?1

]

|
A
LM WS I A LW D ITOV AL FO b B Ol SR REO P AL Y Al) PR X R OGRS BT ARl Wi e BV NIG o AN SO s

Yes!
RDMA gives us the power of shared memory
without compromising performance

Plus better Byzantine algorithms

SO TR e TRl AR L PAPTE PR AR L FTICI PR SIS PRI DD T TR 3 I VRTINS BTITAWDTE ST T SO AT NI PN GIRQ IV T T SIS A ST PR AT 2 AT T v M e £ A Y T NRAMM LS, F T U

(Can we scale better and still retami
some of RDMA’s advantages?

¢ i
: !
|

LMW&W«WWWWM T o o S P RNy P eI A wmww‘}

Scalability

"
What prevented our algorithms from scaling? | /.- .
B 7. ’
&

Scalability

e
\0 7 \\ ‘
What prevented our algorithms from scaling? _ 2%
B 7. ’

Many open connections @

Scalability

nf,
What prevented our algorithms from scaling? [/- %<
- N7 B
Many open connections ¢

*

NIC experiences frequent cache misses

Scalability

nf,
What prevented our algorithms from scaling? [/- %<
- N7 B
Many open connections ¢

*

NIC experiences frequent cache misses

*

Scalability

nf,
What prevented our algorithms from scaling? [/- %<
- N7 B
Many open connections ¢

*

NIC experiences frequent cache misses

*

Slower communication

Scalability

nf,
What prevented our algorithms from scaling? [/- %<
- N7 B
Many open connections ¢

*

NIC experiences frequent cache misses

*

Slower communication

Solution: don’t open all connections.

Scalability

nf,
What prevented our algorithms from scaling? [/- %<
- N7 B
Many open connections ¢

*

NIC experiences frequent cache misses

*

Slower communication

Solution: don’t open all connections.

Scalability

What prevented our algorithms from scaling? [/-4

Many open connections per machine

* ¥

NIC experiences frequent cache misses

*

Slower communication

Solution: don’t open all connections.

Scalability

& w9
, , e,
What prevented our algorithms from scaling? _ 2%
‘\ X7 |
Many open connections per machine @
NIC experiences frequent cache misses

¢ E Shared Memory Grabh %
Slower communication s e

Solution: don’t open all connections. X

Scalability

#
T
What prevented our algorithms from scaling? | 2% .
.\ 5 4’ 2
Many open connections per machine @
NIC experiences frequent cache misses
¢ iShared Memory Grabh j
- - WW : : ansuen
Slower communication = 7
Solution: don’t open all connections.

Goal: Keep degree of shared memory graph low

Simplifying the Model-’g%

e Can choose RDMA
and

 (Can give different permissions for
different

pi: read
p3: write R1& R2
p6: read & write R2
p2, p5: none

Simplifying the Model<

e Can choose RDMA

pi: read
p3: write R1& R2
p6: read & write R2
p2, p5: none

Simplifying the Model<

e Can choose RDMA

Simplifying the Model<

e Can choose RDMA

No Byzantine failures
No memory failures

’ \
e 9

e Asynchronous network of n processes with up to f crash failures

’ \
e 9

e Asynchronous network of n processes with up to f crash failures

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

r: Each node owns a piece of memory ;

e

l—mmw&&mm .

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

R PITE

e

« Shared memory graph, Gsu = (V, E)

|

|
L e s e]

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

R PITE

e

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

|
L e s e]

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

R PITE

e

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

|
SRS SR SO

l—mmw&&mm .

