Scheduling for Efficient Large-Scale
Machine Learning Training

Jinliang Wei

Carnegie Mellon University

C Carnegie Vi “ﬂllllll\(l\ll\
‘.I;i\i'.t" Sclencs (S oF Artm

Machme Learmng Tramlng Quest for Efficiency

Youlube-8M Dataset

6.1 2.6 Billion 3.0
. 350,000 3862 :
Mllllon -"""“ oz vowo

Growing data size Growing model complexity

Challenges:

Machine learning models take long time to train.

Machine learning training consumes large amount of memory.
Implementing parallel/distributed programs is hard.

My Work: More Efficient ML Training via Scheduling

Key Idea:
Leverage general structural properties in ML computation to improve

efficiency

My Work: More Efficient ML Training via Scheduling

Key Idea:
Leverage general structural properties in ML computation to improve

efficiency

Challenges:

What structural properties are
helpful?

My Work: More Efficient ML Training via Scheduling

Key Idea:
Leverage general structural properties in ML computation to improve
efficiency

My Work: More Efficient ML Training via Scheduling

Key Idea:
Leverage general structural properties in ML computation to improve
efficiency

Challenges:

What structural properties are
helpful?

My Work: More Efficient ML Training via Scheduling

Key ldea:
Leverage general structural properties in ML computation to improve
efficiency

Challenges:

What structural properties are
helpful?

Generalizability across models
/ algorithms

My Work: More Efficient ML Training via Scheduling

Key Idea:
Leverage general structural properties in ML computation to improve
efficiency

Challenges:

What structural properties are
helpful?

Generalizability across models
/ algorithms

How to leverage it with no /
little burden to users?

My Work: More Efficient ML Training via Scheduling

Key Idea:

Leverage general structural properties in ML computation to improve

efficiency

vV

Challenges:

Systems developed:
Bosen: (parameter server) [SoCC’15]
~20K LoC (C++)

Orion: (auto-parallelization) [EuroSys’19]
~23K LoC (C++, Julia)

Non-trivial work on TensorFlow core

What structural properties are
helpful?

Generalizability across models
/ algorithms

How to leverage it with no /
little burden to users?

Scheduling within a Single Training Job

Scheduling within a Single Training Job

Iy
.

Scheduling within a Single Training Job

m ,u:l
B s 15

D G :i AL
Computation Memory Allocation

When and what to send? What to compute in parallel? When and where to allocate?

Lead [SoCC’15, Best paper] [EuroSys’19] [In preparation]
Coauthor [ATC'17] [SysML'19]

Highlights of results:

* Scheduling communication: up to 30% faster convergence

« Scheduling computation: even faster convergence with less programmer effort
* Scheduling memory: 10x bigger model on the same hardware

Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

repeat until convergence
foreach mini-batch in dataset
update model parameters

Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

repeat until convergence 3 [\/1dﬂv pdsses over tr'dining data
foreach mini-batch in dataset
update model parameters

Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

repeat until convergence ~ Many passes over training data
foreach mini-batch in dataset ——— pany updates per data pass
update model parameters

Background: Serial Machine Learning Training

Sequential learning algorithm, e.g., SGD:

r\epeat until convergence 3 l\/ldnv pdsses over tr'dining_’, data
foreach mini-batch in dataset —— Many upda[es per data pass
update model parameters

Machine Learning Training Is A Search Process

Stopping criteria (convergence):
achieve a desired model quality (plateau)

Error doesn’t mean it’s wrong
It often means more steps

Machine Learning Training Is A Search Process

Stopping criteria (convergence):
achieve a desired model quality (plateau)

Error doesn’t mean it's wrong
It often means more steps

Convergence speed = samples/sec * convergence/sample

Machine Learning Training Is A Search Process

Stopping criteria (convergence):
achieve a desired model quality (plateau)

Error doesn’t mean it's wrong
It often means more steps

Trade-off is possible

Convergence speed = samples/sec * convergence/sample

Background: Data Parallelism for Computation Throughput
Simply run some / all mini-batches in parallel, regardless of dependence

repeat until convergence
in parallel foreach mipi-batch in dataset
update model pafzmeters

Parameter Server
Servers "“'l

Workers ‘

Convergence speed = samples/sec X convergence/sample

Background: Data Parallelism for Computation Throughput
Simply run some / all mini-batches in parallel, regardless of dependence

repeat until convergence
in parallel foreach mipi-batch in dataset
update model pafzameters

Parameter Server
Servers

Workers

)

Convergence speed = samples/sec X convergence/sample

Background: Data Parallelism for Computation Throughput
Simply run some / all mini-batches in parallel, regardless of dependence

repeat until convergence
in parallel foreach mipi-batch in dataset
update model pafzameters

Parameter Server
Servers

Workers

7

Convergence speed = samples/sec X convergence/sample 53

Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution

Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution

mini-batch #1

mini-batch #2

Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution

| mini-batch #1 .

mini-batch #2
mini-batch #3
‘mini-batch #4

Later iterations observe updates
from earlier iterations

Data Parallelism Does Not Retain The Sequential Semantics

Data Parallelism
mini-batch #1

|

mini-batch #2

‘. mini-batch #1 'mvin_i-batch#,z, “mini-batch #3 [l mini-batch #4

| mini-batch #3

| mini-batch #4 |

Later iterations observe updates
from earlier iterations

Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution Data Parallelism

minlbatch BT

“mini-batch #1 [l mini-batch #2 [l mini-batch #3 [l mini-batch #a

._min'i-ba'tch #3

mini-batch #4

Later iterations observe updates
from earlier iterations

Data Parallelism Does Not Retain The Sequential Semantics

Data Parallelism
mini-batch #1
i)

“mini-batch #1 [l mini-batch #2 [l mini-batch #3 [l mini-batch #4

}. mini-batch #3 |

. mini-batch #4

Later iterations observe updates Inconsistency: parallel iterations do not
from earlier iterations observe updates from each other

Data Parallelism Does Not Retain The Sequential Semantics

S| “mini-batch #1 [l mini-batch #2 [l mini-batch #3 [l mini-batch #4

|

AWI .W1=Wo+ AWl

| mini-batch #3 /

Wy
. mini-batch #4

Later iterations observe updates Inconsistency: parallel iterations do not
from earlier iterations observe updates from each other

Data Parallelism Does Not Retain The Sequential Semantics

Data Parallelism

“mini-batch #1 [l mini-batch #2 [mini-batch #3 [l mini-batch #4

Serial Execution

| mini-batch #1 |
mini-batch #2

mini-batch #3

. mini-batch #4 |

Later iterations observe updates
from earlier iterations

Synchronization

W1 - Wo+ AWl

@
Serial WZ = WO+ AWI + AWZ

Inconsistency: parallel iterations do not
observe updates from each other

Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution Data Parallelism

mini-batch #1 “mini-batch #1 [l mini-batch #2 Jl mini-batch #3 [l mini-batch #4

| mln’i-bgtch #2 :

. Wl - Wo+ AWI
mini-batch #3

| AW,
AW, ®
Serial WZ = Wo‘*' AWI + AWZ
Later iterations observe updates Inconsistency: parallel iterations do not
from earlier iterations observe updates from each other

. mini-batch #4 |

Data Parallelism Does Not Retain The Sequential Semantics

Serial Execution Data Parallelism
mini-batch #1

mini-batch #1 [l mini-batch #2 [mini-batch #3 |l mini-batch #4

. : Wl = Wo+ AWl
mini-batch #3 oS ~
‘ : = . Data parallel .
s, ‘@ W, = W,+ AW, , AW,
. - AW,
mini-batch #4
: Serial WZ = WO+ AW1+AW2

Later iterations observe updates Inconsistency: parallel iterations do not
from earlier iterations observe updates from each other

Background: Sparsity and The Communication Bottleneck

Sparse Logistic Regression
| | Latent Dirichlet Allocation (LDA)
Simple and highly sparse Matrix Factorization (MF) ...

