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Outline

e RDMA details and previous results
* Improving fault tolerance and performance

* Improving scalability
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e Can choose RDMA
and

different

* Can give different permissions for
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p3: write

p6: read & write
p2, p5: none
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Outline

RDMA details
e Setting 1: RDMA'’s full power (complete graph)

o . @
e Crash-only algorithm: n>f tolerant, 1 round-trip “;- i@

 Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Setting 2: Scalability: Using RDMA sparingly (incomplete
graph)

* Crash-only Algorithm: tolerance vs topology
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e Processes access memories through read, write, and changePermission

e Memories respond to changePermission requests with accept!
policy
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Handling Memory
Failures

Replication: Treat all memories the same

Send all write/read requests to all memories, wait to hear

acknowledgement from majority |
f Instead of many faulty z

} memories, we can now thin
of one non-faulty memory
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Setting 1: RDMA'’s full power (complete graph)
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e Crash-only algorithm: n>f tolerant, 1 round-trip “;- i@

 Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Setting 2: Scalability: Using RDMA sparingly (incomplete
graph)
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Message passing consensus

e Two rounds:

1. prepare: | want to propose a value!

2. accept: Here is my value!

e Complications: If multiple processes try, accept only last prepared

; In the best case, only need one round!}

flaea: ]

e Choose leader a priori, |

2 let it skip prepare
phase

e If leader is slow, ,
others start executing

| prepare

2. Propose v

| accept v
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RDMA details
e Column 1: RDMA’s full power (complete graph)

o . @
Crash-only algorithm: n>f tolerant, 1 round-trip “;- i@

 Byzantine algorithm: n>2f tolerant, 1 round-trip “Ng

e Column 2: Scalability: Using RDMA sparingly (incomplete
graph)

* Crash-only Algorithm: tolerance vs topology
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e Breakdown

Two pieces:

e CheapQuorum: Fast (1 round trip)

algorithm that aborts at first sign of trouble CheapQuorim

 Use permissions to get speed

e Robust Backup: Slow algorithm that is Robust
tolerant to n > 2f Byzantine failures Backup

e Shared memory algorithm
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e High level idea: run Paxos, but replace messaging primitives
(send/receive) with special non-equivocating broadcast/
deliver

Equivocation:

- I

;{Eroadcast primitive prevents this behavior%

e o

e |f we can prevent equivocation, then we can solve
Byzantine agreement with n > 2f [ClementJunqueirakateRodrigues’12]
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Many open connections per machine @
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Solution: don’t open all connections.

Goal: Keep degree of shared memory graph low
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No Byzantine failures
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e Asynchronous network of n processes with up to f crash failures

e Fully-connected message passing network: nodes=procs, edges=Ilinks
i

R PITE

r: Each node owns a piece of memory

e

« Shared memory graph, Gsu = (V, E)

g- Nodes u and v can access each other’s memory iff (u,v) e E

|
|
|
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l—- Processes may crash, but their memory remains accessible

s

Ps

Ds




RDMA vs Previous Results

N = NumM processes Shared Message RDMA Full* RDMA Scale
f = num failures Memory Passing

n>f n>2f n>f n>f+x
Crash
Fault (XG[O,f])

Tolerance
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In round 1,
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In round 1,
Ps p4 proposes 0




ezl M&M Consensus

e O e i a e e e o L S

{ Pretend more processes are alive by simulating nelghb;;;.g

POAUSS s’ AV NIy gl 22N

VPN AANE M 5 SAMALAST S b SN AD AT I S P IGTIYOX IS AT D e Chainn?

