Scheduling for Efficient Large-Scale Machine Learning Training

Jinliang Wei Carnegie Mellon University

Machine Learning Training: Quest for Efficiency

Growing data size

Growing model complexity

Challenges:

Machine learning models take long time to train.

Machine learning training consumes large amount of memory.

Implementing parallel/distributed programs is hard.

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Challenges:

What structural properties are helpful?

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Challenges:

What structural properties are helpful?

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Challenges:

What structural properties are helpful?

Generalizability across models
/ algorithms

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Challenges:

What structural properties are helpful?

Generalizability across models
/ algorithms

How to leverage it with no / little burden to users?

Key Idea:

Leverage general structural properties in ML computation to improve efficiency

Systems developed:

Bösen: (parameter server) [SoCC'15] ~20K LoC (C++)

Orion: (auto-parallelization) [EuroSys'19] ~23K LoC (C++, Julia)

Non-trivial work on TensorFlow core

Challenges:

What structural properties are helpful?

Generalizability across models
/ algorithms

How to leverage it with no / little burden to users?

Scheduling within a Single Training Job

Scheduling within a Single Training Job

Scheduling within a Single Training Job

Network Communication

When and what to send?

Lead [SoCC'15, Best paper]

Coauthor [ATC'17] [SysML'19]

Computation

What to compute in parallel?

[EuroSys'19]

Memory Allocation

When and where to allocate?

[In preparation]

Highlights of results:

- Scheduling communication: up to 30% faster convergence
- Scheduling computation: even faster convergence with less programmer effort
- Scheduling memory: 10x bigger model on the same hardware

Sequential learning algorithm, e.g., SGD:

repeat until convergence foreach mini-batch in dataset update model parameters

Sequential learning algorithm, e.g., SGD:

```
repeat until convergence — Many passes over training data foreach mini-batch in dataset update model parameters
```

Sequential learning algorithm, e.g., SGD:

```
repeat until convergence ——— Many passes over training data foreach mini-batch in dataset ——— Many updates per data pass update model parameters
```

Sequential learning algorithm, e.g., SGD:

```
repeat until convergence —— Many passes over training data foreach mini-batch in dataset —— Many updates per data pass update model parameters
```


Machine Learning Training Is A Search Process

Machine Learning Training Is A Search Process

Machine Learning Training Is A Search Process

Background: Data Parallelism for Computation Throughput

Simply run some / all mini-batches in parallel, regardless of dependence

repeat until convergence
in parallel foreach mini-batch in dataset
update model parameters

Parameter Server

Workers

Convergence speed = samples/sec X convergence/sample

Background: Data Parallelism for Computation Throughput

Simply run some / all mini-batches in parallel, regardless of dependence

repeat until convergence
in parallel foreach mini-batch in dataset
update model parameters

Parameter Server

Workers

Convergence speed = samples/sec X convergence/sample

Background: Data Parallelism for Computation Throughput

Simply run some / all mini-batches in parallel, regardless of dependence

repeat until convergence
in parallel foreach mini-batch in dataset
update model parameters

Parameter Server

Workers

Convergence speed = samples/sec X convergence/sample

Serial Execution

mini-batch #1

Later iterations observe updates from earlier iterations

Later iterations observe updates from earlier iterations

Later iterations observe updates from earlier iterations

Later iterations observe updates from earlier iterations

observe updates from each other

Background: Sparsity and The Communication Bottleneck

ML models of interest (5~10 years ago): Simple and highly sparse

Sparse Logistic Regression Latent Dirichlet Allocation (LDA) Matrix Factorization (MF) ...

Problem:

Light computation per mini-batch vs. heavy communication

Background: Sparsity and The Communication Bottleneck

ML models of interest (5~10 years ago): Simple and highly sparse

Sparse Logistic Regression Latent Dirichlet Allocation (LDA) Matrix Factorization (MF) ...