ML models of interest (5~10 years ago):

»Problem:

Light computation per mini-batch vs. heavy communication

Background: Sparsity and The Communication Bottleneck

Sparse Logistic Regression
| | Latent Dirichlet Allocation (LDA)
Simple and highly sparse Matrix Factorization (MF) ...

ML models of interest (5~10 years ago):

»Problem:

Light computation per mini-batch vs. heavy communication

Compute

Background: Sparsity and The Communication Bottleneck

Sparse Logistic Regression
| | Latent Dirichlet Allocation (LDA)
Simple and highly sparse Matrix Factorization (MF) ...

ML models of interest (5~10 years ago):

Problem:
Light computation per mini-batch vs. heavy communication

Compute D, D, D3

Communicate

Background: Trade Even More Consistency for Throughput

s

-1

+2

Background: Trade Even More Consistency for Throughput

(=) () ([
2 |

_—
| +1 J -2 Coalesce deltas to

N~—— y ’
ER E reduce communication

AW, AW, AW,

Background: Trade Even More Consistency for Throughput

+2 1 (44
2 | 43
S

+1 J -2 Coalesce deltas to A
—

[3 l reduce communication [¢

e/

AW, AW, AW, AW, + AW, + AW,

Background Trade Even More Consistency for Throughput

H = ;
+3

—_—

-2 Coalesce deltas to -1

reduce communication 6

————

sz AW, AW, + AW, + AW,
+ Local Buffering: communicate every N mini-batches, coalescing deltas

Compute [D, I D, I D, J L Dy I Ds I D J

Communicate C, | \ C,

Background: Trade Even More Consistency for Throughput

) p—

W) +2 | +4
rem—
W = [(43

Coalesce deltas to
N

i _3 reduce communication [-6

AW sz AW, AW, + AW, + AW,
+ Local Buffering: communicate every N mini-batches, coalescing deltas

Compute [D, I D, I D; - Dy I Ds I Dg J

Communicate C; \ C,

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Background: Trade Even More Consistency for Throughput

T,

W) +2 l +4
Jrmm— f

w; +1 — +3
3 - r—
Coalesce deltas to -1
)
-6

AW sz AW, AW, + AW, + AW,
+ Local Buffering: communicate every N mini-batches, coalescing deltas

Compute [D, I D, I D; l D4 I D- I Dg J

Communicate C, | \ C,

_3 reduce communication

—
W3
—_—
Wy
Wte——

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Compute

Background Trade Even More Consistency for Throughput

: (o
HEJE— [+]

Coalesce deltas to

£
[\ [3] reduce communication [6

AW, AW, AW, + AW, + AW,
+ Local Bufferlng communicate every N mini-batches, coalescing deltas

Compute L D, I D, I D, J \ Dy I Ds I Dg J

Communicate l C; | \ C,

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Compute [D,] D, 1 D3 J

Background: Trade Even More Consistency for Throughput

]

W) +2 ' +4
e ,

w2 +1 — +3
\ —:

Coalesce deltas to -1

reduce communication 6

Wy ‘3

AW Aw_, AW, AW, + AW, + AW,
+ Local Buffering: communicate every N mini-batches, coalescing deltas

Compute ‘ D, I D,] D; - Dy I Ds I Dg J

) U

Communicate C; \ C,

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Compute [D,] D, [D, J

Communicate

Background: Trade Even More Consistency for Throughput

W) +2 | +3 I ‘ -1 l +4
e

w; +1 +2) [+3
' | +1 J -2 Coalesce deltas to | 5 |
W,; ‘ ‘3 l l 3

reduce communication I 6
AW, AW, AW, + AW, + AW,
+ Local Buffering: communicate every N mini-batches, coalescing deltas
Compute | D, I D, I D, D4 I D I D J

e

Communicate C, ‘ C,

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Y

Compute [D, I D, [D, I D, I D Dg ‘

Communicate] C,

Background: Trade Even More Consistency for Throughput

W1 +2 ' +3 | - ‘ +4
: i > [+3

' ; ‘ | +1 J - Coalesce deltas to | Ay

e | { 3 \ [3] reduce communication l 6

AW, AW, AW, AW, + AW, + AW,
+ Local Buffering: communicate every N mini-batches, coalescing deltas

Compute ‘ D, I D, I D, | l Dy T Ds I D¢ J

-

Communicate C, | \ C, |

+ Bounded Staleness: block iff the fastest is T steps ahead of the slowest

Compute [01]02103104105 D¢ D,ID8 Dy |

N

Communicate] C, C,

Reduce Inconsistency via Scheduling

e —
= e 2

m D ST
Network Communication Computation

When and what to send? What to compute in parallel?

Publication [SoCC’15, Best paper] [EuroSys’19]

Systems

Bosen: parameter server Orion: parallelization framework
Developed

’Highlights of results:

* Scheduling communication: up to 30% faster convergence

* Scheduling computation: even faster convergence with less programmer effort

Opportunity: Spare Network Bandwidth

Data parallelism, + local buffering + bounded staleness:

\(N o

Compute [DIIDZIDBJmJDS Dy 07108/

Communicate] C, C,

Opportunity: Spare Network Bandwidth

Data parallelism, + local buffering + bounded staleness:

24 N

Compute |Dl]Dz[DBJD4JDS D D;IDS

.

Y

I\

Communicate] C, C,

/ \
[———]

Idle network

Opportunity: Spare Network Bandwidth

Data parallelism, + local buffering + bounded staleness:
Compute | Dy] D, [D4 [D, J p. | bz | D3 1 De

Communicate] C, C,

’ -
[—]

Idle network
Manually tuning communication frequency:

-,

Compute '01102103104[051061D;vIDgIDg

Communicate

Opportunity: Spare Network Bandwidth

Data parallelism, + local buffering + bounded staleness:

N

Y

Compute jol]oz[mfmjos Dy D,ID8

Communicate] C, C,

’ -
L ——]

Idle network
Manually tuning communication frequency:

v

O [0: [0 | 07 [0] 0]

Communicate ‘ d, [C, I Ca |

Compute ' D, I D, I D,

+
D, updates become available,
more effective to communicate coalesced updates

Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute [DlIDZIDBID4IDSIDGI07108109]...

Communicate ‘ G,] G, 1 Cs |

Fine-Grained Comm. + Prioritization [Wei et al., SoCC’'15]

Existing: manually tuned communication frequency

Compute {D,102103104105106107108109]...

Communicate ‘ C;] .] G, |

Ours: fine-grained communication
Compute [p, | D, [Dy | D4 | Ds | D6 [D7 | Ds | Dy | ..

Communicate

Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute {D,102103104105106107108109]...

Communicate | G,] G, |

Ours: fine-grained communication

Compute | D,] D, J D, I D4 1 De Dy J

Communicate ‘ G

Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute {D,102103;[04/{05106107103109]

Communicate ‘ G I G,] =l

Ours: fine-grained communication |Periodic synchronization to ensure convergence

v

Dy | .

Compute | p, I D, I D4 I D, I Ds _D(,-’] D, I Dg

N\

.

Communicate | C, ‘ C.