LT P I R e AT DV NPBW I S OIS ALy ) U ST PRI




TN ek

I

reavzia] M &M Consensus

g“Pretend” more processes are allve by snmulatlng nelghbors §

PO Ww

LT P I R e AT DV NPBW I S OIS ALy ) U ST PRI

Original Algorithm




recvzo] M&M Consensus

g“Pretend” more processes are allve by snmulatlng nelghbors ,§

Www

Ea sl Lo s W NS L GO PICTIT B ALl | ) GU_SLF DRSS

Original Algorithm




reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

Www

L AP PRI R e T AW NPV L o

e s e

Original Algorithm




reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

Www

LR P PRI KT S ChW NI L o

e s e

Original Algorithm

Message passing can only tolerate n>2f




reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

Www

LR P PRI KT S ChW NI L o

e s e

Original Algorithm

Message passing can only tolerate n>2f




reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

LR P PRI KT D nae e L

e e )

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f




reavzo] M&M Consensus

g“Pretend” more processes are alive by simulating neighbg@

PORUSS s ANy Lo 22N

s S e P hVW NP £ o

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f




reavzo] M&M Consensus

g“Pretend” more processes are alive by simulating neighbg@

PORUSS s ANy Lo 22N

s S e P hVW NP £ o

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f




ezl M&M Consensus

{“Pretend” more processes are alive by simulating neighbgr:g

L P PUAUS s AV Ay i L e 22N

e s e

Original Algorithm M&M Algorithm

! More than half -> Success! !

Message passing can only tolerate n>2f

40



reavzo] M&M Consensus

g“Pretend” more processes are alive by simulating neighbg@

PORUSS s ANy Lo 22N

s S e P hVW NP £ o

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f




ezl M&M Consensus

{“Pretend” more processes are alive by simulating neighbgr:g

R P POBUI s, ANVt g o, 220

e s e

Original Algorithm M&M Algorithm

Message passing can only tolerate n>2f




reazo] M &M Consensus

PN o W e

g“Pretend” more processes are alive by snmulatmg nelghbors g

g

POUS s’ AV Iy gl 22N

s S e W NS L GO PICTIT B ALl | ) GU_SLF DRSS

M&M Algorithm

DV TG TR T AR PRI N

{ We care about the ”§
number of neighbors
5 of correct processes_}

T &AL W Gt SOV TNV S AT

Message passing can only tolerate n>2f




Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes




Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescue!




Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescuel!

P L0 OV IN TV SR PR My WM

[ “G has high expansnon ;
i > :

Z“E very subset of the vertices has many neighbors’ %

DR Lt Tt WA g 20 e AT o NN SETC ) SN P SIS ! O Nt ekt S Ny - 2




Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescuel!

P L0 OV IN TV SR PR My WM

[ “G has high expansnon ;
i > :

2“ Every subset of the vertices has many neighbors” %

DR Lt Tt WA g 20 e AT o NN SETC ) SN P SIS ! O Nt ekt S Ny - 2

h(G)=mins s.. |s|<)vi2 |6S|/|S|




Expander Graphs

Fault tolerance depends on shared memory graph:
Number of neighbors of correct processes

Expander graphs to the rescue!

| “G has high expansion” ;
f —

-2 "Every subset of the vertices has many neighbors™

TS SIS S+ hm ! ot G O TR LS B AT R DR St A WA 0y 20 e AT 3 ek DAV SETC ) SN P SN To! Cmm X ek S

e e ]

Neighbors of set S !

| e [T
h(G)=mins s..|s|<vi2 |6S|/|S]

Eubéet S of ve'rticesl

me




Expander Graphs

Fault tolerance depends on shared memory graph:

Number of neighbors of correct processes

Expander graphs to the rescue!
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gﬁ_El/ery subset of the vertices has many neighbors”
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e Think of set of live processes as S

e Adversary will pick S to be the set with the least expansion

Graph with high expansion can tolerate more failures

Theorem [AguileraBCalciuGuerraouiPetrankToueg’18]:
If shared memory graph has vertex expansion ratio h,

: l .
then we can tolerate /< (l —Th> -n failures

Also show impossibility result:
relation to expansion is inherent.
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RDMA vs Previous Results

N = numM processes Shared Message RDMA Full* RDMA Scale
f = num failures Memory Passing B l B

Crash
Fault

Tolerance

Byzantine

Complexity*
(Best Case Round
Trips)

Scalability 10,000 -

(processes in network) 100,000 10-100,000

*With up to half of the memories crashing
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Yes!
RDMA gives us the power of shared memory
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Theory —> Practice
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© Consensus

Can RDMA solve other problems
better as well?
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and performance

* RDMA could scale to large networks
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