Ps

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

SRR o

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

]

P

l—- Processes may crash, but their memory remains accessible

x N

Ps

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

SRR o

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

]

P

l—- Processes may crash, but their memory remains accessible

x N

Ps

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

SRR o

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

]

P

l—- Processes may crash, but their memory remains accessible

x N

Ps

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks

f: Each node owns a piece of memory ;

R PITE

e

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

]

l—- Processes may crash, but their memory remains accessible

P

x N

Ps

e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks
i

R PITE

r: Each node owns a piece of memory

e

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

|
|
|
o

l—- Processes may crash, but their memory remains accessible

s

Ps

Ds

RDMA vs Previous Results

N = NumM processes Shared Message RDMA Full* RDMA Scale
f = num failures Memory Passing

n>f n>2f n>f n>f+x
Crash
Fault (XG[O,f])

Tolerance

reaz0] M&M Consensus

T AN D IR A S SRl T AT WA RN D I~ oy O Lot I\ PO ININD ' I AR PR SR S

%WPretend more processes are alive by sending their messages too

Lﬂmw P

2 AR D REARD N N . S 744

¢ PR TUCFTIN P B

W3 ST D FPRI TS AP PP P LN VT e e S £ A

reoe0] M&M Consensus

ALt T AT DA N oy B Lot PN PNl G AN (R . R

FPretend” more processes are alive by sending their messages too

Lﬂmwmuw

¢ PR TUCITNSS P By

RS ST D IFIRI TS AT BT I P LN VTR e S SR LT NG AT AT VAN LS P POPUT ik Dl TI TS TR AT

Simulate a message passing algorithm by replacing messages with
list of messages representing your shared memory neighbors

reoz0] M&M Consensus

ARGt F AT AP M T N - e, B oY OFN PO A I s T AR RO R AT St Mk e

E“I:retend” more processes are alive by sending their messages too

L e

¢ PR TUCITNSS P By

W3 ST D FPRI TS AP PP P LN VT e e S £ A

LRI NI,

l n>2f: Tolerates n/2 fallures ;
RTTRBDR——

WJW‘MV‘WW

~

Simulate a message passing algorithm by replacing messages with
list of messages representing your shared memory neighbors

reoiza] M&M Consensus

FPretend” more processes are ahve by sendlng their messages too

D e R i aa Tt

n>2f Tolerates n/2 fallures ; ! n>f SM consensus needs1 process }
Mmmj LA P LR AST WA s

WWWMW

Simulate a message passmg algorithm by replacing messages wﬂk
list of messages representing your shared memory neighbors

APV

ecvzio | N &M Consensus

F‘_Pretend” more processes are ahve by sending their messages too

Lo QU Y e Tt

P s

n>2f Tolerates n/2 fallures !'n>f: SM consensus needs 1 process }

OaANrtamns

N EOIO A=

APV

Simulate a message passing algorithm by replacing messages witg ,:
list of messages representing your shared memory neighbors

ecvzio | N &M Consensus

F‘_Pretend” more processes are ahve by sending their messages too

Lo QU Y e Tt

P s

n>2f Tolerates n/2 fallures !'n>f: SM consensus needs 1 process }

OaANrtamns

N EOIO A=

APV

Simulate a message passing algorithm by replacing messages witg ,:
list of messages representing your shared memory neighbors

ecvzio | N &M Consensus

F‘_Pretend” more processes are ahve by sending their messages too

Lo QU Y e Tt

P s

n>2f Tolerates n/2 fallures !'n>f: S.M consensus needs 1 process }

OaANrtamns

N EOIO A=

APV

Simulate a message passing algorithm by replacing messages witg ,:
list of messages representing your shared memory neighbors

I'll simulate my
SM neighbors 7

In round 1,
p6 proposes 1

ecvzio | N &M Consensus

F‘_Pretend” more processes are ahve by sending their messages too

Lo QU Y e Tt

P s

n>2f Tolerates n/2 fallures !'n>f: S.M consensus needs 1 process }

OaANrtamns

N EOIO A=

APV

Simulate a message passing algorithm by replacing messages witg ,:
list of messages representing your shared memory neighbors

