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Growing data size Growing model complexity

Challenges:

Machine learning models take long time to train.

Machine learning training consumes large amount of memory.
Implementing parallel/distributed programs is hard.
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My Work: More Efficient ML Training via Scheduling

Key Idea:

Leverage general structural properties in ML computation to improve

efficiency

vV

Challenges:

Systems developed:
Bosen: (parameter server) [SoCC’15]
~20K LoC (C++)

Orion: (auto-parallelization) [EuroSys’19]
~23K LoC (C++, Julia)

Non-trivial work on TensorFlow core

What structural properties are
helpful?

Generalizability across models
/ algorithms

How to leverage it with no /
little burden to users?
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Scheduling within a Single Training Job

m ,u:l
B s 15

D G :i AL
Computation Memory Allocation

When and what to send? What to compute in parallel? When and where to allocate?

Lead [SoCC’15, Best paper] [EuroSys’19] [In preparation]
Coauthor [ATC'17] [SysML'19]

Highlights of results:

* Scheduling communication: up to 30% faster convergence

« Scheduling computation: even faster convergence with less programmer effort
* Scheduling memory: 10x bigger model on the same hardware




Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

repeat until convergence
foreach mini-batch in dataset
update model parameters




Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

repeat until convergence 3 [\/1dﬂv pdsses over tr'dining data
foreach mini-batch in dataset
update model parameters




Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

repeat until convergence ~ Many passes over training data
foreach mini-batch in dataset ——— pany updates per data pass
update model parameters




Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

r\epeat until convergence 3 l\/ldnv pdsses over tr'dining_’, data
foreach mini-batch in dataset —— Many upda[es per data pass
update model parameters




Machine Learning Training Is A Search Process

Stopping criteria (convergence):
achieve a desired model quality (plateau)

Error doesn’t mean it’s wrong
It often means more steps




Machine Learning Training Is A Search Process

Stopping criteria (convergence):
achieve a desired model quality (plateau)

Error doesn’t mean it's wrong
It often means more steps

Convergence speed = samples/sec * convergence/sample




Machine Learning Training Is A Search Process

Stopping criteria (convergence):
achieve a desired model quality (plateau)

Error doesn’t mean it's wrong
It often means more steps

Trade-off is possible

Convergence speed = samples/sec * convergence/sample
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repeat until convergence
in parallel foreach mipi-batch in dataset
update model pafzameters

Parameter Server
Servers
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Data Parallelism

“mini-batch #1 [l mini-batch #2 [ mini-batch #3 [l mini-batch #4

Serial Execution

| mini-batch #1 |
mini-batch #2
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. mini-batch #4 |

Later iterations observe updates
from earlier iterations

Synchronization

W1 - Wo+ AWl

@
Serial WZ = WO+ AWI + AWZ

Inconsistency: parallel iterations do not
observe updates from each other
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Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution Data Parallelism
mini-batch #1

mini-batch #1 [l mini-batch #2 [ mini-batch #3 |l mini-batch #4

. : Wl = Wo+ AWl
mini-batch #3 oS ~
‘ : = . Data parallel .
s, ‘@ W, = W,+ AW, , AW,
. - AW,
mini-batch #4
: Serial WZ = WO+ AW1+AW2

Later iterations observe updates Inconsistency: parallel iterations do not
from earlier iterations observe updates from each other
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Sparse Logistic Regression
| | Latent Dirichlet Allocation (LDA)
Simple and highly sparse Matrix Factorization (MF) ...

ML models of interest (5~10 years ago):

Problem:
Light computation per mini-batch vs. heavy communication

Compute D, D, D3
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Reduce Inconsistency via Scheduling

e —
= e 2

m D ST
Network Communication Computation

When and what to send? What to compute in parallel?

Publication [SoCC’15, Best paper] [EuroSys’19]

Systems

Bosen: parameter server Orion: parallelization framework
Developed

’Highlights of results:

* Scheduling communication: up to 30% faster convergence

* Scheduling computation: even faster convergence with less programmer effort
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Opportunity: Spare Network Bandwidth

Data parallelism, + local buffering + bounded staleness:
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Idle network
Manually tuning communication frequency:

v

O [ 0: [ 0 | 07 [ 0 ] 0 ]

Communicate ‘ d, [ C, I Ca |

Compute ' D, I D, I D,

+
D, updates become available,
more effective to communicate coalesced updates




Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute [DlIDZIDBID4IDSIDGI07108109]...