Problem:

Light computation per mini-batch vs. heavy communication

Compute

Background: Sparsity and The Communication Bottleneck

ML models of interest (5~10 years ago): Simple and highly sparse Sparse Logistic Regression Latent Dirichlet Allocation (LDA) Matrix Factorization (MF) ...

Problem:Light computation per mini-batch vs. heavy communicationCompute D_1 D_2 D_3 Communicate C_1 C_2 C_3

Background: Trade Even More Consistency for Throughput

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest Compute

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Compute D₁ D₂ D₃

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Compute D_1 D_2 D_3

Communicate

Background: Trade Even More Consistency for Throughput +4 WI +3 +1 W2 Coalesce deltas to -1 +1 W3 reduce communication -3 -6 W4 $\Delta W_1 + \Delta W_2 + \Delta W_3$ ΔW_1 ΔW_2 ΔW_3 + Local Buffering: communicate every N mini-batches, coalescing deltas Compute D_6 D_1 D_2 D_3 Ds Communicate C_1 C, + Bounded Staleness: block iff the fastest is T steps ahead of the slowest Compute D2 D_6 D_3 Communicate

Reduce Inconsistency via Scheduling

Network Communication

When and what to send?

Publication [SoCC'15, Best paper]

Systems Developed

Bösen: parameter server

Computation

What to compute in parallel?

[EuroSys'19]

Orion: parallelization framework

Highlights of results:

- Scheduling communication: up to 30% faster convergence
- Scheduling computation: even faster convergence with less programmer effort

Data parallelism, + local buffering + bounded staleness:

Compute D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 ...

Communicate C_1 C_2 ...

Data parallelism, + local buffering + bounded staleness:

Compute D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 ...

Communicate C_1 C_2 ...

Idle network

Data parallelism, + local buffering + bounded staleness:

Compute D_1 D_2 D_3 D_4 D_5 D_6 D_7 D_8 D_9 ...

Communicate C_1 C_2 ...

Idle network

Manually tuning communication frequency:

D₃ updates become available, more effective to communicate coalesced updates

Existing: manually tuned communication frequency

...

Existing: manually tuned communication frequency

Communicate ...

Bösen on 16 machines, 1 Gbps,

Schedule Computation To Reduce Inconsistency

Execute only independent mini-batches in parallel

Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example:

Model: Matrix Factorization

Application: Recommender systems

Parameters: User Latent Vectors

Item Latent Vectors

Data sample:

UserID	ItemID	Rating
#38	#65	5.0

Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example:

Model: Matrix Factorization

Application: Recommender systems

Parameters: User Latent Vectors -

Item Latent Vectors+

Data sample:

UserID	ItemID	Rating
#38	#65	5.0

There exist f_1 , f_2 , ..., f_k , such that if $d_i[f_1] != d_j[f_1]$, $d_i[f_2] != d_j[f_2]$, ..., and $d_i[f_k] != d_j[f_k]$, d_i and d_i don't access the same parameters.

Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example:

Model: Matrix Factorization

Application: Recommender systems

Parameters: User Latent Vectors -

Item Latent Vectors -

Data sample:

UserID	ItemID	Rating
#38	#65	5.0

There exist f_1 , f_2 , ..., f_k , such that if $d_i[f_1] != d_j[f_1]$, $d_i[f_2] != d_j[f_2]$, ..., and $d_i[f_k] != d_j[f_k]$, d_i and d_i don't access the same parameters.

Other examples: topic modeling, gradient boosted trees, etc.

Partition The Dataset for Nonconflicting Accesses

```
There exist f_1, f_2, ..., f_k, such that if d_i[f_1] != d_j[f_1], d_i[f_2] != d_j[f_2], ..., and d_i[f_k] != d_j[f_k], d_i and d_j don't access the same parameters.
```

Partition the dataset by those fields

Dataset

Partition The Dataset for Nonconflicting Accesses

```
There exist f_1, f_2, ..., f_k, such that if d_i[f_1] != d_j[f_1], d_i[f_2] != d_j[f_2], ..., and d_i[f_k] != d_j[f_k], d_i and d_j don't access the same parameters.
```

Partition the dataset by those fields

Dataset

Partition The Dataset for Nonconflicting Accesses

There exist f_1 , f_2 , ..., f_k , such that if $d_i[f_1] != d_j[f_1]$, $d_i[f_2] != d_j[f_2]$, ..., and $d_i[f_k] != d_j[f_k]$, d_i and d_j don't access the same parameters.