I'll simulate my
SM neighbors 7

In round 1,
p6 proposes 1

In round 1,
Ps p4 proposes 0

ecvzio | N &M Consensus

F‘_Pretend” more processes are ahve by sending their messages too

Lo QU Y e Tt

P s

n>2f Tolerates n/2 fallures !'n>f: S.M consensus needs 1 process }

OaANrtamns

N EOIO A=

APV

Simulate a message passing algorithm by replacing messages witg ,:
list of messages representing your shared memory neighbors

Message:
(P2, 1), (6, 1), (P4, 0)]

In round 1,
p6 proposes 1

In round 1,
Ps p4 proposes 0

ezl M&M Consensus

e O e i a e e e o L S

{ Pretend more processes are alive by simulating nelghb;;;.g

POAUSS s’ AV NIy gl 22N

VPN AANE M 5 SAMALAST S b SN AD AT I S P IGTIYOX IS AT D e Chainn?

LT P I R e AT DV NPBW I S OIS ALy) U ST PRI

TN ek

I

reavzia] M &M Consensus

g“Pretend” more processes are allve by snmulatlng nelghbors §

PO Ww

LT P I R e AT DV NPBW I S OIS ALy) U ST PRI

Original Algorithm

recvzo] M&M Consensus

g“Pretend” more processes are allve by snmulatlng nelghbors ,§

Www

Ea sl Lo s W NS L GO PICTIT B ALl |) GU_SLF DRSS

Original Algorithm

reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

Www

L AP PRI R e T AW NPV L o

e s e

Original Algorithm

reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

Www

LR P PRI KT S ChW NI L o

e s e

Original Algorithm

Message passing can only tolerate n>2f

reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

Www

LR P PRI KT S ChW NI L o

e s e

Original Algorithm

Message passing can only tolerate n>2f

reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

LR P PRI KT D nae e L

e e)

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f

reavzo] M&M Consensus

g“Pretend” more processes are alive by simulating neighbg@

PORUSS s ANy Lo 22N

s S e P hVW NP £ o

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f

reavzo] M&M Consensus

g“Pretend” more processes are alive by simulating neighbg@

PORUSS s ANy Lo 22N

s S e P hVW NP £ o

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f

ezl M&M Consensus

{“Pretend” more processes are alive by simulating neighbgr:g

L P PUAUS s AV Ay i L e 22N

e s e

Original Algorithm M&M Algorithm

! More than half -> Success! !

Message passing can only tolerate n>2f

40

reavzo] M&M Consensus

g“Pretend” more processes are alive by simulating neighbg@

PORUSS s ANy Lo 22N

s S e P hVW NP £ o

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f

ezl M&M Consensus

{“Pretend” more processes are alive by simulating neighbgr:g

R P POBUI s, ANVt g o, 220

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f

reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

g

POUS s’ AV Iy gl 22N

s S e W NS L GO PICTIT B ALl |) GU_SLF DRSS

M&M Algorithm

DV TG TR T AR PRI N

{ We care about the ”§
number of neighbors
5 of correct processes_}

T &AL W Gt SOV TNV S AT

Message passing can only tolerate n>2f

Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescue!

Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescuel!

P L0 OV IN TV SR PR My WM

[“G has high expansnon ;
i > :

Z“E very subset of the vertices has many neighbors’ %

DR Lt Tt WA g 20 e AT o NN SETC) SN P SIS ! O Nt ekt S Ny - 2

Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescuel!

P L0 OV IN TV SR PR My WM

[“G has high expansnon ;
i > :

2“ Every subset of the vertices has many neighbors” %

DR Lt Tt WA g 20 e AT o NN SETC) SN P SIS ! O Nt ekt S Ny - 2

h(G)=mins s.. |s|<)vi2 |6S|/|S|

Expander Graphs

Fault tolerance depends on shared memory graph:
Number of neighbors of correct processes

Expander graphs to the rescue!

| “G has high expansion” ;
f —

-2 "Every subset of the vertices has many neighbors™

TS SIS S+ hm ! ot G O TR LS B AT R DR St A WA 0y 20 e AT 3 ek DAV SETC) SN P SN To! Cmm X ek S

e e]

Neighbors of set S !

| e [T
h(G)=mins s..|s|<vi2 |6S|/|S]

Eubéet S of ve'rticesl

me

Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescue!