Communicate ‘ G, ] G, 1 Cs |




Fine-Grained Comm. + Prioritization [Wei et al., SoCC’'15]

Existing: manually tuned communication frequency

Compute {D,102103104105106107108109]...

Communicate ‘ C; ] . ] G, |

Ours: fine-grained communication
Compute [ p, | D, [ Dy | D4 | Ds | D6 [ D7 | Ds | Dy | ..

Communicate




Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute {D,102103104105106107108109]...

Communicate | G, ] G, |

Ours: fine-grained communication

Compute | D, ] D, J D, I D4 1 De Dy J

Communicate ‘ G




Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute {D,102103;[04/{05106107103109]

Communicate ‘ G I G, ] =l

Ours: fine-grained communication |Periodic synchronization to ensure convergence

v

Dy | .

Compute | p, I D, I D4 I D, I Ds _D(,-’] D, I Dg

N\

.

Communicate | C, ‘ C.




Fine-Grained Comm. + Prioritization [Wei et al., SoCC’'15]

Existing: manually tuned communication frequency

Compute {DlIDZ\[D;;:[D‘,IDSID(,107108109]

Communicate ‘ C; I C, ] C, |

Ours: fine-grained communication |Periodic synchronization to ensure convergence

Compute ‘ D, ] D, I Ds I Dy I Ds | Dg \" D; I Dg | Dy

N

Communicate e ] c, ] Cy e . [l -




Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute [DlJDZ[03[04{0510(,{07]08]09]

Communicate ‘ C, ] G, ] Cs |

Ours: fine-grained communication |Periodic synchronization to ensure convergence
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Prioritize update communication based on relative magnitude
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Schedule Computation To Reduce Inconsistency

Execute only independent mini-batches in parallel
=

repeat until convergence
in parallel foreach mipi-batch in dataset
update model pafameters

Servers

Workers
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Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example: Data sample:

Model: Matrix Factorization
UserlD itemlID

Application: Recommender systems

#38 H65

Parameters: User Latent Vectors -

ltem Latent Vectors-

There exist f,, f,, ..., f,, such that
ifd;[f;] '=d[f,], d[f,] I=d[f,], ..., and d[f,] !=d|[f],
d,and d,don’t access the same parameters.

Other examples: topic modeling, gradient boosted trees, etc.
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Partition The Dataset for Nonconflicting Accesses

There exist f,, f,, ..., f,, such that
ifd[f,] !=d[f,], d[f,] I=df,], ..., and d;[f,] != d|[f,],
d,and d,don’t access the same parameters.

Partition the dataset by those fields

Nonconflicting parameter accesses

Special case of automatic
parallelizing compilers
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Challenges for Scheduling Computation

Challenge #1: applicable only when certain property holds

Solution: fall back to data parallelism otherwise

Challenge #2: implementation requires non-trivial programmer effort

Solution: automatically parallelize serial programs




Orion: Automatic Parallelization [Wel, et al., EuroSys'19]

__ | Our goals:
j 1. A parallel for construct and users implement a serial program;
2. Preserves sequential semantics when possible;

3. Data parallelism otherwise with user permission

2

Orion’s abstraction: 91%
) =

7 ' A single thread w/ huge memory

Serial ML program in Julia g’%
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Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine
40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm
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Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine

40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm
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Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine

40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

Q- sineort
g-bkelihood
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© thousands of lines of C++
ECE vs. a few hundreds of lines of Julia

200 300 400




Compare Orion vs. TensorFlow

1 machines, 32 vCPU cores / machine
Matrix Factorization (MF) for recommendations + SGD

le+10
Orion =t

TensorFlow
TensorFlow suffers due to

* Data parallelism

* Slower per-sample convergence
* Poor support for sparsity

« 2X longer time per iteration
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g
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o
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O
—
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The Developing View: More And More Complex ML Models

repeat until convergence
foreach mini-batch in dataset
update model parameters

We’ve focused improving computation across mini-batches.

