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Abstract. Ensuring correctness of smart contracts is paramount to
ensuring trust in blockchain-based systems. This paper studies the safety
and security of smart contracts in the Azure Blockchain Workbench, an
enterprise Blockchain-as-a-Service offering from Microsoft. In particular,
we formalize semantic conformance of smart contracts against a state
machine workflow with access-control policy and propose an approach
to reducing semantic conformance checking to safety verification using
program instrumentation. We develop a new Solidity program verifier
VeriSol that is based on translation to Boogie, and have applied it
to analyze all application contracts shipped with the Azure Blockchain
Workbench and found previously unknown bugs in these published smart
contracts. After fixing these bugs, VeriSol was able to successfully
perform full verification for all of these contracts.

1 Introduction

As a decentralized and distributed consensus protocol to maintain and secure
a shared ledger, the blockchain is seen as a disruptive technology with far-
reaching impact on diverse areas. As a result, major cloud platform companies,
including Microsoft, IBM, Amazon, SAP, and Oracle, are offering Blockchain-
as-a-Service (BaaS) solutions, primarily targeting enterprise scenarios, such as
financial services, supply chains, escrow, and consortium governance. A recent
study by Gartner predicts that the business value-add of the blockchain has the
potential to exceed $3.1 trillion by 2030 [3].

Programs running on the blockchain are known as smart contracts. High-
level languages such as Solidity and Serpent have been developed to enable
traditional application developers to author smart contracts. However, since
blockchain transactions are immutable, bugs in smart contract code have dev-
astating consequences, and vulnerabilities in smart contracts have resulted in
several high-profile exploits that undermine trust in the underlying blockchain
technology. For example, the infamous TheDAO exploit [1] resulted in the loss
of almost $60 million worth of Ether, and the Parity Wallet bug caused 169
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million USD worth of ether to be locked forever [5]. The only remedy for these
incidents was to hard-fork the blockchain and revert one of the forks back to the
state before the incident. However, this remedy itself is devastating as it defeats
the core values of blockchain, such as immutability and decentralized trust.

Motivated by the serious consequences of bugs in smart contract code, re-
cent work has studied many types of security bugs such as reentrancy, integer
underflow/overflow, and issues related to delegatecalls on Ethereum. While these
low-level bugs have drawn much attention due to high-visibility incidents on pub-
lic blockchains, we believe that the BaaS infrastructure and enterprise scenarios
bring a set of interesting, yet less well-studied security problems.

In this paper, we present our research on smart contract correctness in the
context of Azure Blockchain, a BaaS solution offered by Microsoft [4]. Specifically,
we focus on a cloud service named Azure Blockchain Workbench (or Workbench
for short) [8, 9]. The Workbench allows an enterprise customer to easily build
and deploy a smart contract application integrating active directory, database,
web UI, blob storage, etc. A customer implements the smart contract application
(that meets the requirements specified in an application policy) and uploads it
onto the Workbench. The code is then deployed to the underlying blockchain
ledger to function as an end-to-end application.

Customer contracts in the Workbench architecture implement complex busi-
ness logic, starting with a high-level finite-state-machine (FSM) workflow policy.
Intuitively, the workflow describes (a) a set of categories of users called roles, (b)
the different states of a contract, and (c) the set of enabled actions (or functions)
at each state restricted to each role. The high-level policy is useful to design
contracts around state machine abstractions as well as specify the required access-
control for the actions. While these state machines offer powerful abstraction
patterns during smart contract design, it is non-trivial to decide whether a given
smart contract faithfully implements the intended FSM. In this paper, we define
semantic conformance checking as the problem of deciding whether a customer
contract correctly implements the underlying workflow policy expressed as an
FSM. Given a Workbench policy π that describes the workflow and a contract C,
our approach first constructs a new contract C′ such that C semantically conforms
to π if and only if C′ does not fail any assertions.

In order to automatically check the correctness of the assertions in a smart
contract, we develop a new verifier called VeriSol for smart contracts written in
Solidity. VeriSol is a general-purpose Solidity verifier and is not tied to Work-
bench. The verifier encodes the semantics of Solidity programs into a low-level
intermediate verification language Boogie and leverages the well-engineered Boo-
gie verification pipeline [15] for both verification and counter-example generation.
In particular, VeriSol takes advantage of existing bounded model checking tool
Corral [24] for Boogie to generate witnesses to assertion violations, and it lever-
ages practical verification condition generators for Boogie to automate correctness
proofs. In addition, VeriSol uses monomial predicate abstraction [17, 22] to
automatically infer so-called contract invariants, which we have found to be
crucial for automatic verification of semantic conformance.
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To evaluate the effectiveness and efficiency of our approach, we have performed
an experiment on all 11 sample applications that are shipped with the Workbench.
In the experiment, we find 4 previously unknown defects in these published smart
contracts, all of which have been confirmed as true bugs by the developers. The
experimental results also demonstrate the practicality of VeriSol in that it
can perform full verification of all the fixed contracts with modest effort; most
notably, VeriSol can automatically verify 10 out of 11 of the fixed versions of
sample smart contracts within 1.7 seconds on average.
Contributions. This paper makes the following contributions:
– We study the safety and security of smart contracts present in Azure Blockchain

Workbench, a BaaS offering.
– We formalize the Workbench application policy language and define the se-
mantic conformance checking problem between a contract and a policy.