Partition the dataset by those fields

Partition The Dataset for Nonconflicting Accesses

There exist f_1 , f_2 , ..., f_k , such that if $d_i[f_1] != d_j[f_1]$, $d_i[f_2] != d_j[f_2]$, ..., and $d_i[f_k] != d_j[f_k]$, d_i and d_j don't access the same parameters.

Partition the dataset by those fields

Nonconflicting parameter accesses

Partition The Dataset for Nonconflicting Accesses

There exist f_1 , f_2 , ..., f_k , such that if $d_i[f_1] != d_j[f_1]$, $d_i[f_2] != d_j[f_2]$, ..., and $d_i[f_k] != d_j[f_k]$, d_i and d_j don't access the same parameters.

Partition the dataset by those fields

Nonconflicting parameter accesses

Special case of automatic parallelizing compilers

Challenges for Scheduling Computation

Challenges for Scheduling Computation

Challenge #1: applicable only when certain property holds

Solution: fall back to data parallelism otherwise

Challenges for Scheduling Computation

Challenge #1: applicable only when certain property holds

Solution: fall back to data parallelism otherwise

Challenge #2: implementation requires non-trivial programmer effort

Solution: automatically parallelize serial programs

Orion: Automatic Parallelization [Wei, et al., EuroSys'19]

Our goals:

- A parallel_for construct and users implement a serial program;
- 2. Preserves sequential semantics when possible;
- 3. Data parallelism otherwise with user permission

Orion's abstraction:

A single thread w/ huge memory

Serial ML program in Julia

12 machines, 32 vCPU cores / machine

40 Gbps Ethernet

Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

Compare Orion vs. TensorFlow

1 machines, 32 vCPU cores / machine Matrix Factorization (MF) for recommendations + SGD

TensorFlow suffers due to

- Data parallelism
 - Slower per-sample convergence
- Poor support for sparsity
- 2x longer time per iteration

The Developing View: More And More Complex ML Models

```
repeat until convergence

foreach mini-batch in dataset

update model parameters
```

We've focused improving computation across mini-batches.

The Machine Learning Trend:

The mini-batch computation is becoming more and more complex

The Developing View: More And More Complex ML Models

```
repeat until convergence

foreach mini-batch in dataset

update model parameters
```

We've focused improving computation across mini-batches.

The Machine Learning Trend:

The mini-batch computation is becoming more and more complex

Deep Neural Networks:

Heavy computation per mini-batch

Dense parameter access

Synchronize after each mini-batch

The Developing View: More And More Complex ML Models

repeat until convergence foreach mini-batch in dataset update model parameters

We've focused improving computation across mini-batches.

The Machine Learning Trend:

The mini-batch computation is becoming more and more complex

Deep Neural Networks:

Heavy computation per mini-batch

Dense parameter access

Synchronize after each mini-batch

Opportunity:

Improve DNN efficiency without scarifying computation quality

The Mini-Batch Computation of Deep Neural Networks

Forward
$$x_0 \xrightarrow{f_1(w_1, x_0)} f_2(w_2, x_1) f_3(w_3, x_2)$$

$$x_0 \xrightarrow{\partial y} x_1 \xrightarrow{\partial y} x_2 \xrightarrow{\partial y} y$$
Backward $\frac{\partial y}{\partial w_1} \xrightarrow{\partial w_2} \frac{\partial y}{\partial w_2} \xrightarrow{\partial w_3}$

The Mini-Batch Computation of Deep Neural Networks

Opportunity:

Not all parameters (updates) are needed (generated) at the same time

Schedule Communication Within A Mini-Batch for DNNs

Overlap backward computation with communication within a mini-batch Ideally, computation is idle only during the first layer's communication

Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

P3 Experiment Results on MXNet

Baseline: MXNet (w/ Wait-Free Backpropagation)

Model: ResNet-50

Scheduling within a Single Training Job

Network Communication

When and what to send?