The Machine Learning Trend:
The mini-batch computation is becoming more and more complex
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The Developing View: More And More Complex ML Models

repeat until convergence
foreach mini-batch in dataset
update model parameters

We'’ve focused improving computation across mini-batches.

The Machine Learning Trend:
The mini-batch computation is becoming more and more complex

Deep Neural Networks:

Heavy computation per mini-batch
Dense parameter access

Synchronize after each mini-batch

Opportunity:
Improve DNN efficiency without scarifying computation quality




The Mini-Batch Computation of Deep Neural Networks
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The Mini-Batch Computation of Deep Neural Networks
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rOpportunity:
Not all parameters (updates) are needed (generated) at the same time




Schedule Communication Within A Mini-Batch for DNNs

| Wait-Free Back Propagation: [Zhang et al., ATC'17] (coauthor)
Send updates layer by layer in the backward order, i.e., as soon as they are
generated

Forward . Backward—~| Idle |—— Forward

Compute - : IS 4 1 Ly I L, [ L3

Y

Communicate (s | L |

Overlap backward computation with communication within a mini-batch
|deally, computation is idle only during the first layer’s communication




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward {: B\e{zckward—ﬂ 1dle . Forward

Compute % I L, ] Ly ] [ I Ly | 1 [ L, [ i

Communicate 3 [ L, | L




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

—— F\orward {: B\ackward —-| Idle — F\orward\

Compute {5 [ L5 ] T ] e [ I Ly | s I L [ L
L3

Communicate [ L | L

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward

Backward —-|

o
Compute \ L, J J 1]

L, I i \

Communicate

Idle . Forward

L,JLz[L;;

s |

L,

| L

| Priority-based Parameter Propagation: [Jayarajan et al.,

SysML'19] (coauthor)
Prioritize communication based on when the value is needed

|._ Forward—-|

Compute ‘ L, ] L, ] L, J




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward Backward _.|
Compute : : L, I L4 ‘

Idle

. Forward

Communicate 3 l

L,

| L

LIILz[L:;

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed
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Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

Compute

Communicate

. Forward
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. Forward
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| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed
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Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

Compute

Communicate
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| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed
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Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward Backward—-| Idle . Forward
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| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Back\Lard — Idle

|._ Forward

J
Compute ‘ L, I I ']l

Communicate faq

N\




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward

Backward —-|

Compute | L, ] I
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| Priority-based Parameter Propagation: [Ja\*arajan et al.,
Prioritize communication based on when t"ne value is needed

SysML'19] (coauthor)
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Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward Backward _.|
Compute : : I L,

Idle . Forward
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| Priority-based Parameter Propagation: [Ja\*arajan et al.,

SysML'19]| (coauthor)
Prioritize communication based on when t"no value is needed
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Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers
. Forward Backward—.| Idle . Forward

i
| i | : \
Compute L I J ] L I 7 | L J L [ %

Communicate I l 5 | L
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| Priority-based Parameter Propagation: [Ja\tara' 1 et al., SysML'19] (coauthor)
Prioritize communication based on when tlwe valueNg needed
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P3 Experiment Results on MXNet
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Baseline: MXNet (w/ Wait-Free Backpropagation)
Model: ResNet-50




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers
. Forward Backward—-| Idle . Forward

Compute : : L, I L, ‘ L, J L, [ L,

Communicate o J L, | L

IS

| Priority-based Parameter Propagation: [Ja larajan et al., SysML 19| (coauthor)
Prioritize communication based on when the valuéNg needed

|._ Forward Back\4/ard—~ I Forward—-|
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Scheduling within a Single Training Job

m : 121
s 12

D g :i i

When and what to send? What to compute in parallel? When and where to allocate?