– We propose an approach to reducing semantic conformance checking to safety
property verification using program instrumentation.

– We describe a new formal verifier called VeriSol for verifying smart contracts
written in Solidity based on translation to Boogie [13,30].

– We evaluate our approach by verifying semantic conformance on all the sample
application contracts shipped with Workbench, and report previously unknown
bugs that have been confirmed by developers.

2 Overview

In this section, we give an example of a Workbench application policy for a
sample contract and describe our approach for semantic conformance verification.

2.1 Workbench Application Policy

Workbench requires every application to provide a policy (or model) representing
the high-level workflow of the application4. The policy consists of several attributes
such as the application name, a set of roles, as well as a set of workflows.

For example, Figure 1 provides an informal pictorial representation of the pol-
icy for a simple application called HelloBlockchain5. The application consists of
two global roles (see “Application Roles”), namely Requestor and Responder.
Informally, each role represents a set of user addresses and provides access control
or permissions for various actions exposed by the application. We distinguish a
global role from an instance role in that the latter applies to a specific instance
of the workflow. It is expected that the instance roles are always a subset of the
user addresses associated with the global role.

As shown in Figure 1, the simple HelloBlockchain application consists of
a single workflow with two states, namely Request and Respond. The data
members (or fields) include instance role members (Requestor and Responder)
4
https://docs.microsoft.com/en-us/azure/blockchain/workbench/configuration

5 The details can be found on the associated web page: https://github.com/Azure-Samples/
blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/
hello-blockchain

https://docs.microsoft.com/en-us/azure/blockchain/workbench/configuration
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/hello-blockchain
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/hello-blockchain
https://github.com/Azure-Samples/blockchain/tree/master/blockchain-workbench/application-and-smart-contract-samples/hello-blockchain


4 Wang, Lahiri, Chen, Pan, Dillig, Born, Naseer, Ferles

TF: SendResponse

TF: SendRequest

Request Respond

AR: RES

AIR: REQ

  Requestor  (REQ)
   Responder (RES)
 

Application Roles:  Legend
TF: Transition Function

AIR: Allowed Instance Role

AR: Allowed Role

Fig. 1. Workflow policy diagram for HelloBlockchain application.

contract HelloBlockchain {
enum StateType {Request, Respond} // set of states
// list of properties
StateType public State;
address public Requestor;
address public Responder;
string public RequestMessage;
string public ResponseMessage;
// constructor function
function HelloBlockchain(string message) constructor_checker() public {

Requestor = msg.sender;
RequestMessage = message;
State = StateType.Request;

}
// call this function to send a request
function SendRequest(string requestMessage) SendRequest_checker() public {

if (Requestor != msg.sender) revert();
RequestMessage = requestMessage;
State = StateType.Request;

}
// call this function to send a response
function SendResponse(string responseMessage) SendResponse_checker() public {

Responder = msg.sender;
ResponseMessage = responseMessage;
State = StateType.Respond;

}
<modifier definitions>

}

Fig. 2. Solidity contract for HelloBlockchain application.
that range over user addresses. The workflow consists of two actions (or functions)
in addition to the constructor function, SendRequest and SendResponse, both
of which take a string as argument.

A transition in the workflow consists of a start state, an action or function, an
access control list, and a set of successor states. Figure 1 describes two transitions,
one from each of the two states. For example, the application can transition from
Request to Respond if a user belongs to the Responder role (AR) and invokes
the action SendResponse. An “Application Instance Role” (AIR) refers to an
instance role data member of the workflow that stores a member of a global role
(such as Requestor). For instance, the transition from Respond to Request in
Figure 1 uses an AIR and is only allowed if the user address matches the value
stored in the instance data variable Requestor.

2.2 Workbench Application Smart Contract

After specifying the application policy, a user provides a smart contract written in
Solidity to implement the workflow. Figure 2 describes a Solidity smart contract
that implements the HelloBlockchain workflow in the HelloBlockchain appli-
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function nondet() returns (bool); // non-deterministic boolean value

// checker modifiers
modifier constructor_checker() {
_;
assert (nondet() /*global role REQUESTOR*/

==> State == StateType.Request);
}
modifier SendRequest_checker() {
StateType oldState = State;
address oldRequestor = Requestor;
_;
assert ((msg.sender == oldRequestor && oldState == StateType.Respond)

==> State == StateType.Request);
}
modifier SendResponse_checker() {
StateType oldState = State;
_;
assert ((nondet() /*global role RESPONDER*/ && oldState == StateType.Request)

==> State == StateType.Respond);
}

Fig. 3. Modifier definitions for instrumented HelloBlockchain application.

cation. For the purpose of this sub-section, we start by ignoring the portions of
the code that are underlined. The contract declares the data members present
in the configuration as state variables. Each contract implementing a workflow
defines an additional state variable State to track the current state of a workflow.
The contract consists of the constructor along with two other functions defined
in the policy, with matching signatures. The functions set the state variables and
update the state variables appropriately to reflect the state transitions.