Fine-Grained Comm. + Prioritization [Wei et al., SoCC’'15]

Existing: manually tuned communication frequency

Compute {DlIDZ\[D;;:[D‘,IDSID(,107108109]

Communicate ‘ C; I C,] C, |

Ours: fine-grained communication |Periodic synchronization to ensure convergence

Compute ‘ D,] D, I Ds I Dy I Ds | Dg \" D; I Dg | Dy

N

Communicate e] c,] Cy e . [l -

Fine-Grained Comm. + Prioritization [Wei et al., SoCC'15]

Existing: manually tuned communication frequency

Compute [DlJDZ[03[04{0510(,{07]08]09]

Communicate ‘ C,] G,] Cs |

Ours: fine-grained communication |Periodic synchronization to ensure convergence

Compute ‘ D, I D, I D3 [D4 I Ds | Dg \" D; I Dg | Dy

AN

Communicate l € J &5] G, ’ C. | o | ‘i L

—

S

Prioritize update communication based on relative magnitude

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,

topic modeling

320Mbps S40M Do 3200 D S40MDes

Baseline Sched. comm. w/ Shed. comm., w/
PowerGraph [0SDI’12), random relative mag

IterStore [SoCC 14], etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
cvunct { rd B Nar: 1otere N 2 .
3y cnronize -.]“ ,.,L,.'J(“HLtL rsiN uames ’_;;.i_) ¢ mode INg
for each pass over local data

A

320Mbps S40M Do 3200 D S4OM D

Baseline Sched. comm. w/ Shed. comm., w/
PawerGraph [0SDI'12), random relative mag

IterStore [SoCC 14], etc

Experiment Results: Time to Convergence

} 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2863

320Mibps S40M Do 3200 D S40M Do

Baseline Sched. comm. w/ Shed. comm., w/
PowerGraph [0SDI'12), random relative mag

lterStore [SoCC 14], etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2863

% No improvement from more
R frequent synchronizations

320Mbps 400D 3200 D S40M D

Baseline Sched. comm. w/ Shed. comm. w/
PowerGraph [0OSDI"12), random relative mag

IterStore [SoCC 14), etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2863

- o

No improvement from more
frequent synchronizations

schedule under a

bandwidth budget;

random prioritization

L

]

320Mibps S40M Do 3200 bprs S40M D

Baseline Sched. comm. w/ Shed. comm., w/
PowerGraph [0SDI'12), random relative mag

IterStore [SoCC 14], etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2863

No improvement from more
frequent synchronizations

schedule under a

bandwidth budget;

random prioritization

]

320Mbps 400 Do 3200 s S40MDes

Baseline Sched. comm. w/ Shed. comm. w/
PowerGraph [OSDI"12] random relative mag

IterStore [SoCC 14], etc

Experiment Results: Time to Convergence

on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2420MB per data pass

2863

RS | 1715MB per data pass
No improvement from more

frequent synchronizations

320Mibps S40M Do 32000 SLOMDO

Baseline Sched. comm. w/ Shed. comm., w/
PowerGraph [OSDI"12], random relative mag

lterStore [SoCC 14], etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling

for each pass over local data

A

2420MB per data pass

2863

* _ 1715MB per data pass
No improvement from more

frequent synchronizations

prioritize based on

refative-magnitude

L

1synt / pass syncs / pass ~113 3 Syncs J/ pass 320Mibps 400D 3200 s S40MDOs

Baseline St comm. w/ Shed. comm., w/
PowerGraph [OSDI"12], re ! relative mag

IterStore [SoCC 14], etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2420MB per data pass

2863

1715MB per data pass

No improvement from more
frequent synchronizations 840MB per data pass

orioritizefased on

magnitude

320Mbps 400D 3200 D S40M Do

Baseline Sched. comm. w/ Shed. comm, w/
PowerGraph [0SDI'12], random relative mag

lterStore [SoCC 14], etc

Experiment Results: Time to Convergence

Bosen on 16 machines, 1 Gbps,
synchronize all parameters N times topic modeling
for each pass over local data

A

2420MB per data pass

1715MB per data pass

No improvement from more
frequent synchronizations 840MB per data pass

3200 D S40M Do

Baseline St < Shed. comm., w/
PowerGraph [OSDI"12]), andon relative mag
IterStore [SoCC 14], etc

Schedule Computation To Reduce Inconsistency

Execute only independent mini-batches in parallel
=

repeat until convergence
in parallel foreach mipi-batch in dataset
update model pafameters

Servers

Workers

Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example: Data sample:

Model: Matrix Factorization
UserlD itemlID

Application: Recommender systems uas Hes

Parameters: User Latent Vectors

ltem Latent Vectors

Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example: Data sample:

Model: Matrix Factorization
UserlD itemlID

Application: Recommender systems

#38 H65

Parameters: User Latent Vectors -

ltem Latent Vectors-

There exist f,, f,, ..., f,, such that
ifd,[f;] '=d[f,], d[f,] I=d[f,], ..., and d[f,] !=d/[f],
d,and d,don’t access the same parameters.

Structural Sparse Parameter Access In ML

In some models, parameters are accessed based on data sample attributes.

Example: Data sample:

Model: Matrix Factorization
UserlD itemlID

Application: Recommender systems

#38 H65

Parameters: User Latent Vectors -

ltem Latent Vectors-

There exist f,, f,, ..., f,, such that
ifd;[f;] '=d[f,], d[f,] I=d[f,], ..., and d[f,] !=d|[f],
d,and d,don’t access the same parameters.

Other examples: topic modeling, gradient boosted trees, etc.

Partition The Dataset for Nonconflicting Accesses

There exist f,, f,, ..., f,, such that
ifd[f,] !=d[f,], d[f,] '=df,], ..., and d/[f,] = d[f,],
d;and d,don’t access the same parameters.

Partition the dataset by those fields

Partition The Dataset for Nonconflicting Accesses

There exist f,, f,, ..., f,, such that
ifd[f,] !=d[f,], d[f,] '=d[f,], ..., and d/[f,] != d[f,],
d;and d,don’t access the same parameters.

Partition the dataset by those fields

Partition The Dataset for Nonconflicting Accesses

There exist f,, f,, ..., f,, such that
ifd[f,] !=d[f,], d,[f,] '=d[f,], ..., and d/[f,] != d[f,],
d;and d,don’t access the same parameters.

Partition the dataset by those fields

Partition The Dataset for Nonconflicting Accesses

There exist f,, f,, ..., f,, such that
ifd[f,] '=d[f,], d[f,] I=d[f,], ..., and d,[f,] != d,[f,],
d,and d,don’t access the same parameters.

Partition the dataset by those fields

Nonconflicting parameter accesses

Partition The Dataset for Nonconflicting Accesses

There exist f,, f,, ..., f,, such that
ifd[f,] !=d[f,], d[f,] I=df,], ..., and d;[f,] != d|[f,],
d,and d,don’t access the same parameters.

Partition the dataset by those fields

Nonconflicting parameter accesses

Special case of automatic
parallelizing compilers

Challenges for Scheduling Computation

Challenges for Scheduling Computation

Challenge #1: applicable only when certain property holds

Solution: fall back to data parallelism otherwise

Challenges for Scheduling Computation

Challenge #1: applicable only when certain property holds

Solution: fall back to data parallelism otherwise

Challenge #2: implementation requires non-trivial programmer effort

Solution: automatically parallelize serial programs

Orion: Automatic Parallelization [Wel, et al., EuroSys'19]

__ | Our goals:
j 1. A parallel for construct and users implement a serial program;
2. Preserves sequential semantics when possible;

3. Data parallelism otherwise with user permission

2

Orion’s abstraction: 91%
) =

7 ' A single thread w/ huge memory

Serial ML program in Julia g’%

Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine
40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine
40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

9

J.05x10

a?
d 1210 -

- |
115210
=),

.l Z,IIU

4

" 3 “
e L1.25x10
= |

-1 3x10
3 e .n"
5~ 3I5x10

“
JAxIQ° ¥

-
J A0 F

lM:.'-.ul Darna F'Jlral\:lv.*n wi Scheduled Comm on Bosen
'y A

- -,
-1 5x10
100 200 Joo 40

number of seconds

Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine
40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