Lead [SoCC’15, Best paper] [EuroSys’19] [In preparation]
Coauthor [ATC'17] [SysML'19]

Highlights of results:

* Scheduling communication: up to 30% faster convergence

* Scheduling computation: even faster convergence with less programmer effort
* Scheduling memory: 10x bigger model on the same hardware
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Scheduling within a Single Training Job

AL
- = =
i g 5

=l o
Network Communication Computation Memory Allocation

When and what to send? What to compute in parallel? When and where to allocate?

Lead [SoCC’15, Best paper] [EuroSys’19] [In preparation]
Coauthor [ATC'17] [SysML'19]

Highlights of results:

* Scheduling communication: up to 30% faster convergence

* Scheduling computation: even faster convergence with less programmer effort
* Scheduling memory: 10x bigger model on the same hardware




Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers
. Forward Backward—-| Idle . Forward

Compute . . [ I
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5

| Priority-based Parameter Propagation: [Ja\tara' 1 et al., SysMLU'19] (coauthor)
Prioritize communication based on when t'we valueNs needed
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Larger Models Lead To Better Performance

OUTRAGEOUSLY LARGE NEURAL NETWORKS
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noom Shascer’, Asala Mithoscine™', Kerywood Maviarz®*, Andy Dava', Quoc Le', Goollrey
Heston' aad Jof Dear

138 Billion Params
128 GPUs

HParameters [Milions)




GPU Memory Is Limited And Expensive




GPU Memory Is Limited And Expensive
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Nvidia V100 (PCle) GPU Price
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GPU Memory Is Limited And Expensive

!

Memory ! Price

Capacity
16GB $7399
32GB | $8799

P

v
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>
&
=
o

Nvidia V100 (PCle) GPU Price
Source: thinkmate.com
2019/8/12

S0.085 per extra MB




Many Previous Works on Improving Memory Efficiency

Gradient checkpointing (leveraging recomputation)
Training Deep Nets with Sublinear Memory Cost [Chen et al., arXiv’'16]
Memory-Efficient Backpropagation Through Time [Gruslys et al., arXiv'16]

Memory swapping (leveraging cheaper host memory)
Dynamic Control Flow in Large-Scale Machine Learning [Yu, EuroSys’19]
vDNN: virtualized deep neural networks for scalable, memory-efficient neural network

design [Rhu et al., MICRO’16]
Training Deeper Models by GPU Memory Optimization on TensorFlow [Meng et al.,

MLSys’17]

Superneurons: dynamic GPU memory management for training deep neural networks
[Wang et al., PPoPP’18]

TensorFlow Grapper memory optimizer




Background: Gradient Checkpointing

Original computation graph for backpropagation, O(/) memory cost

()

CP T
OO

\J

-

Recomputed when
needed

.
b4




Background: Memory Swapping

Original computation graph for backpropagation, O(/V) memory cost

With memory swapping, O(1) memory cost

/
SwapOut + Swapin

SwapOut Swaplin




They Work Well for Linear Graphs

Most nodes are “graph separator nodes”: removing each one separates the
graph into two disjoint subgraphs
Gradient checkpointing: easy to determine which nodes to checkpoint.

Limited freedom regarding scheduling
Memory swapping: easy to determine what and when to swap

Problem: many neural network graphs are not linear!
Some layers have an excessive amount of parallelism.




Emerging Non-linear Neural Networks

OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer', Azalia Mirhoseini™', Krzysatof Maziarz**, Andy Davis', Quoc Le', Geoffrey

Histon' and Jeif Dean
_— /_j\ —

Expert 1 Expert 2 Expert 3 Expertk-1 Expert k

e T N &

Millions of parameters per expert.
Experts are sparsely activated.

Gating .

Previous Layer




Goal: General Memory-Efficient DL On TensorFlow

—] Linear and nonlinear computation graphs

Implement and evaluate on TensorFlow

Transparent to applications.