_ “G has high expansion” ;
f e

gﬁ_El/ery subset of the vertices has many neighbors”

TS SIS S+ hm ! ot G O TR LS B AT R DR St A WA 0y 20 e AT 3 ek DAV SETC) SN P SN To! Cmm X ek S
2 s bt
.

e
Neighbors of set S !
s I

h(G)=mins s. |s|<vi/2 |6S|/|S]

P h ol

'S with wo e Subset S of vertices |
! S with worst ratio defines e
;, ~graph’s expansion

ST YT SR IAD

weave0] Putting it Together

e Think of set of live processes as S

e Adversary will pick S to be the set with the least expansion

Graph with high expansion can tolerate more failures

AN @I SR TSN,

w=evz0| Putting it Together

TN 3w

e Think of set of live processes as S
e Adversary will pick S to be the set with the least expansion

Graph with high expansion can tolerate more failures

Theorem [AguileraBCalciuGuerraouiPetrankToueg’18]:
If shared memory graph has vertex expansion ratio h,

: l .
then we can tolerate /< (l —Th> -n failures

AN @I SR TSN,

w=evz0| Putting it Together

TN 3w

e Think of set of live processes as S

e Adversary will pick S to be the set with the least expansion

Graph with high expansion can tolerate more failures

Theorem [AguileraBCalciuGuerraouiPetrankToueg’18]:
If shared memory graph has vertex expansion ratio h,

: l .
then we can tolerate /< (l —Th> -n failures

Also show impossibility result:
relation to expansion is inherent.

Outline

RDMA details

e Setting 1: RDMA'’s full power (complete graph)

. | i
Crash-only algorithm: n>f tolerant, 1 round-trip .\;- A

Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Setting 2: Scalability: Using RDMA sparingly (incomplete
graph)

Crash-only Algorithm: tolerance vs topology

ST YT SR IAD

weave0] Putting it Together

e Think of set of live processes as S

e Adversary will pick S to be the set with the least expansion

Graph with high expansion can tolerate more failures

AN @I SR TSN,

w=evz0| Putting it Together

TN 3w

e Think of set of live processes as S

e Adversary will pick S to be the set with the least expansion

Graph with high expansion can tolerate more failures

Theorem [AguileraBCalciuGuerraouiPetrankToueg’18]:
If shared memory graph has vertex expansion ratio h,

: l .
then we can tolerate /< (l —Th> -n failures

Also show impossibility result:
relation to expansion is inherent.

Outline

RDMA details

e Setting 1: RDMA'’s full power (complete graph)

. | i
Crash-only algorithm: n>f tolerant, 1 round-trip .\;- A

Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Setting 2: Scalability: Using RDMA sparingly (incomplete
graph)

Crash-only Algorithm: tolerance vs topology

RDMA vs Previous Results

N = numM processes Shared Message RDMA Full* RDMA Scale
f = num failures Memory Passing B l B

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

Scalability 10,000 -

(processes in network) 100,000 10-100,000

*With up to half of the memories crashing

SO TR e TRl AR L PAPTE PR AR L FTICI PR SIS PRI DD T TR 3 I VRTINS BTITAWDTE ST T SO AT NI PN GIRQ IV T T SIS A ST PR AT 2 AT T v M e £ A Y T NRAMM LS, F T U

(Can we scale better and still retami
some of RDMA’s advantages?

¢ i
: !
|

LMW&W«WWWWM T o o S P RNy P eI A wmww‘}

SO TR e TRl AR L PAPTE PR AR L FTICI PR SIS PRI DD T TR 3 I VRTINS BTITAWDTE ST T SO AT NI PN GIRQ IV T T SIS A ST PR AT 2 AT T v M e £ A Y T NRAMM LS, F T U

(Can we scale better and still retami
some of RDMA’s advantages?