Lead [SoCC'15, Best paper]

Coauthor [ATC'17] [SysML'19]

Computation

What to compute in parallel?

[EuroSys'19]

Memory Allocation

When and where to allocate?

[In preparation]

Highlights of results:

- Scheduling communication: up to 30% faster convergence
- Scheduling computation: even faster convergence with less programmer effort
- Scheduling memory: 10x bigger model on the same hardware

P3 Experiment Results on MXNet

Baseline: MXNet (w/ Wait-Free Backpropagation)

Model: ResNet-50

Scheduling within a Single Training Job

Network Communication

When and what to send?

Lead [SoCC'15, Best paper]

Coauthor [ATC'17] [SysML'19]

Computation

What to compute in parallel?

[EuroSys'19]

Memory Allocation

When and where to allocate?

[In preparation]

Highlights of results:

- Scheduling communication: up to 30% faster convergence
- Scheduling computation: even faster convergence with less programmer effort
- Scheduling memory: 10x bigger model on the same hardware

Larger Models Lead To Better Performance

GPU Memory Is Limited And Expensive

GPU Memory Is Limited And Expensive

GPU Memory Is Limited And Expensive

Many Previous Works on Improving Memory Efficiency

Gradient checkpointing (leveraging recomputation)

Training Deep Nets with Sublinear Memory Cost [Chen et al., arXiv'16]

Memory-Efficient Backpropagation Through Time [Gruslys et al., arXiv'16]

...

Memory swapping (leveraging cheaper host memory)

Dynamic Control Flow in Large-Scale Machine Learning [Yu, EuroSys'19]

vDNN: virtualized deep neural networks for scalable, memory-efficient neural network design [Rhu et al., MICRO'16]

Training Deeper Models by GPU Memory Optimization on TensorFlow [Meng et al., MLSys'17]

Superneurons: dynamic GPU memory management for training deep neural networks [Wang et al., PPoPP'18]

TensorFlow Grapper memory optimizer

Background: Gradient Checkpointing

Original computation graph for backpropagation, O(M) memory cost

With gradient checkpointing, $O(\sqrt{N})$ memory cost

Background: Memory Swapping

Original computation graph for backpropagation, O(M) memory cost

They Work Well for Linear Graphs

Most nodes are "graph separator nodes": removing each one separates the graph into two disjoint subgraphs

Gradient checkpointing: easy to determine which nodes to checkpoint.

Limited freedom regarding scheduling

Memory swapping: easy to determine what and when to swap

Problem: many neural network graphs are not linear! Some layers have an excessive amount of parallelism.

Emerging Non-linear Neural Networks

Goal: General Memory-Efficient DL On TensorFlow

Linear and nonlinear computation graphs

Implement and evaluate on TensorFlow

Transparent to applications.

Existing memory optimizations for TensorFlow:

Gradient checkpointing (Bolatov et al., GitHub'17]):

Limited to linear graphs; requires non-trivial changes to application program

Grappler memory swapping pass:

Limited to linear graphs

WhileLoop memory swapping ([Yuan et al., EuroSys'18]):

Operation specific memory reduction

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

TensorFlow

Breath-first traversal

Max. parallelism

Max. memory

Linearize the graph

No parallelism Min. memory

TensorFlow

Breath-first traversal

Max. parallelism

Max. memory

Linearize the graph

No parallelism Min. memory

Idea #2: Offload GPU Tensors To Host Memory

Transformer
Use MoE as the Feed Forward layer
12 MoEs
32 experts per MoE
2M params per expert
~800M parameters total

Peak memory:

9.5GB to 6.8GB

Idea #2: Offload GPU Tensors To Host Memory

Transformer

Use MoE as the Feed Forward layer

12 MoEs

32 experts per MoE

2M params per expert

~800M parameters total

Peak memory:

9.5GB to 6.8GB

Idea #3: Place Persistent Tensors on Host Memory & Send To GPU Only When Needed

Idea #3: Place Persistent Tensors on Host Memory & Send To GPU Only When Needed

Implementation & Experiment Setup

Experiment platform:
32 vCPU cores
64GB memory
1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory

Grappler Optimizers

Executor

GraphPartition

Graph Partition & Memory Swapping

Scheduling

Send, Recv nodes

Experiment Results 800 Million parameters Attention Attention + MoE GAN Average Recurrent / Convolution Statically unrolled Vanilla -+Partition 10.9 11.0 11.0 11.0 11.0 10.8 +Placement 9.5 Peak Memory (GB) 6.7 6.4 4.2 3.8 3.3 1.6 1.4 Runtime Overhead (wrt. TensorRow) ransformer MoE ResNet-152 Avg-NoMoE Transformer WGAN-GP DeepSpeech Avg Vanilla 1 3.5 Model +Partition +Placement = 2.4 1.85 1.5 1.5 1.3 1.3 1.5

WGAN-GP

DeepSpeech

Avg-NoMoE

ransformerMoE

ResNet-152

Transformer

Experiment Results 800 N

Experiment Results

Experiment Results

Implementation & Experiment Setup

W C++ Core 12GB GPU Memory

GraphPartition

Experiment platform:

1 GPU per machine

32 vCPU cores

64GB memory

Grappler Optimizers

Graph Partition & Memory Swapping

Executor

Scheduling

Send, Recv nodes

Idea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

Breath-first traversal

Max. parallelism

Max. memory

Linearize the graph

No parallelism Min. memory

Idea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

Breath-first traversal

Max. parallelism

Max. memory

Linearize the graph

No parallelism Min. memory

Idea #1: Limit Memory Consumption by Limiting Parallelism

Idea #2: Offload GPU Tensors To Host Memory

Transformer

Use MoE as the Feed Forward layer

12 MoEs

32 experts per MoE

2M params per expert

~800M parameters total

Peak memory:

9.5GB to 6.8GB

Idea #3: Place Persistent Tensors on Host Memory & Send To GPU Only When Needed

Implementation & Experiment Setup

Experiment platform:
32 vCPU cores
64GB memory
1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory

Grappler Optimizers

Executor

GraphPartition

Graph Partition & Memory Swapping

Scheduling

Send, Recv nodes

Experiment Results 800 Million parameters Attention Attention + MoE GAN Average Recurrent / Convolution Statically unrolled Vanilla -*Partition 10.9 11.0 11.0 11.0 11.0 10.8 +Placement 9.5 Peak Memory (GB) 6.7 6.4 4.4 4.0 4.2 3.8 3.3 1.6 1.4 Runtime Overhead (wrt. TensorRow) ransformerMoE ResNet-152 Avg-NoMoE Transformer WGAN-GP DeepSpeech Avg Vanilla 1 3.5 Model +Partition +Placement 2.4 1.85 1.5 1.5 1.3 1.3 1.5

WGAN-GP

DeepSpeech

Avg-NoMoE

ransformerMoE

ResNet-152

Transformer

System	#Experts / MoE	#Parameters	Throughput
TensorFlow	4	0.24 Billion	19.0
TensorFlowMem	48	2.5 Billion	1.9

Transformer w/ MoE 12 MoEs, 4M parameters per expert

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert Maximum ResNet Depth

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert

Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert

Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

Distributed Transformer w/ MoE 12 MoEs, 2M parameters per expert

Partition big tensors

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert

Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert

Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

Distributed Transformer w/ MoE 12 MoEs, 2M parameters per expert

Partition big tensors

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert

Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

System	#Experts / MoE	#Parameters	Throughput	Batch	TensorFlow	TensorFlowMem
TensorFlow	4	0.24 Billion	19.0	16	504	1916
TensorFlowMem	48	2.5 Billion	1.9	32	235	1001