Although the smart contract drives the application, the policy is used to
expose the set of enabled actions at each state for a given user. Discrepancies
between the policy and Solidity program can lead to unexpected state transitions.
To ensure the correct functioning and security of the application, it is crucial to
verify that the Solidity program semantically conforms to the application policy.

2.3 Semantic Conformance Verification

Given an application policy and a smart contract, we define the problem of seman-
tic conformance that ensures the smart contract respects the policy (Section 3.2).
Moreover, we reduce the semantic conformance verification problem to check-
ing assertions on an instrumented Solidity program. For the HelloBlockchain
application, the instrumentation is provided by adding the underlined modifier
invocations in Figure 2. A modifier is a Solidity construct that allows wrapping a
function invocation with code that executes before and after the function body.

Figure 3 shows the definition of the modifiers used to instrument for confor-
mance checking. Intuitively, we wrap the constructor and functions with checks
to ensure that they implement the FSM state transitions correctly. For example,
if the FSM transitions from state Respond to state Request upon the invoca-
tion of function SendRequest by a user with instance role Requestor, then we
instrument the definition of SendRequest to ensure that any execution starting
in Respond with instance role Requestor should transition to Request.
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Finally, given the instrumented Solidity program, we discharge the assertions
statically using a new formal verifier for Solidity called VeriSol. The verifier can
find counterexamples (in the form of a sequence of transactions involving calls to
the constructor and public functions) as well as automatically construct proofs
of semantic conformance. Note that, even though the simple HelloBlockchain
example does not contain any unbounded loops or recursion, verifying semantic
conformance still requires reasoning about executions that involve unbounded
numbers of calls to the two public functions. We demonstrate that VeriSol is
able to find deep violations of the conformance property for well-tested Workbench
applications, as well as automatically construct inductive proofs for most of the
application samples shipped with Workbench.

3 Semantic Conformance Checking

In this section, we formalize the Workbench application policy and the semantic
conformance checking problem, and then explain our approach to checking if an
application smart contract is semantically conformant to its policy.

3.1 Formalization of Workbench Application Policies
The Workbench policy for an application allows the user to describe (i) the data
members and actions of an application, (ii) a high-level state-machine view of the
application, and (iii) role-based access control for state transitions. The role-based
access control provides security for deploying smart contracts in an open and
adversarial setting; the high-level state machine naturally captures the essence of
a workflow that progresses between a set of states based on actions of the user.

More formally, a Workbench Application Policy is a pair (R,W) where R is a
set of global roles used for access control, and W is a set of workflows defining
a kind of finite state machine. Specifically, a workflow is defined by a tuple
〈S, s0,Rw,F,F0, ac0, γ〉 where:

– S is a finite set of states, and s0 ∈ S is an initial state
– Rw is a finite set of instance roles of the form (id : t), where id is an identifier

and t is a role drawn from R
– F(id0, . . . , idk) is a set of actions (functions), with F0 denoting an initial

action (constructor)
– ac0 ⊆ R is the initiator role denoting users that can create an instance
– γ ⊆ S × F × (Rw ∪ R) × 2S is a set of transitions. Given a transition τ =

(s, f, ac, S), we write τ.s, τ.f, τ.ac, τ.S to denote the source state s, action f ,
access control ac, and target states S of transition τ , respectively

Intuitively, S defines the different “states” that the contract can be in, and γ
describes which state can transition to what other states by performing certain
actions. The transitions are guarded by roles (either global or instance roles) that
qualify which users are allowed to perform those actions. As mentioned earlier
in Section 2, each “role” corresponds to a set of users (i.e., addresses on the
blockchain). The use of instance roles in the workbench policy allows different
instances of the contract to authorize different users to perform certain actions.
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3.2 Semantic Conformance

Given a contract C and a Workbench application policy π, semantic conformance
between C and π requires that the contract C faithfully implements the policy
specified by π. In this subsection, we first define some syntactic requirements
on the contract, and then formalize what we mean by semantic conformance
between a contract and a policy.
Syntactic conformance. Given a client contract C and a policy π = (R,W), our
syntactic conformance requirement stipulates that the contract for each w ∈ W
implements all the instance state variables as well as definitions for each of the
functions. Additionally, each contract function has a parameter called sender ,
which is a blockchain address that denotes the user or contract invoking this
function. Finally, each contract should contain a state variable sw that ranges
over Sw, for each w ∈ W.
Semantic conformance. We formalize the semantic conformance requirement for
smart contracts using Floyd-Hoare triples of the form {φ} S {ψ} indicating
that any execution of statement S starting in a state satisfying φ results in a
state satisfying ψ (if the execution of S terminates). We can define semantic
conformance between a contract C and a policy π as a set of Hoare triples, one
for each pair (m, s) where m is a method in the contract and s is a state in the
Workbench policy. At a high-level, the idea is simple: we insist that, when a
function is executed along a transition, the resulting state transition should be
in accordance with the Workbench policy.