©
9
e

-
x

-
v
C

Manual Data Paraliclism w' Scheduled Comm on Bosen

Auto-Paraliclizavon by Orion ~=9—
| s - 3

200 100 400 00

number of weconds

Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine

40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

B 9
40510 F
-
J.1x10Q°
1.15x10°

- 2"1‘:’9

1.25x10°

13x10°

- £
-1.35x10

lag-belihoad

14x10’ §
Manual Data Paraliclism w' Scheduled Comm on Bosen

N | 45.(1':"
Auto-Paraliclizavon by Orion ~9—
& - 4

| |

- -7
I 510 °
0 100 200 300 . 00

number of wconds

Compare Orion vs. Bosen

12 machines, 32 vCPU cores / machine

40 Gbps Ethernet
Latent Dirichlet Allocation (LDA) for topic modeling + Gibbs sampling algorithm

Q- sineort
g-bkelihood

180
Manual Data Paraliclism w' Scheduled Comm on Bosen

Auto-Paraliclizavon by Orion <=3
) 3 -

© thousands of lines of C++
ECE vs. a few hundreds of lines of Julia

200 300 400

Compare Orion vs. TensorFlow

1 machines, 32 vCPU cores / machine
Matrix Factorization (MF) for recommendations + SGD

le+10
Orion =t

TensorFlow
TensorFlow suffers due to

* Data parallelism

* Slower per-sample convergence
* Poor support for sparsity

« 2X longer time per iteration

Vi
g
L=
o
c
L=
O
—
-—

1 | i '1 i | |
1000 1500 2000 2500 3000
time (second)

The Developing View: More And More Complex ML Models

repeat until convergence
foreach mini-batch in dataset
update model parameters

We’ve focused improving computation across mini-batches.

The Machine Learning Trend:
The mini-batch computation is becoming more and more complex

The Developing View: More And More Complex ML Models

repeat until convergence
foreach mini-batch in dataset
update model parameters

We'’ve focused improving computation across mini-batches.
The Machine Learning Trend:

The mini-batch computation is becoming more and more complex

Deep Neural Networks:

Heavy computation per mini-batch
Dense parameter access

Synchronize after each mini-batch

The Developing View: More And More Complex ML Models

repeat until convergence
foreach mini-batch in dataset
update model parameters

We'’ve focused improving computation across mini-batches.

The Machine Learning Trend:
The mini-batch computation is becoming more and more complex

Deep Neural Networks:

Heavy computation per mini-batch
Dense parameter access

Synchronize after each mini-batch

Opportunity:
Improve DNN efficiency without scarifying computation quality

The Mini-Batch Computation of Deep Neural Networks

\
* ’\
/ \.
’

Q’ % - ‘ . a L
~. —— TN .
\ v . 4
N > - Ny
» -, o N » » - .
- " o P WAV 4 :
e X 4 9 = ’ .
N =My ' -"-‘ " 2 - . 2
= v 7 : AN - J
T P 2N .
P . \ S 7 - N r
SN - —_— N s . "
- N ~ N v)\ 1)

input layer
hidden layer 1 hidden layer 2

filwy, Xo) falwy, Xq) f3(ws, X;)
Forward x, — x,;—> X, —Y

dy dy dy
BaCkwa rd ()\‘Vl GW;,_» ()\’\:’3
<

The Mini-Batch Computation of Deep Neural Networks

- -
. - b
o \ - - B
y N b ’ .

~ e p ' N ’VA‘
\\: . - > 4 4 -
o o
~ . - ") & — .
'/-' N P \ \ L2 /

~

. v - o ‘
‘A o -’ y ‘-.—‘ > . - - y
W e A ¢ ”~ o X s —
> - S - /
"t ~ B ¥ N~
A . 2\
el .

-

input layer
hidden layer 1 hidden layer 2

fi(wy, Xo) Falwy, X1) f3(ws, ;)
Forward x, — x,;— X, —Y

dy ay ay
BaCkwa rd 0\\'1 OW;,_» ()\\'3
<

rOpportunity:
Not all parameters (updates) are needed (generated) at the same time

Schedule Communication Within A Mini-Batch for DNNs

| Wait-Free Back Propagation: [Zhang et al., ATC'17] (coauthor)
Send updates layer by layer in the backward order, i.e., as soon as they are
generated

Forward . Backward—~| Idle |—— Forward

Compute - : IS 4 1 Ly I L, [L3

Y

Communicate (s | L |

Overlap backward computation with communication within a mini-batch
|deally, computation is idle only during the first layer’s communication

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward {: B\e{zckward—ﬂ 1dle . Forward

Compute % I L,] Ly] [I Ly | 1 [L, [i

Communicate 3 [L, | L

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

—— F\orward {: B\ackward —-| Idle — F\orward\

Compute {5 [L5] T] e [I Ly | s I L [L
L3

Communicate [L | L

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward

Backward —-|

o
Compute \ L, J J 1]

L, I i \

Communicate

Idle . Forward

L,JLz[L;;

s |

L,

| L

| Priority-based Parameter Propagation: [Jayarajan et al.,

SysML'19] (coauthor)
Prioritize communication based on when the value is needed

|._ Forward—-|

Compute ‘ L,] L,] L, J

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward Backward _.|
Compute : : L, I L4 ‘

Idle

. Forward

Communicate 3 l

L,

| L

LIILz[L:;

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Compute

Backward —.|

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

Compute

Communicate

. Forward

-

Backward —-|

L] I \

Idle

. Forward

L3 [L,

| L

i |

L,ILZ[L3

-

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Compute

Communicate

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

Compute

Communicate

. Forward

Backward —-|

I I L \

Idle . Forward

L,[LZJL3

|

L,

| L

|

|

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Compute

Communicate

I . Back\Lard 3

L L L]

:

L3,

N\

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward Backward—-| Idle . Forward

Compute : : L, I L, ‘ L,] L, [L,

-~

Communicate (5 l L | it

|

| Priority-based Parameter Propagation: [Jayarajan et al., SysML'19] (coauthor)
Prioritize communication based on when the value is needed

Back\Lard — Idle

|._ Forward

J
Compute ‘ L, I I ']l

Communicate faq

N\

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward

Backward —-|

Compute | L,] I

f-
[t [t]u)

Communicate

Idle . Forward

L3

L,

s J L, [i
[4

4

| Priority-based Parameter Propagation: [Ja*arajan et al.,
Prioritize communication based on when t"ne value is needed

SysML'19] (coauthor)

;Iv Back\‘/ard 3

Compute

Communicate

Idle

L3,

N\

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers

. Forward Backward _.|
Compute : : I L,

Idle . Forward

LIILZJQ

Communicate L, l L

| L

4

| Priority-based Parameter Propagation: [Ja*arajan et al.,

SysML'19]| (coauthor)
Prioritize communication based on when t"no value is needed

Back*ard —

F Forward

J
Compute ‘ L, I] 7[

Idle

Vg—— Forward—-|
L, I L, |

Communicate s

N\

oy | Laa |

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers
. Forward Backward—.| Idle . Forward

i
| i | : \
Compute L I J] L I 7 | L J L [%

Communicate I l 5 | L

5

| Priority-based Parameter Propagation: [Ja\tara' 1 et al., SysML'19] (coauthor)
Prioritize communication based on when tlwe valueNg needed
1 Back*fard—. Idk Forward——

Compute - - L\[\L2 I 1 L

Communicate e, l L3> |

P3 Experiment Results on MXNet

110 |

100
90
80
70
60
50

40 | .

Baseline
30 P3 —a—
20° .

|
@
v
——
w
)
o
o
p—y
S
o
<
o
>
e
£
}_

1 2 3 4 5 6 7 8 9 10
Bandwidth (Gbps)

Baseline: MXNet (w/ Wait-Free Backpropagation)
Model: ResNet-50

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers
. Forward Backward—-| Idle . Forward

Compute : : L, I L, ‘ L, J L, [L,

Communicate o J L, | L

IS

| Priority-based Parameter Propagation: [Ja larajan et al., SysML 19| (coauthor)
Prioritize communication based on when the valuéNg needed

|._ Forward Back\4/ard—~ I Forward—-|

t |
Compute ‘ Ly] I I L\I\Lz [L3 1 L3

Communicate Lz,z l EY. |

Scheduling within a Single Training Job

m : 121
s 12

D g :i i

When and what to send? What to compute in parallel? When and where to allocate?