¢ i
: !
|

LMW&W«WWWWM T o o S P RNy P eI A wmww‘}

Yes!
We can tolerate more crash failures
than message passing

rtmmmmm

' Can we scale better and still retain
[some of RDMA’s advantages?

AR RSP 29D QO B R AP R R

Yes!
We can tolerate more crash failures
than message passing

Crash Tolerance
A

—

' Can we scale better and still retain
[some of RDMA’s advantages?

AR RSP 29D QO B R AP R R

Yes!
We can tolerate more crash failures
than message passing

Crash Tolerance
A
Byzantine Tolerance

rCan we scale better and still retain
[some of RDMA’s advantages?

AR RSP 29D QO B R AP R R

Yes!
We can tolerate more crash failures
than message passing

Crash Tolerance
A

Bvzantine Tolerance
Performance y

—

' Can we scale bettex and still retain
[some of RDMA’s advantages?

AR RSP 29D QO B R AP R R

Yes!
We can tolerate more crash failures
than message passing

Crash Tolerance
A

Bvzantine Tolerance
Performance y

—

' Can we scale bettex and still retain
[some of RDMA’s advantages?

AR RSP 29D QO B R AP R R

Yes!
We can tolerate more crash failures
than message passing

Crash Tolerance
A

9Pe Hormance ?Byzantine Tolerance

—

' Can we scale bettex and still retain
[some of RDMA’s advantages?

AR RSP 29D QO B R AP R R

Yes!
We can tolerate more crash failures
than message passing

®- .

\s o &] Fault Tolerance
A

«C="» Performance Scalability

D \\ /
g
:
1

Is RDMA fundamentally better than |
Lother communication mechanisms?

B e Bl DLV WPOONG e 2N N DWW e MUl L DO el T SN Vo AP WN VL ISIRRGNERN S AR PN L GV G0 Ay ML PR I NI AT WY i T wmwwwwamwj

Yes!
RDMA gives us the power of shared memory
without compromising performance

®- .

\s o &] Fault Tolerance
A

«C="» Performance Scalability

D \\ /
g
:
1

Is RDMA fundamentally better than |
Lother communication mechanisms?

B e Bl DLV WPOONG e 2N N DWW e MUl L DO el T SN Vo AP WN VL ISIRRGNERN S AR PN L GV G0 Ay ML PR I NI AT WY i T wmwwwwamwj

Yes!
RDMA gives us the power of shared memory
without compromising performance

Theory —> Practice

Fault Tolerance

A

Performance Scalability

. PRI T T TR 2 B RN DT RGP I E IS T T R SN AP NIA SN R = b "—/

(Is RDMA fundamentally better than g
| other communication mechanisms?

LMW&W«WW R OGNV -SRI AP el Wb Al LV o8 SANAH ST R ST e G S P ANy e A A wmwwj

Fault Tolerance

A

Performance

Scalability

fundamentally better than
-~ munication mechanisms?:

© Consensus

]

]

Fault Tolerance
Performance Scalability

: NI S PR T TTT AR 3 o) VBN T TIPS I ST TR SOMAINIA S m'"v"%dm

fundamentally better than |
a munication mechanisms?:

N]
© Consensus

Can RDMA solve other problems
better as well?

Summary

e Consensus as a lens to studyf

e RDMA improves tradeoff bewen fault tolerance
and performance

* RDMA could scale to large networks

Future Directions
e Strengthening scalability model
* Implementing these solutions

e Problems beyond consensus

Summary

e Consensus as a lens to study

e RDMA improves tradeoff between fault tolerance
and performance

* RDMA could scale to large networks

Future Directions
e Strengthening scalability model

* Implementing these solutions

T T O TN il TP PSR A DU N D SIS,

z
* Problems beyond consensus - Thank VOU‘!}

50