Given a policy π = (R,W) and workflow w = 〈S, s0,Rw,F,F0, ac0, γ〉 ∈ W,
we can formalize this high-level idea by using the following Hoare triples:

1. Initiation.
{sender ∈ ac0} F0(v1, . . . , vk) {sw = s0}

The Hoare triple states that the creation of an instance of the workflow with
the appropriate access control ac0 results in establishing the initial state.

2. Consecution. Let τ = (s1, f, ac ,S2) be a transition in γ. Then, for each such
transition, semantic conformance requires the following Hoare triple to be
valid:

{sender ∈ ac ∧ sw = s1} f(v1, . . . , vk) {sw ∈ S2}

Here, the precondition checks two facts: First, the sender must satisfy the
access control, and, second, the start state must be s1. The post-condition
asserts that the implementation of method f in the contract results in a state
that is valid according to policy π.

3.3 Instrumentation for Semantic Conformance Checking

As mentioned in Section 2, our approach checks semantic conformance of Solidity
contracts by (a) instrumenting the contract with assertions, and (b) using a
verification tool to check that none of the assertions can fail. We explain our
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instrumentation strategy in this subsection and refer the reader to Section 4 for
a description of our verification tool chain.

Our instrumentation methodology uses the modifier construct in Solidity. A
modifier has syntax similar to a function definition in Solidity with a name and
list of parameters and a body that can refer to parameters and globals in scope.
The general structure of a modifier definition without any parameters is [2]:

modifier Foo() { pre-stmt; _; post-stmt; }

where pre-stmt and post-stmt are Solidity statements. When this modifier is
applied to a function Bar such as

function Bar(int x) Foo() { Bar-stmt; }

the Solidity compiler transforms the body of Bar to execute pre-stmt (resp.
post-stmt) before (resp. after) Bar-stmt. This provides a convenient way to
inject code at multiple return sites from a procedure and can also inject code
before the execution of the constructor.

We now define helper predicates before describing the actual checks. Let
P (ac) be a predicate that encodes the membership of sender in the set ac :

P (ac) .=


false, ac = {}
msg.sender = q, ac = {q ∈ Rw}
nondet(), ac = {r ∈ R}
P (ac1) ∨ P (ac2), ac = ac1 ∪ ac2

Here nondet is a side-effect free Solidity function that returns a non-deterministic
Boolean value at each invocation. For the sake of static verification, one can
declare a function without any definition. This allows us to model the membership
check sender ∈ ac conservatively in the absence of global roles on the blockchain.

We also define a predicate for membership of a contract state in a set of states
S ′ ⊆ S using α(S ′) as follows:

α(S ′) .=

{ false, S ′ = {}
sw = s, S ′ = {s ∈ S}
α(S1) ∨ α(S2), S ′ = S1 ∪ S2

Using these predicates, the source code transformations are defined as below:
Constructor. We add the following modifier to constructors:
modifier constructor_checker() { _; assert (P (ac0)⇒ α({s0})); }

Here, the assertion ensures that the constructor sets up the correct initial state
when executed by a user with access control ac0.
Other functions. For a function g, let γg .= {τ ∈ γ | τ = (s1, g, ac ,S2)} be the set
of all transitions where g is invoked.

modifier g_checker() {
StateType oldState = sw; // copy old State
... // copy old instance role vars
_;
assert

∧
τ∈γg (old (P (τ.ac) ∧ α({τ.s1}))⇒ α(τ.S2));

}



Workflow Verification for Smart Contracts in Azure Blockchain 9

Here, the instrumented code first copies the sw variable and all of the variables
in Rw into corresponding “old” copies. Next, the assertion checks that if the
function is executed in a transition τ , then state transitions to one of the successor
states in τ.S2. The notation old(e) replaces any occurrences of a state variable
(such as sw) with the “old” copy that holds the value at the entry to the function.
As an example, Figure 3 shows the modifier definitions for our running example
HelloBlockchain described in Section 2. Although we show the nondet() to
highlight the issue of global roles, one can safely replace nondet() with true since
the function only appears negatively in any assertion.

4 Formal Verification using VeriSol

In this section, we present our formal verifier called VeriSol for checking the
correctness of assertions in Solidity smart contracts.