Lead [SoCC’15, Best paper] [EuroSys’19] [In preparation]
Coauthor [ATC'17] [SysML'19]

Highlights of results:

* Scheduling communication: up to 30% faster convergence

* Scheduling computation: even faster convergence with less programmer effort
* Scheduling memory: 10x bigger model on the same hardware

P3 Experiment Results on MXNet

110 |
100 |
90
80
70
60
50

40 -

Baseline
30 P3 —a—
20° .

o
@
W
S
)
Qv
o
o
a4
>
Q
N o
o
>
2
L
-

1 2 3 . 5 6 7 8 9 10
Bandwidth (Gbps)

Baseline: MXNet (w/ Wait-Free Backpropagation)
Model: ResNet-50

Scheduling within a Single Training Job

AL
- = =
i g 5

=l o
Network Communication Computation Memory Allocation

When and what to send? What to compute in parallel? When and where to allocate?

Lead [SoCC’15, Best paper] [EuroSys’19] [In preparation]
Coauthor [ATC'17] [SysML'19]

Highlights of results:

* Scheduling communication: up to 30% faster convergence

* Scheduling computation: even faster convergence with less programmer effort
* Scheduling memory: 10x bigger model on the same hardware

Schedule Comm. Within A Mini-Batch for DNNs (Cont.)

But the first layer’s communication could be delayed by the previous layers
. Forward Backward—-| Idle . Forward

Compute . . [I

Communicate | Ls l L, | L,

5

| Priority-based Parameter Propagation: [Ja\tara' 1 et al., SysMLU'19] (coauthor)
Prioritize communication based on when t'we valueNs needed
|._ Forward

J
Compute ‘ L,] J 1{ | | / | L\I\L2 [5 1 L,

Communicate Lz,z l L3 |

Back\#ard —— |dle Forward

Larger Models Lead To Better Performance

OUTRAGEOUSLY LARGE NEURAL NETWORKS
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noom Shascer’, Asala Mithoscine™', Kerywood Maviarz®*, Andy Dava', Quoc Le', Goollrey
Heston' aad Jof Dear

138 Billion Params
128 GPUs

HParameters [Milions)

GPU Memory Is Limited And Expensive

GPU Memory Is Limited And Expensive

Memor Y

Capacity |
16GB
32GB

Nvidia V100 (PCle) GPU Price
Source: thinkmate.com

3 2019/8/12
".1¥fdeq‘u?\~;"1'.!.~s\§

2015

GPU Memory Is Limited And Expensive

!

Memory ! Price

Capacity
16GB $7399
32GB | $8799

P

v

-~

>
&
=
o

Nvidia V100 (PCle) GPU Price
Source: thinkmate.com
2019/8/12

S0.085 per extra MB

Many Previous Works on Improving Memory Efficiency

Gradient checkpointing (leveraging recomputation)
Training Deep Nets with Sublinear Memory Cost [Chen et al., arXiv’'16]
Memory-Efficient Backpropagation Through Time [Gruslys et al., arXiv'16]

Memory swapping (leveraging cheaper host memory)
Dynamic Control Flow in Large-Scale Machine Learning [Yu, EuroSys’19]
vDNN: virtualized deep neural networks for scalable, memory-efficient neural network

design [Rhu et al., MICRO’16]
Training Deeper Models by GPU Memory Optimization on TensorFlow [Meng et al.,

MLSys’17]

Superneurons: dynamic GPU memory management for training deep neural networks
[Wang et al., PPoPP’18]

TensorFlow Grapper memory optimizer

Background: Gradient Checkpointing

Original computation graph for backpropagation, O(/) memory cost

()

CP T
OO

\J

-

Recomputed when
needed

.
b4

Background: Memory Swapping

Original computation graph for backpropagation, O(/V) memory cost

With memory swapping, O(1) memory cost

/
SwapOut + Swapin

SwapOut Swaplin

They Work Well for Linear Graphs

Most nodes are “graph separator nodes”: removing each one separates the
graph into two disjoint subgraphs
Gradient checkpointing: easy to determine which nodes to checkpoint.

Limited freedom regarding scheduling
Memory swapping: easy to determine what and when to swap

Problem: many neural network graphs are not linear!
Some layers have an excessive amount of parallelism.

Emerging Non-linear Neural Networks

OUTRAGEOUSLY LARGE NEURAL NETWORKS:
THE SPARSELY-GATED MIXTURE-OF-EXPERTS LAYER

Noam Shazeer', Azalia Mirhoseini™', Krzysatof Maziarz**, Andy Davis', Quoc Le', Geoffrey

Histon' and Jeif Dean
_— /_j\ —

Expert 1 Expert 2 Expert 3 Expertk-1 Expert k

e T N &

Millions of parameters per expert.
Experts are sparsely activated.

Gating .

Previous Layer

Goal: General Memory-Efficient DL On TensorFlow

—] Linear and nonlinear computation graphs

Implement and evaluate on TensorFlow

Transparent to applications.

Existing memory optimizations for TensorFlow:

Gradient checkpointing (Bolatov et al., GitHub’17]):

Limited to linear graphs; requires non-trivial changes to application program
Grappler memory swapping pass:

Limited to linear graphs

WhileLoop memory swapping ([Yuan et al., EuroSys’18]):
Operation specific memory reduction

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

Breath-first traversal

Max. parallelism
Max. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

Breath-first traversal

Max. parallelism
Max. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

Breath-first traversal

Max. parallelism
Max. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

e

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

W'/

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

i

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

gl

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

/"f_ﬂ"’R

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

W’/

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

B el Y

e

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

W_/

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

e

—

i

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

W__/

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

e

ey

iy

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

W__/

Linearize the graph

No parallelism
Min. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

e i

=y

iy

Peak memory: 5 operations

Breath-first traversal

Max. parallelism
Max. memory

W_/

Linearize the graph

No parallelism
Min. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

B i)

ey

iy

Peak memory: 4 operations

W,/

Ours

TensorFlow

: Partition the graph,
Breath-first traversal

Max. parallelism Parallelism with partitions

" | Linearize among partitions

Max. memory

Control parallelism vs. memory

- Linearize the graph

No parallelism
Min. memory

ldea #2: Offload GPU Tensors To Host Memory

Transformer Peak memory:

Use MoE as the Feed Forward layer 9.5GB to 6.8GB
12 Moks

32 experts per Mok
2M params per expert
~800M parameters total

ldea #2: Offload GPU Tensors To Host Memory

\ SVl'apOUt " S“’apln /

Transformer Peak memory:

Use MoE as the Feed Forward layer 9.5GB to 6.8GB
12 MokEs

32 experts per Mok
2M params per expert
~800M parameters total

ldea #3: Place Persistent Tensors on Host Memory & Send To
GPU Only When Needed

«—(O)—O—0O0—0O0O—0O0O—0O0—CO0=
> R

GPU

CPU

W, (Variable)

Transformer w/ MoE Peak memory:
6.8GB to 3.3GB

ldea #3: Place Persistent Tensors on Host Memory & Send To
GPU Only When Needed

")—O—0O0—0O—C0O0O—C0O—0O0—C

GPU mecy

CPU

W, (Variable)

Transformer w/ MoE Peak memory:
6.8GB to 3.3GB

Implementation & Experiment Setup

Application

TensorFlow C++ Core

Grappler Optimizers

Executor

Graph Partition &
Memory Swapping

Scheduling

GraphPartition

Send, Recv nodes

Experiment platform:
32 vCPU cores

64GB memory

1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory

Experiment Results

Vandla TN
+*Partition & J
tPlacement

ry (GB)

Q
v
-
2.
R
-
v
a.