Existing memory optimizations for TensorFlow:

Gradient checkpointing (Bolatov et al., GitHub’17]):

Limited to linear graphs; requires non-trivial changes to application program
Grappler memory swapping pass:

Limited to linear graphs

WhileLoop memory swapping ([Yuan et al., EuroSys’18]):
Operation specific memory reduction




ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

Breath-first traversal

Max. parallelism
Max. memory
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TensorFlow
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TensorFlow
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ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

e i
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Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory
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Linearize the graph

No parallelism
Min. memory



ldea #1: Limit Memory Consumption by Limiting Parallelism

B i )

ey

iy

Peak memory: 4 operations

W,/

Ours

TensorFlow

: Partition the graph,
Breath-first traversal

Max. parallelism Parallelism with partitions

" | Linearize among partitions

Max. memory

Control parallelism vs. memory

- Linearize the graph

No parallelism
Min. memory



ldea #2: Offload GPU Tensors To Host Memory

Transformer Peak memory:

Use MoE as the Feed Forward layer 9.5GB to 6.8GB
12 Moks

32 experts per Mok
2M params per expert
~800M parameters total




ldea #2: Offload GPU Tensors To Host Memory

\ SVl'apOUt " S“’apln /

Transformer Peak memory:

Use MoE as the Feed Forward layer 9.5GB to 6.8GB
12 MokEs

32 experts per Mok
2M params per expert
~800M parameters total




ldea #3: Place Persistent Tensors on Host Memory & Send To
GPU Only When Needed

«—( O)—O—0O0—0O0O—0O0O—0O0—CO0=
> R

GPU

CPU

W, (Variable)

Transformer w/ MoE Peak memory:
6.8GB to 3.3GB




ldea #3: Place Persistent Tensors on Host Memory & Send To
GPU Only When Needed
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GPU mecy

CPU

W, (Variable)

Transformer w/ MoE Peak memory:
6.8GB to 3.3GB




Implementation & Experiment Setup

Application

TensorFlow C++ Core

Grappler Optimizers

Executor

Graph Partition &
Memory Swapping

Scheduling

GraphPartition

Send, Recv nodes

Experiment platform:
32 vCPU cores

64GB memory

1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory
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Experiment R@SUHS 800 Million parameters
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Implementation & Experiment Setup

Application

TensorFlow C++ Core

Grappler Optimizers

Executor

Graph Partition &
Memory Swapping

Scheduling

GraphPartition

Send, Recv nodes

Experiment platform:
32 vCPU cores

64GB memory

1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory
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TensorFlow

: Partition the graph,
Breath-first traversal
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Max. memory
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ldea #2: Offload GPU Tensors To Host Memory
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Transformer Peak memory:

Use MoE as the Feed Forward layer 9.5GB to 6.8GB
12 Moks

32 experts per Mok
2M params per expert
~800M parameters total




ldea #3: Place Persistent Tensors on Host Memory & Send To
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Implementation & Experiment Setup

Application

TensorFlow C++ Core

Grappler Optimizers

Executor

Graph Partition &
Memory Swapping

Scheduling

GraphPartition

Send, Recv nodes

Experiment platform:
32 vCPU cores

64GB memory

1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory
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Recurrent Neural Networks —Scaling Sequence Length

Sequence Length |

TensorFlow

Mozilla DeepSpeech, statically unrolled RNN
Mini-batch size = 128
Time per mini-batch (seconds)
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Summary

Fine-grained communication
Prioritization based on relative magnitude
Prioritization based on when values are used

Statically analyze memory accesses
Schedule independent computation in parallel

| S
i

Partitioned computation graph
Leverage cheap host memory
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Machine Learning Is Still Fast Advancing
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| Distributed systems
Compilers

Systems for ML HPC
pushing the boundaries of many CS disciplines

Architecture

Networking

Hardware

CPU, GPU, FPGA, ASICs, etc

,»/-

How to support the expanding ML computation?

How to take advantage of new hardware?
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Future Directions

Programming support and compilation

* New operations, e.g., capsule?

* New control flow primitives, e.g., functions?
* New hardware, e.g., ASICs

Model parallelism
* QOperation partitioning
* Device placement, even dynamic placement for dynamic control flow

ML-driven optimizations for ML systems
* Complex design space
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Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Quantization Accuracy

'ChaHenge&

1) Scheduling is NP-complete;
2) Best configuration depends on the program and hardware;

3) Techniques are inter-dependent

@0 Minimize training time subject to memory constraints?