4.1 General Methodology

Let C = {λ ~x0.f0, λ ~x1.f1, . . . , λ ~xn.fn} be a smart contract annotated with
assertions where:
– λ ~x0.f0 is the constructor
– λ~xi.fi for i ∈ [1, n] are public functions

Our verification methodology is based on finding a contract invariant I satisfying
the following Hoare triples:
(1) |= {true} f0 {I}
(2) |= {I} fi {I} for all i ∈ [1, n]

Here, the first condition states the contract invariant is established by the
constructor, and the second condition states that I is inductive — i.e., it is
preserved by every public function in C. Note that such a contract invariant
suffices to establish the validity of all assertions in the contract under any possible
sequence of function invocations of the contract. To see why this is the case,
consider a “harness” that invokes the functions in C as in Figure 4.

call f0(*);
while (true) {

if (*) call f1(*); else if (*) ...
else if (*) call fn(*);

}

Fig. 4. Harness for Solidity contracts
This harness first creates an instance of the contract by calling the constructor,

and then repeatedly and non-deterministically invokes one of the public functions
of C. Observe that the Hoare triples (1) and (2) listed above essentially state
that I is an inductive invariant of the loop in this harness; thus, the contract
invariant I overapproximates the state of the contract under any sequence of
the contract’s function invocations. Furthermore, when the functions contain
assertions, the Hoare triple {I} fi {I} can only be proven if I is strong enough
to imply the assertion conditions. Thus, the validity of the Hoare triples in (1)
and (2) establishes correctness under all possible usage patterns of the contract.
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Fig. 5. Schematic workflow of VeriSol.

4.2 Overview

We now describe the design of our tool called VeriSol for checking safety
of smart contracts. VeriSol is based on the proof methodology outlined in
Section 4.1, and its workflow is illustrated in Figure 5. At a high-level, VeriSol
takes as input a Solidity contract C annotated with assertions and yields one of
the following three outcomes:

– Fully verified: This means that the assertions in C are guaranteed not to fail
under any usage scenario.

– Refuted: This indicates that VeriSol finds at least one transaction sequence
of the contract C under which one of the assertions is guaranteed to fail.

– Partially verified: When VeriSol can neither verify nor refute contract cor-
rectness, it performs bounded verification to establish that the contract is safe
up to k transactions. This essentially corresponds to unrolling the “harness”
loop from Figure 4 for k times and then verifying that the assertions do not
fail in the unrolled version.

VeriSol consists of three modules, namely (a) Boogie Translation from a
Solidity program, (b) Invariant Generation to infer a contract invariant as well
as loop invariants and procedure summaries, and (c) Bounded Model Checking to
explore assertion failures within all transactions up to a user-specified depth k.
In what follows, we discuss each of these components in more detail.

4.3 Solidity to Boogie Translation

In this subsection, we formally describe our translation of Solidity source code to
the Boogie intermediate verification language. We start with a brief description
of Solidity and Boogie, and then discuss our translation.
Solidity Language. Figure 6 shows a core subset of Solidity that we use for our
formalization. At a high level, Solidity is a typed object-oriented programming
language with built-in support for basic verification constructs, such as the
require construct for expressing pre-conditions.

Types in our core language include integers, strings, addresses, and contracts.
As is standard, expressions in Solidity include constants, local variables, state vari-
ables (i.e., fields in standard object-oriented language terminology), unary/binary
operators (denoted op), and msg.sender that yields the address of the contract
or user that initiates the current function invocation. Statements in our core
Solidity language include assignments, conditionals, loops, requires, assertions,
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st ∈ SolTypes ::= integer | string | address | C
se ∈ SolExprs ::= c | x | op(se, . . . , se) | msg.sender
sst ∈ SolStmts ::= x := se | sst; sst | require(se) | assert(se)

| if (se) {sst} else {sst} | while (se) do {sst}
| se := f(~se) | se := se.f(~se) | se := new C(~se)

Fig. 6. A subset of Solidity language. C denotes a contract and f denotes a function.

bbt ∈ BoogieElemTypes ::= int | Ref bt ∈ BoogieTypes ::= bbt | [bbt]bt
e ∈ Exprs ::= c | x | op(e, . . . , e) | uf(e, . . . , e) | x[e] | ∀i : bbt :: e
st ∈ Stmts ::= skip | havoc x | x := e | x[e] := e

| assume e | assert e | if (e) {st} else {st}
| st; st | while (e) do {st} | call ~x := f(e, . . . , e)

Fig. 7. A subset of Boogie language.

internal and external function calls, and contract instance creation6. Solidity dif-
ferentiates between two types of function calls: internal and external. An internal
call se := f(~se) invokes the function f and keeps msg.sender unchanged. An
external call se := se0.f(~se) invokes function f in the contract instance pointed by
se0 (which may include this), and uses this as the msg.sender for the callee.
Boogie Language. Since our goal is to translate Solidity to Boogie, we also
give a brief overview of the Boogie intermediate verification language. As shown
in Figure 7, types in Boogie include integers (int), references (Ref), and ar-
rays/maps. Expressions (Exprs) consist of constants, variables, arithmetic and
logical operators (op), uninterpreted functions (uf), map lookups, and quan-
tified expressions. Statements (Stmts) in Boogie consist of skip, variable and
map assignment, sequential composition, conditionals, and loops. The havoc x
statement assigns an arbitrary value of appropriate type to a variable x. A pro-
cedure call (call ~x := f(e, . . . , e)) returns a vector of values that can be stored
in local variables. The assert and assume statements behave as no-ops when
their arguments evaluate to true and terminate execution otherwise. An assertion
failure is considered as a failing execution, whereas an assumption failure blocks.
From Solidity to Boogie types. We define a function µ : SolTypes →
BoogieTypes that translates a Solidity type to a type in Boogie as follows:

µ(st) .=
{

int, st ∈ {integer , string}
Ref , st ∈ {address} ∪ ContractNames

Specifically, we translate Solidity integers and strings to Boogie integers; addresses,
and contract names to Boogie references. Note that we represent Solidity strings
as integers in Boogie because Solidity only allows equality checks on strings.
From Solidity to Boogie expressions. We present our translation from Solid-
ity to Boogie expressions using judgments of the form ` e ↪→ χ in Figure 8, where
e is a Solidity expression and χ is the corresponding Boogie expression. While
Solidity local variables and the expression msg.sender are mapped directly into
6 We omit several aspects of the language such as arrays and mappings due to space
limit. More details can be found in the extended version of this paper [30].
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x ∈ LocalVars
` x ↪→ x (Var1) x ∈ StateVars(C)

` x ↪→ xC [this] (Var2)

Type(c) 6= string
` c ↪→ c

(Const1) Type(c) = string c′ = Hash(c)
` c ↪→ StrToInt(c′) (Const2)

v = sender
` msg.sender ↪→ v

(Sender) ` ei ↪→ χi i = 1, . . . , n
` op(e1, . . . , en) ↪→ op(χ1, . . . , χn) (Op)

Fig. 8. Inference rules for encoding Solidity expressions to Boogie expressions. Type(e)
is a function that returns the static type of Solidity expression e.

Boogie local variables and parameters respectively, state variables in Solidity are
translated into map lookups. Specifically, for each state variable x in contract
C, we introduce a mapping xC from contract instances to the value stored in its
state variable x. Thus, reads from state variable x are modeled as xC [this] in
Boogie. Next, we translate string constants in Solidity to Boogie integers using
an uninterpreted function called StrToInt that is applied to a hash of the string7.
As mentioned earlier, this string-to-integer translation does not cause imprecision
because Solidity only allows equality checks between variables of type string.
From Solidity to Boogie statements. Figure 9 presents the translation from
Solidity to Boogie statements using judgments of the form ` s ω indicating
that Solidity statement s is translated to Boogie statement ω. Since most rules in
Figure 9 are self-explanatory, we only explain our translation for function calls.
Functions in Solidity have two implicit parameters, namely this for the receiver
object and msg.sender for the Blockchain address of the caller. Thus, when
translating Solidity calls to their corresponding Boogie version, we explicitly
pass these parameters in the Boogie version. However, recall that the value
of the implicit msg.sender parameter varies depending on whether the call is
external or internal. For internal calls, msg.sender remains unchanged, whereas
for external calls, msg.sender becomes the current receiver object. For both
types of calls, our translation introduces a conditional statement to deal with
dynamic dispatch. Specifically, our Boogie encoding introduces a map τ to store
the dynamic type of receiver objects at allocation sites, and the translation of
function calls invokes the correct version of the method based on the content of
τ for the receiver object. In the case of contract creation (labeled NewCont in
Figure 9), the Boogie code we generate updates the τ map mentioned previously
in addition to allocating new memory. Specifically, using the global auxiliary
Alloc map to indicate whether a reference is allocated or not, we obtain a freshly
allocated reference v. Then we initialize τ [v] to be C and also call C’s constructor
as required by Solidity semantics.

4.4 Invariant Generation

As mentioned earlier, translating Solidity code into Boogie allows VeriSol to
leverage the existing ecosystem around Boogie, including efficient verification
7 We assume that the hash function is collision-free. In our implementation, we enforce
this by keeping a mapping from each string constant to a counter.
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` e ↪→ χ

` require(e) assume χ (Req) ` e ↪→ χ

` assert(e) assert χ (Asrt)

` s1  ω1 ` s2  ω2

` s1; s2  ω1;ω2
(Seq)

` e ↪→ χ ` s1  ω1 ` s2  ω2

` if (e) {s1} else {s2} if (χ) {ω1} else {ω2}
(Cond)

` e1 ↪→ χ1 ` e2 ↪→ χ2

` e1 := e2  χ1 := χ2
(Asgn) ` e ↪→ χ ` s ω

` while (e) do {s} while (χ) do {ω} (Loop)

` er ↪→ χr ` ei ↪→ χi i = 1, . . . , n fresh v Cj <: Type(this) j = 1, . . . ,m
ω≡if (τ [this] = C1) {call v := fC1 (this, χ1, . . . , χn, sender); χr := v} else if . . .

else if (τ [this] = Cm) {call v := fCm (this, χ1, . . . , χn, sender); χr := v}
` er := f(e1, . . . , en) ω

(ICall)

` er ↪→ χr ` ei ↪→ χi i = 0, . . . , n fresh v Cj <: Type(e0) j = 1, . . . ,m
ω≡if (τ [χ0] = C1) {call v := fC1 (χ0, χ1, . . . , χn, this); χr := v} else if . . .

else if (τ [χ0] = Cm) {call v := fCm (χ0, χ1, . . . , χn, this); χr := v}
` er := e0.f(e1, . . . , en) ω

(ECall)

` er ↪→ χr ` ei ↪→ χi i = 1, . . . , n fresh v
ω ≡ havoc v; assume ¬Alloc[v]; Alloc[v] := true;

assume τ [v] = C; call fC0 (v, χ1, . . . , χn, this); χr := v

` er := new C(e1, . . . , en) ω
(NewCont)

Fig. 9. Inference rules for encoding Solidity statements to Boogie statements. Type(e)
is a function that returns the static type of Solidity expression e. Symbol fC denotes
the function f in contract C, and fC0 denotes the constructor of contract C. The <:
relation represents the sub-typing relationship.

condition generation [25]. However, in order to completely automate verification
(even for loop and recursion-free contracts), we still need to infer a suitable
contract invariant as discussed in Section 4.2.