Transformer TransformerMoE ResNet-152 WGAN-.GP DeepSpeech Avg-NoMoE

Model

Experiment Results

Attention Attention + Mot GAN Recurrent /

B

Convolution Statically unrolled Vandla T
11.0 11.0 11.0 108 Il +Partition = J
tPlacement & J

1.6
Transformer TransformerMoE ResNet-152 WGAN-GP DeepSpeech Avg-NoMoE
Moded

4

Experiment Results

Attention ."Jﬁ‘.:‘:x".;ur« + Mgk GAN Recurrent /

Vandla SN
10.9 1.0 1.0 1.0 108 1F *Partition

V.
tPlacement & J

T_U'I‘JU ution Statically unrolled

y (GB)

»
0

.
Ed
v
-
G
d
a.

Transformer TransformerMoE ResNet-152 WGAN-GP DeepSpeech Avg-NoMoE

Experiment R@SUHS 800 Million parameters

Attention .-‘Jﬁ‘.cr"..ur‘: + MSE __—TAN Recurrent /
——
Vandla TS

P a]
rum’u ution Statically unrolled

1.0 11.0 1.0 108 . +*Partition =]

; =]

n

| o 10.9
tPlacement ©

y (GB)

»
Q

¥
-
»
-
v
»
a.

| L

Transformer TransformerMok

ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

Model

Experimem ReSUItS 800 Million parameters

Attention Attention '&_"iﬁL—,—-""’-C;AT‘-J Recurrent /
ad g g
Convoiution Statically unrolled Vandla TS
+Partition =]

- (1.0 1.0 1.0 108 Il
- tPlacement &)

y (GB)

»
Q

»
-
»
-
v
>
a.

ResNet- 152 WGAN.-GP DeepSpeech Avg-NoMoE

Model

Transformer TransformerMoE

ory (GB)

v
-
2.
»
»
a.

Experiment R@SUHS 800 Million parameters

=

-

Attention Attention + Mokt

——

Lonvoiut U'*

11.0

—_

GAN

1.0

|

Recurrent /

atically unrolled

11.0

10.8

Transformer TransformerMoE

ResNet- 152

——

WGAN.GP
Model

DeepSpeech

Avg-NoMoE

Vandla T
+*Partition & J

tPlacement ©)

Experiment R@SUHS 800 Million parameters

—— PE 2 /7

Attention Attention ";L’EL—/—‘ GAN Recurrent

- ,
ff 4
Convolution Statically unrolled

11.0 1.0 1.0 10.8

Vandla TN
+Partition *)

tPlacement T

ory ((-9]

v
-
x
v
~
a

l -6[l .44
Transformer TransformerMoE ResNet-152 WGAN.-GP DeepSpeech

Model

Avg-NoMoE

Experimeﬂt R@SUHS 800 Million parameters

Y + Mot "G AN Recurrent /

e

Attention Attention + Mo
_—”—’—
e
Convoiution Statically unro !(:ﬂ Vandla T
1.0 1.0 11.0 , 1B +Partition)
: tPlacement ©)

y (GB)

»
Q

N
-
o
-
v
o
a

WGAN.GP DeepSpeech Avg-NoMoE

Model

Transformer TransformerMoE ResNet 152

Experiment R@SUHS 800 Million parameters

Attention Attention *_:‘L;L—.—- —— GAN Recurrent /
p= kR .
Convolution Statically unrolled Vandla T
. +Partition = .

b (1.0 11.0 11.0 : 1K
A : tPlacement &)

y (GB)

»
Q

.
Ed
»
-
v
.
a.

Transformer TransformerMoE ResNet-152 WGAN.GP DeepSpeech Avg-NoMoE

Model

Experimem ReSUItS 800 Million parameters

Attention At on + Vo "G AN Recurrent / :%'vL'r;i;;t:

Convolution Statically unrolled Vandla TN

1.0 1.0 11.0 108 1F +Partition &)
tPlacement C)

y (GB)

p"-" M\"I‘(:'

Transformer TransformerMoE ResNet-152 WGAN-GP DeepSpeech \ Avg-NoMoE Vanilla S
3.4 Mode +Parowon |]
*Placement

Fia
o

nead {wrt Ternors

R e O- “

Transformer TrarsformerMoE ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

Experifﬂent R@SU“S 800 Million parameters

—GAN Recurrent / Average
Convolution Statically unrolled Vandla TN
1.0 11.0 1.0 108 . +Partition &]
tPlacement ¢)

ry (GB)

Peaak Meno

133

ow)

Transformer irar:formcr?"?c-f RezNet- 152 WGAN-GP DeepSpeech \ Avg-NoMoE Vanilla S
3.4 Mode +Parowon ©)
*Placement £]

3

head (wrt Tersor

|

Transformer JrarsformerMoE | ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

R Jnbme O- “

Experimem ReSUItS 800 Million parameters

Attention Attention + Mot _— GAN Recurrent Average

e
P]
ff 4
Convoiution Statically unrolled Vandla TN
+Partition = J

= : (1.0 11.0 11.0 108 1F
. : tPlacement ©)

ry (GB)

Q
v
-
2.
»
-
v
>
a.

16 14

|

Transformer TransformerMoE ResNet-152 WGAN.GP DeepSpeech
Model

Avg-NoMoE

Experiment R@SUHS 800 Million parameters

—

Attention Attention + Mot """ GAN Recurrent /
Convolution Statically unrolled Vandla TN
! +Partition =]

- (1.0 11.0 1.0 108 .
. tPlacement «)

ry (GB)

Q
v
-
2.
»
-
>
a.

l-6[l.44
ResNet-152 WGAN.GP DeepSpeech
Model

Transformer TransformerMok Avg-NoMoE

Experiment Results

Attention Attention + Mot

Lonvoiution Vandla T
1.0 : : Il +Partition &]
tPlacement &)

Transformer TransformerMoE ResNet-152 WGAN-GP DeepSpeech \ Avg-NoMoE
Model

Experiment Results

Attention Attention + Mot
Vandla TN
+Partition — J

tPlacement *)

ry (GB)

0
v
-

3
v
-

~

a.

WGAN.GP DeepSpeech Avg-NoMoE

Model

Transformer TransformerMoE ResNet 152

Implementation & Experiment Setup

Application

TensorFlow C++ Core

Grappler Optimizers

Executor

Graph Partition &
Memory Swapping

Scheduling

GraphPartition

Send, Recv nodes

Experiment platform:
32 vCPU cores

64GB memory

1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

e e

i

—

Peak memory: 4 operations

Breath-first traversal

Max. parallelism
Max. memory

W__/

Linearize the graph

No parallelism
Min. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

TensorFlow

el)

=

e —

Peak memory: 4 operations

Breath-first traversal

Max. parallelism
Max. memory

W__/

Linearize the graph

No parallelism
Min. memory

ldea #1: Limit Memory Consumption by Limiting Parallelism

e e i

e

iy

Peak memory: 4 operations

W__/

Ours

TensorFlow

: Partition the graph,
Breath-first traversal

Max. parallelism Parallelism with partitions

| Linearize among partitions

Max. memory

Control parallelism vs. memory

Linearize the graph

No parallelism
Min. memory

ldea #2: Offload GPU Tensors To Host Memory

\ SV"aDOUt Z Swapln /

Transformer Peak memory:

Use MoE as the Feed Forward layer 9.5GB to 6.8GB
12 Moks

32 experts per Mok
2M params per expert
~800M parameters total

ldea #3: Place Persistent Tensors on Host Memory & Send To
GPU Only When Needed

"« O)—O—0O0—0O—O0O—0O0—CO0=
; S

Recv GPU

CPU

W, (Variable)

Transformer w/ MoE Peak memory:
6.8GB to 3.3GB

Implementation & Experiment Setup

Application

TensorFlow C++ Core

Grappler Optimizers

Executor

Graph Partition &
Memory Swapping

Scheduling

GraphPartition

Send, Recv nodes

Experiment platform:
32 vCPU cores

64GB memory

1 GPU per machine
Nvidia TitanX Maxwell
12GB GPU Memory

Exper”nent R@SU“S 800 Million parameters

-
e

', ¥ ~ N Artontinngr b A — f | i 2 7/ Ay » Y >
Attention Attention + N ‘;L_,-’—' GAN rRecurrent AVETdEC

- '
f £ .] d

Convoiution Statically unrolled Vandla T

1.0 1.0 11.0 108 1F +Partition & J

tPlacement &)

y (GB)

p".'i M\"I‘(:'

133

—

l

Transformer irar:formcr?"?c-{ ResNet- 152 WGAN.GP DeepSpeech Avg-NoMoE Vanilla S
3.4 Mode tParowon ©)
*Placement £ !