Transformer w/ MoE 12 MoEs, 4M parameters per expert

Maximum ResNet Depth

System	#Machines	#Experts / MoE	#Parameters
TensorFlow	4	128	3 Billion
TensorFlow	16	208	5 Billion
TensorFlowMem	4	256	6 Billion
TensorFlowMem + Optimized MoE	4	512	12 Billion

Distributed Transformer w/ MoE 12 MoEs, 2M parameters per expert

Partition big tensors

Recurrent Neural Networks -Scaling Sequence Length

Sequence Length	100	200	400	500	800
TensorFlow	1.15	2.31	4.65	ООМ	ООМ
TensorFlowMem	1.56	3.03	6.03	N/A	12.01

Mozilla DeepSpeech, statically unrolled RNN

Mini-batch size = 128

Time per mini-batch (seconds)

Fine-grained communication
Prioritization based on relative magnitude
Prioritization based on when values are used

Fine-grained communication
Prioritization based on relative magnitude
Prioritization based on when values are used

Statically analyze memory accesses
Schedule independent computation in parallel

Fine-grained communication
Prioritization based on relative magnitude
Prioritization based on when values are used

Statically analyze memory accesses
Schedule independent computation in parallel

Partitioned computation graph Leverage cheap host memory

ML Models / Algorithms

CNNs, RNNs, residual, MoE, capsule, etc...

Systems for ML pushing the boundaries of many CS disciplines

Hardware

CPU, GPU, FPGA, ASICs, etc

Machine Learning Is Still Fast Advancing

ML Models / Algorithms

CNNs, RNNs, residual, MoE, capsule, etc...

Compilers

Architecture

Systems for ML pushing the boundaries of many CS disciplines

Hardware

CPU, GPU, FPGA, ASICs, etc

Distributed systems

HPC

Networking

Machine Learning Is Still Fast Advancing

ML Models / Algorithms

CNNs, RNNs, residual, MoE, capsule, etc...

Compilers

Architecture

Systems for ML

pushing the boundaries of many CS disciplines

Distributed systems

HPC

Networking

Hardware

CPU, GPU, FPGA, ASICs, etc

How to support the expanding ML computation?

How to take advantage of new hardware?

Programming support and compilation

Programming support and compilation

New operations, e.g., capsule?

Programming support and compilation

New operations, e.g., capsule?

(c) Capsule Kernel

Programming support and compilation

- New operations, e.g., capsule?
- New control flow primitives, e.g., functions?

Programming support and compilation

- New operations, e.g., capsule?
- New control flow primitives, e.g., functions?
- New hardware, e.g., ASICs

Programming support and compilation

- New operations, e.g., capsule?
- New control flow primitives, e.g., functions?
- New hardware, e.g., ASICs

Model parallelism

- Operation partitioning
- · Device placement, even dynamic placement for dynamic control flow

Programming support and compilation

- New operations, e.g., capsule?
- New control flow primitives, e.g., functions?
- New hardware, e.g., ASICs

Model parallelism

- Operation partitioning
- Device placement, even dynamic placement for dynamic control flow

ML-driven optimizations for ML systems

Complex design space

Many ways to reduce memory consumption, with different trade-offs

Many ways to reduce memory consumption, with different trade-offs

Techniques

Trade-off

Many ways to reduce memory consumption, with different trade-offs

Techniques

Trade-off

Scheduling

Degree of Parallelism

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off

Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off

Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Many ways to reduce memory consumption, with different trade-offs

Techniques

Scheduling

Gradient checkpointing & Constant folding

Memory swapping & Device placement

Quantization

Trade-off

Degree of Parallelism

Computation

Communication

Accuracy

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off

Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Quantization Accuracy

Challenges:

- 1) Scheduling is NP-complete;
- Best configuration depends on the program and hardware;
- 3) Techniques are inter-dependent

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off

Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Quantization Accuracy

Challenges:

- 1) Scheduling is NP-complete;
- Best configuration depends on the program and hardware;
- 3) Techniques are inter-dependent