VeriSol uses monomial predicate abstraction [17, 22, 23] to automatically
infer contract invariants. Specifically, the inference algorithm conjectures the
conjunction of all candidate predicates as an inductive invariant and progressively
weakens it based on failure to prove a candidate predicate inductive. This algo-
rithm converges fairly fast even on large examples but relies on starting with a
superset of necessary predicates. In the current implementation of VeriSol, we
obtain candidate invariants by instantiating the predicate template e1 ./ e2 where
./ is either equality or disequality. Here, expressions e1, e2 can be instantiated
with variables corresponding to roles and states in the Workbench policy as well
as constants. We have found these candidate predicates to be sufficiently general
for automatically verifying semantic conformance of most Workbench contracts;
however, additional predicates may be required for other types of contracts.

4.5 Bounded Model Checking

If VeriSol fails to verify contract correctness using monomial predicate abstrac-
tion, it employs an assertion-directed bounded verifier, namely Corral [24], to
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Name Description Orig Inst Init After Time
SLOC SLOC Stat Fix (s)

AssetTransfer Selling high-value assets 192 444 × X 2.1
BasicProvenance Keeping record of ownership 43 95 X X 1.5
BazaarItemListing Multiple workflow scenario for selling items 98 175 × X 2.3
DefectCompCounter Product counting for manufacturers 31 68 X X 1.3
DigitalLocker Sharing digitally locked files 129 260 × X 1.7
FreqFlyerRewards Calculating frequent flyer rewards 47 90 X X 1.3
HelloBlockchain Request and response (Figure 1) 32 78 X X 1.3
PingPongGame Multiple workflow for two-player games 74 136 × M 2.1
RefrigTransport Provenance scenario with IoT monitoring 118 187 X X 2.2
RoomThermostat Thermostat installation and use 42 99 X X 1.3
SimpleMarketplace Owner and buyer transactions 62 118 X X 1.4

Average - 79 159 - - 1.7

Table 1. Experimental results. X denotes fully verified, × denotes refuted, and M
denotes fully verified with manual effort.

look for a transaction sequence leading to an assertion violation. Corral analyzes
the harness in Figure 4 by unrolling the loop k times and uses a combination of
abstraction refinement techniques (including lazy inlining of nested procedures)
to look for counterexamples in a scalable manner. Thus, when VeriSol fails to
verify the property, it either successfully finds a counterexample or verifies the
lack of any counterexample with k transactions.

5 Evaluation

In this section, we evaluate the effectiveness and efficiency of our approach
to checking semantic conformance against Workbench application policies. All
experiments are conducted on a machine with Intel Xeon(R) E5-1620 v3 CPU
and 32GB of physical memory, running the Ubuntu 14.04 operating system.
Benchmarks. We have collected all sample smart contracts that are shipped
with Workbench and their corresponding application policies on the Github
repository of Azure Blockchain [6]. These smart contracts and their policies
depict various workflow scenarios that are representative in real-world enterprise
use cases. The smart contracts exercise various features of Solidity such as
arrays, nested contract creation, external calls, enum types, and mutual recursion.
For each smart contract C and its application policy π, we perform program
instrumentation as explained in Section 3.3 to obtain contract C′. Note that no
assertion failure of C′ is equivalent to the semantic conformance between C and
π, so we include such instrumented smart contracts in our benchmark set.
Main Results. Table 1 summarizes the results of our experimental evaluation.
Here, the “Description” column describes the contract’s usage scenario. The
next two columns give the number of lines of Solidity code before and after the
instrumentation described in Section 3.3. The last three columns present the
main verification results: In particular, “Init Stat” shows the result of applying
VeriSol on the original smart contract, and “After Fix” presents the result
of VeriSol after we manually fix the bug (if any). Finally, “Time” shows the
running time of VeriSol in seconds when applied to the fixed contracts.