Fo

nead {wrt Tersor

|

Transformer JransformerMoE | ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

R e Ou “

Experifneﬂt R@SU“S 800 Million parameters

A > 004 m b la . RAn —r . . J R 2
Attention Attention + Mo "G AN Recurrent / AvVerage

Convolution Statically unrolled Vandla TN
1.0 1.0 1.0 108 1. +Partition ¢ !
tPlacement &)

ry (GB)

p"-" M\"l'(:

Transformer TransformerMoE ResNet-152 WGAN-GP [Deepipeech Avg-NoMoE Vanills S
3.4 Mode +Parooon |)

Fo

—

*Placement !

— - —a -

Transformer TrarsformerMoE ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

Runtime Overhead (wrt Tersor

Exper”nent R@SU“S 800 Million parameters

—
e
———

>

A R : AAA " 2 4 s J A is 25
Attention Attention + Mo - GAN Recurrent / AvVerage

Vandla T
;]

Convolution Statically unrolled
1.0 1.0 11.0 10.8 Il +Partition

tPlacement ©)

ry (GB)

Peaak Memo

Transformer TransformerMoE ResNet-152 WGAN-GP DeepSpeech | Avg-NoMoE Vanilla T
34 Mode ¢+ Parouon |]
*Placement —1

Fo

Runtime Overhead {wrt Tersor

Transformer TrarsformerMoE ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

y {GB)

p".'i M\"I‘(:'

Fo

nead {wrt Tersos

R JUntme O- “

Experiment Results gy m

\

Attention Attention + Mo =

Lonvoiution

11.0

llion parameters

-
———

GAN Recurrent /

Statically unrolled
11.0 11.0

10.8

—

Transformer TransformerMoE RezNet-152
34

WGAN.GP DeepSpeech

vg-NoMoE

Transformer TrarsformerMoE ResNet 152

WGAN-GP DeepSpeech

wg-NoMoE

Vandla

+Partition &
tPlacement ©

Vanilla
+Parouon

*Placement !

 S—
)

J

| Sw—— |
| .]

==

Exper”ﬂent ReSUItS 800 Million parameters

———

Ase ’ A A —_ O

Attention Attention + Mo — GAN Recurrent / Average
Convolution Statically unrolled Vandla TN
—

(1.0 11.0 1.0 108 Il +Partition &
tPlacement T—J

y (GB)

p"-'i M("l‘(}'

Transformer TransformerMoE ResNet-152 WGAN.GP DeepSpeech Avg-NoMoE Vanilla S
3.4 Mode +Parowon © J
+Placement

. <

head {wrt Tersos

L
|

Transformer TrarsformerMoE ResNet- 152 WGAN-GP DeepSpeech Avg-NoMoE

Runtme Over

Scaling Model Size

System #Experts / MoE | #Parameters | Throughput
0.24 Billion 19.0

" e w oo oo wd "

a8 ' 258illion | 19

|

|
|
L
|

|
|
|
TensorFlow | 4
- - {
|
|

TensorFlowMem

Transformer w/ MoE
12 Mots, 4M parameters per expert

Scaling Model Size

TensorFlowMem

#Experts / MoE #Parameters 1| Throughput Batch l TQ”SO'HOW‘ | orklo)
4 0.24 Billion 1916
e + ’

19.0 16 | 504 |
48 | 25Billion ! 19 2 | 235 1001

- - —— w e
|

System

|
|
L
|

TensorFlow

o aw @ e e e oo o=

TensorFlowMem

Transformer w/ MoE Maximum ResNet Depth

12 Mots, 4M parameters per expert

Scaling Model Size

System #Experts / MoE | #Parameters | Throughput
4 . 0.24 Billion 19.0
AT n , - |
a8 | 258illion ! 19

|

|
|
{
|

TensorFlow

TensorFlowMem

-— e e - e — ——

Transformer w/ MoE
12 Mots, 4M parameters per expert
| ' |
System | #Machines | #Experts / MoE

TensorFlow : 128

TensorFlow | 208

TensorfFlowMem

TensorFlowMem + Optimized MoE

Distributed Transformer w/ MoE
12 Motks, 2M parameters per expert

Batch | TensorFlow L
16 | 504 : 1916

32 | 235 | 1001

TensorFlowMem
|

Maximum ResNet Depth

#Parameters
3 Billion

- SBillion

6 Billion
12 Billion

Scaling Model Size

System

#Expcrts/MoE; #Parameters | Throughput

4 " 0.24 Billion 19.0
.+ 0 | _
48 " 25Billion ! 19

TensorFlow

TensorFlowMem

- e - — P w——

Transformer w/ MoE
12 Mots, 4M parameters per expert

System #Machines | #Experts / MoE

Batch | TensorFlow
16 | 504 | 1916

32 ! 235 | 1001

TensorFlowMem

Maximum ResNet Depth

#Parameters

TensorFlow 128

3 Billion

TensorFlow ; 208

TensorfFlowMem

TensorFlowMem + Optimized MoE

Distributed Transformer w/ MoE
12 Mots, 2M parameters per expert

5 Billion
6 Billion

12 Billion

Scaling Model Size

System #Experts / MoE #iParameters Throughput Batch TQ”SO'HOW‘ __T?“’S_O_'HOV"'_"A’?_'T‘_ o

19.0 16 | 504 | 1916

- i

|
4 | 0.24 Billion
e +

a8 ' 258illion ! 19 32 | 25 | 1001

TensorFlow

TensorFlowMem

-— e e P w— —

Transformer w/ MoE Maximum ResNet Depth

12 Mots, 4M parameters per expert

#Machines #Experts / MoE | #Parameters
a | 128 I "3 Billion

16 | 208 ! SBillion

4 256 i 6Billion

4 | 512 . 12Billion

System

TensorFlow

TensorfFlow

TensorfFlowMem

TensorFlowMem + Optimized MoE

|
|
)
|
|
1
|
|
|
|
=
|
|

Distributed Transformer w/ MoE
12 Motks, 2M parameters per expert

Scaling Model Size

System #Experts / MoE

|
|
{
|

4 | 0.24 Billion
— |

48 ’ 2.5 Billion

|

TensorFlow

TensorFlowMem

-— e e - e —— -

Transformer w/ MoE
12 Mots, 4M parameters per expert

| |
System | #Machines |
TensorFlow

TensorfFlow

TensorFlowMem

#Parameters

. Throughput Batch | TensorFlow
o0 16 | 504
19 32 | 235

1916
1001

4

Maximum ResNet Depth

#Parameters
3 Billion
 sBillion
6 Billion

#Experts / Mok

TensorFlowMem + Optimized MoE«_;

12 Billion

Distributed Transformer w/ MoE
12 Mots, 2M parameters per expert

e ——

R ————

Partition big tensors

TensorFlowMem

Scaling Model Size

#Parameters | Throughput Ba‘ChTQ”SO’“OW‘ ikt
) silion | 190 16 | 504 1916

- - d e

System #Experts / MoE ; _,_T?'TSQTFIOV"MA'_:_'T‘_
4 . 0.24 Billion
. i Tl

a8 ' 258illion ! 19 32 | 235 | 1001

TensorFlow

-— e - — P w——

TensorFlowMem

Transformer w/ MoE Maximum ResNet Depth

12 Mots, 4M parameters per expert
System E #Macrhines ’; #Experts / Mok #Parameters
3 Billion
208 | Ssilion
TensorFlowMem | 6 Billion
12 Billion

TensorFlow

|

|
._.u._.‘_..---_.,_,_..--_»-~._-4..._q-_—.._-

|

|

TensorfFlow

Distributed Transformer w/ MoE
12 Motks, 2M parameters per expert

Scaling Model Size

#Parameters Throughput _ Batch TO”SO’HOW‘ ' SRS
) : ™ o 190 N 16 | 504 1916

- . - }-

System #Experts / MoE __Tf;nsp_rFIov.'r_/jg_m_ -

|
|
{
|

4 | 0.24 Billion
: o s oo o0 : +

a8 ' 258illion ! 19 32 | 235 | 1001

TensorFlow

-— v e - — P w——

TensorFlowMem

Transformer w/ MoE Maximum ResNet Depth

12 Moks, 4M parameters per expert
System | #Machines | #Experts / MoE #Parameters
N """ "3 illion
' sBillion
6 Billion

12 Billion
R

TensorFlow

TensorfFlow

|
|
|
!

I

TensorFlowMem

"
= |
St Jetaly] LTSk K

-—

TensorFlowMem + Optimized MoE«—_;

Distributed Transformer w/ MoE

: Partmon—big tensors
12 Mots, 2M parameters per expert

Scaling Model Size

TensorfFlow L
19.0 16 | 504 | 1916

= -

System #Experts / MoE _,_T?",S_OTHOV"'_AF'T‘_ B
4 ; 0.24 Billion
- . ' - " - *

48 | 25Bilion ! 19 2 | 235 | 1001

#Parameters | Throughput ~Batch

|
|
\
|

TensorFlow

o e @ e e e e o

TensorFlowMem

Transformer w/ MoE Maximum ResNet Depth

12 Mots, 4M parameters per expert
System #Machines HExperts / MoE | #Parameters
128 ‘ 3 Billion

208 5 Billion
6 Billion

TensorFlow

TensorfFlow

TensorFlowMem

I
4 OIS TERv GESH SRS
|

TensorFlowMem + Optimized MoE | ; | 12 Billion

Distributed Transformer w/ MoE
12 Motkts, 2M parameters per expert

Scaling Model Size

System #Experts / MoE ;
TensorFlow :
; | L
TensorFlowMem

-— v e - . w——

48 2.

Transformer w/ MoE

4 | 0.24 Billion

5 Billion

12 Mots, 4M parameters per expert

|
System

TensorFlow

TensorfFlow

|
|
— _._i.. — -
|
|
|
|

TensorfFlowMem
=l

: #Machines |

4 |
16
4

- e -.J' —— —

#Parameters 1Throughput

19.0
1.9

*

#Experts / MoE
128

256

208

Batch
16
32

TensorFlow
504
235

TensorFlowMem
1916
1001

|

= - i

Maximum ResNet Depth

#Parameters
3 Billion

~ 58illion
6 Billion

TensorFlowMem + Optimized MOEe—i

4

512

12 Billion

Distributed Transformer w/ MoE

12 Mots, 2M parameters per expert

R

Partition big tensors

Recurrent Neural Networks —Scaling Sequence Length

Sequence Length |

TensorFlow

Mozilla DeepSpeech, statically unrolled RNN
Mini-batch size = 128
Time per mini-batch (seconds)

Summary

Summary

- Fine-grained communication

—p——p- Prioritization based on relative magnitude
- - Prioritization based on when values are used

Summary

Fine-grained communication
Prioritization based on relative magnitude
Prioritization based on when values are used

<

| [— Statically analyze memory accesses
Schedule independent computation in parallel

(8
AR

Summary

Fine-grained communication
Prioritization based on relative magnitude
Prioritization based on when values are used

Statically analyze memory accesses
Schedule independent computation in parallel

| S
i

Partitioned computation graph
Leverage cheap host memory

Machine Learning Is Still Fast Advancing

Machine Learning Is Still Fast Advancing

Machine Learning Is Still Fast Advancing

N

O ML Models / Algorithms 7 v
\ CNNs, RNNs, residual, MoE, ~

\c\apsule, etc... S’

: >
D 4
R

N

- 4
_d
4

4

Machine Leaming Is Still Fast Advancing

//v

\ ML Models / Algorithms //

’”

\\ CNNs, RNNs, residual, MoE, ~
N \cwsule etc... //

\ y
N y

/\

Hardware
CPU. GPU, FPGA, ASICs, etc

Machine Learning Is Still Fast Advancing

N - /
. ML Models / Algorithms -
d
\\ CNNs, RNNs, residual, MoE, ~

s’

/

‘-/.

\\caosule, etc... /

-
~
N
.

Systems for ML
pushing the boundaries of many CS disciplines

Hardware
CPU. GPU. FPGA, ASICs, etc

Machine Learning Is Still Fast Advancing

-

\\ . /
\\\ ‘\r\IS‘ i{\.NS: reSIC'uaI. .\il"ot, ’//

/

r/v

/

. capsule, etc... /
N /
- //‘
Ny rd

< Distributed systems

.
N

Compilers

Systems for ML HPC
pushing the boundaries of many CS disciplines

Architecture

Networking

Hardware
CPU. GPU. FPGA, ASICs, etc

Machine Learning Is Still Fast Advancing

\-.

_ ML Models / Algorithms
K -
_\ CNNs, RNNs, residual, MoE,

y /"

" 4
o

\.capsule, etc...

N "4
N 4
N

| Distributed systems
Compilers

Systems for ML HPC
pushing the boundaries of many CS disciplines

Architecture

Networking

Hardware

CPU, GPU, FPGA, ASICs, etc

,»/-

How to support the expanding ML computation?

How to take advantage of new hardware?

Future Directions

Future Directions

Programming support and compilation

Future Directions

Programming support and compilation
New operations, e.g., capsule?

Future Directions

Programming support and compilation
* New operations, e.g., capsule?

' \(‘,r’v' At kO

(¢) Capsule Kernel

Future Directions

Programming support and compilation
* New operations, e.g., capsule?
* New control flow primitives, e.g., functions?

Future Directions

Programming support and compilation

* New operations, e.g., capsule?

* New control flow primitives, e.g., functions?
* New hardware, e.g., ASICs

Future Directions

Programming support and compilation

* New operations, e.g., capsule?

* New control flow primitives, e.g., functions?
* New hardware, e.g., ASICs

Model parallelism

* QOperation partitioning
* Device placement, even dynamic placement for dynamic control flow

Future Directions

Programming support and compilation

* New operations, e.g., capsule?

* New control flow primitives, e.g., functions?
* New hardware, e.g., ASICs

Model parallelism
* QOperation partitioning
* Device placement, even dynamic placement for dynamic control flow

ML-driven optimizations for ML systems
* Complex design space

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Quantization Accuracy

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Quantization Accuracy

Challenges:

1) Scheduling is NP-complete;
2) Best configuration depends on the program and hardware;

3) Techniques are inter-dependent

Example: Fast & Memory-Efficient Deep Learning

Many ways to reduce memory consumption, with different trade-offs

Techniques Trade-off
Scheduling Degree of Parallelism

Gradient checkpointing & Constant folding Computation

Memory swapping & Device placement Communication

Quantization Accuracy

'ChaHenge&

1) Scheduling is NP-complete;
2) Best configuration depends on the program and hardware;

3) Techniques are inter-dependent

@0 Minimize training time subject to memory constraints?