Our experimental results demonstrate that VeriSol is useful for checking se-
mantic conformance between Workbench contracts and the policies. In particular,
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VeriSol finds bugs in 4 out of 11 well-tested contracts and precisely pinpoints
the trace leading to the violation. Our results also demonstrate that VeriSol can
effectively automate semantic conformance proofs, as it can successfully verify all
the contracts after fixing the original bug. Moreover, for 10 out of the 11 contracts,
the invariant inference techniques sufficed to make the proofs completely push-
button. Our candidate templates for contract invariant did not suffice for the
PingPongGame contract mainly due to the presence of mutually recursive functions
between two contracts. This required us to manually provide a function summary
for the mutually recursive procedures that states an invariant over the state vari-
able sw of the sender contract (e.g. sw[msg.sender] = s1 ∨ sw[msg.sender] = s2
where si are states of the sender contract). This illustrates that we can achieve the
power of the sound Boogie modular verification to perform non-trivial proofs with
modest manual overhead. We are currently working on extending the templates
for contract invariant inference to richer templates for inferring postconditions
for recursive procedures.
Bug Analysis. The four bugs found by VeriSol can be categorized into two
classes: (i) incorrect state transition, and (ii) incorrect initial state. We briefly
discuss these two classes of bugs.
Incorrect state transition. This class of bugs arises when the implementation of a
function in the contract violates the state transition stated by the policy. VeriSol
has found such non-conformance in the AssetTransfer and PingPongGame con-
tracts. Let us consider AssetTransfer [7] as a concrete example. In this con-
tract, actions are guarded by the membership of msg.sender within one of
the roles or instance role variables. VeriSol found the transition from state
BuyerAccepted to state Accepted in the Accept function had no matching transi-
tions in the policy. Specifically, the policy allows a transition from BuyerAccepted
to SellerAccepted when invoking the function Accept and msg.sender equals
the instance role variable InstanceOwner. However, the implementation of func-
tion Accept transitions to the state Accepted instead of SellerAccepted. From
the perspective of the bounded verifier, this is a fairly deep bug, as it requires at
least 6 transactions to reach the state BuyerAccepted from the initial state.
Incorrect initial state. This class of bugs arises when the initial state of a smart con-
tract is not established as instructed by the corresponding policy. We have found
such non-conformance in DigitalLocker and BazaarItemListing. For instance,
the policy of DigitalLocker requires the initial state to be Requested, but the
implementation ends up incorrectly setting the initial state to DocumentReview.
In the BazaarItemListing benchmark, the developer fails to set the initial state
of the contract despite the policy requiring it to be set to ItemAvailable.

6 Related Work

In this section, we discuss prior work on ensuring the safety and security of smart
contracts. Existing techniques can be roughly categorized into several categories,
including static approaches for finding vulnerable patterns, formal verification
techniques, and runtime checking. In addition, there has been work on formalizing
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the semantics of EVM in a formal language such as the K Framework [20]. There
are also several works that discuss a survey and taxonomy of vulnerabilities in
smart contracts [14,26,28].
Static analysis. The static analysis tools are based on a choice of data-flow
analysis or symbolic execution to find variants of known vulnerable patterns. Such
patterns include reentrancy, transaction ordering dependencies, sending ether to
unconstrained addresses, use of block time-stamps, mishandled exceptions, calling
suicide on an unconstrained address, etc. Tools based on symbolic execution
include Oyente [26], MAIAN [28], Manticore [10], and Mythril++ [11]. Several
data-flow based tools also exist such as Securify [29] and Slither [12]. MadMax [18]
uses static analysis to find vulnerabilities related to out-of-gas exceptions. These
tools neither check semantic conformance nor verify assertions. Instead, they
mostly find instances of known vulnerable patterns. On the other hand, VeriSol
does not reason about gas consumption since it analyzes Solidity code, and it
also needs the vulnerabilities to be expressed as formal specifications.
Formal verification. F* [16] and Zeus [21] use formal verification for checking
correctness of smart contracts. These approaches translate Solidity to the formal
verification languages of F* and LLVM respectively and then apply F*-based
verifiers and constrained horn clause solvers to check the correctness of the
translated program. Although the F* based approach is fairly expressive, the
tool only covers a small subset of Solidity without loops and requires substantial
user guidance to discharge proofs of user-specified assertions. The design of Zeus
shares similarities with VeriSol in that it translates Solidity to an intermediate
language and uses SMT based solvers to discharge the verification problem.
However, one of the key contributions of this paper is the semantic conformance
checking problem for smart contracts, which Zeus does not address. Unfortunately,
we were unable to obtain a copy of Zeus, making it difficult for us to perform an
experimental comparison for discharging assertions in Solidity code.
Other approaches. In addition to static analyzers and formal verification tools,
there are also other approaches that enforce safe reentrancy patterns at runtime
by borrowing ideas from linearizability [19]. Another related work is FSolidM [27],
which provides an approach to specify smart contracts using a finite state machine
with actions written in Solidity. Although there is a similarity in their state
machine model with our Workbench policies, they do not consider access control,
and the actions do not have nested procedure calls or loops. Finally, the FSolidM
tool does not provide any static or dynamic verification support.

7 Conclusion

In this work, we described one of the first uses of automated formal verification for
smart contracts in an industrial setting. We formalized the semantic conformance
checking problem between Workbench contracts and application policies, and
proposed to use program instrumentation to enforce such policies. We also
developed a new verifier VeriSol using the Boogie tool chain and demonstrated
its effectiveness and efficiency for smart contract verification and bug-finding.
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