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ABSTRACT:

In this paper we review current state-of-the-art in 3D point cloud classification, present a new 3D point cloud classification benchmark
data set of single scans with over four billion manually labelled points, and discuss first available results on the benchmark. Much
of the stunning recent progress in 2D image interpretation can be attributed to the availability of large amounts of training data,
which have enabled the (supervised) learning of deep neural networks. With the data set presented in this paper, we aim to boost the
performance of CNNs also for 3D point cloud labelling. Our hope is that this will lead to a breakthrough of deep learning also for
3D (geo-)data. The semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains 8
semantic classes and covers a wide range of urban outdoor scenes, including churches, streets, railroad tracks, squares, villages, soccer
fields and castles. We describe our labelling interface and show that, compared to those already available to the research community,
our data set provides denser and more complete point clouds, with a much higher overall number of labelled points. We further
provide descriptions of baseline methods and of the first independent submissions, which are indeed based on CNNs, and already show
remarkable improvements over prior art. We hope that semantic3D.net will pave the way for deep learning in 3D point cloud analysis,
and for 3D representation learning in general.

1. INTRODUCTION

Neural networks have made a spectacular comeback in image
analysis since the seminal paper of (Krizhevsky et al., 2012),
which revives earlier work of (Fukushima, 1980, LeCun et al.,
1989). Especially deep convolutional neural networks (CNNs)
have quickly become the core technique for a whole range of
learning-based image analysis tasks. The large majority of state-
of-the-art methods in computer vision and machine learning now
include CNNs as one of their essential components. Their suc-
cess for image-interpretation tasks is mainly due to (i) easily par-
allelisable network architectures that facilitate training from mil-
lions of images on a single GPU and (ii) the availability of huge
public benchmark data sets like ImageNet (Deng et al., 2009,
Russakovsky et al., 2015) and Pascal VOC (Everingham et al.,
2010) for rgb images, or SUN RGB-D (Song et al., 2015) for rgb-
d data.

While CNNs have been a great success story for image interpre-
tation, they have not yet made a comparable impact for 3D point
cloud interpretation. What makes supervised learning hard for
3D point clouds is the sheer size of millions of points per data
set, and the irregular, not grid-aligned, and in places very sparse
distribution of the data, with strongly varying point density (Fig-
ure 1).

While recording point clouds is nowadays straight-forward, the
main bottleneck is to generate enough manually labeled training
data, needed for contemporary (deep) machine learning to learn
good models, that generalize well across new, unseen scenes.
Due to the additional dimension, the number of classifier param-
eters is larger in 3D space than in 2D, and specific 3D effects like
occlusion or variations in point density lead to many different
patterns for identical output classes. This makes it harder to train
good classifiers, so it can be expected that even more training data
that in 2D is needed1. In contrast to images, which are fairly easy
to annotate even for untrained users, 3D point clouds are harder

1The number of 3D points of semantic3d.net (4 × 109 points) is at
the same scale as the number of pixels of the SUN RGB-D benchmark (≈
3.3× 109 px) (Song et al., 2015), which aims at 3D object classification.

to interpret. Navigation in 3D is more time-consuming and the
strongly varying point density aggravates scene interpretation.

Figure 1: Example point cloud from the benchmark dataset,
where colours indicate class labels.

In order to accelerate the development of powerful algorithms for
point cloud processing2, we provide the (to our knowledge) hith-
erto largest collection of individual, non-overlapping terrestrial
laser scans with point-level semantic ground truth annotation. In
total, it consists of over 4 · 109 points, labelled into 8 classes.
The data set is split into training and test sets of approximately
equal size, without any overlap between train and test scenes. The
scans are challenging, not only due to their realistic size of up to
≈ 4 · 108 points per scan, but also because of their high angu-
lar resolution and long measurement range, leading to extreme
density changes and large occlusions. For convenient use of the
benchmark, we provide not only freely available data and ground
truth, but also an automated online submission system, as well as

However, the number of 3D points per laser scan (≈ 4 × 108 points),
and thus the variability in point density, object scale etc. is considerably
larger than the number of pixels per image (≈ 4× 105 px).

2Note that, besides laser scanner point clouds, it is also sometimes
preferred to classify point clouds generated via structure-from-motion di-
rectly instead of going back to the individual images and then merging
the results (Riemenschneider et al., 2014).



evaluation tables for the submitted methods. The benchmark also
includes baselines, both for the conventional pipeline consisting
of eigenvalue-based feature extraction at multiple scales followed
by classification with a random forest, and for a basic deep learn-
ing approach. Moreover, we briefly discuss the first submissions
to the benchmark, which so far all employ deep learning. This
article is an extended version of the conference paper (Hackel et
al., 2017). Here, we add a more thorough review of related work,
with emphasis on the most recent 3D-CNN methods. We also
provide descriptions of the two latest CNN-based submissions,
which lead the comparison by a significant margin, and seem to
confirm that, also for point cloud anaysis, deep learning is the
most powerful technology developed to date.

2. RELATED WORK

Here, we first review traditional methods for point cloud segmen-
tation before discussing novel deep learning-based methods for
this task. Finally, we review existing benchmark activities and
motivate the introduction of our new 3D point cloud benchmark
for semantic segmentation.

2.1 Point cloud segmentation

Early work on semantic point cloud segmentation transformed
the points (recorded from airborne platforms) into other represen-
tations such as regular raster height maps, in order to simplify the
problem and benefit from the comprehensive toolbox of image
processing functions (Hug and Wehr, 1997, Maas, 1999, Haala
et al., 1998, Rottensteiner and Briese, 2002, Lodha et al., 2006).
Much of the pioneering work on true 3D (i.e., not 2.5D) point
cloud processing was developed to guide autonomous outdoor
robots (Vandapel et al., 2004, Manduchi et al., 2005, Montemerlo
and Thrun, 2006, Lalonde et al., 2006, Munoz et al., 2009b) that
rely on laser scanners to acquire data of their surroundings.

In general, it is advantageous if scene interpretation directly oper-
ates on 3D points, both for aerial (Charaniya et al., 2004, Chehata
et al., 2009, Niemeyer et al., 2011, Yao et al., 2011, Lafarge and
Mallet, 2011, Lafarge and Mallet, 2012, Niemeyer et al., 2014,
Yan et al., 2015) and for terrestrial data (Brodu and Lague, 2012,
Weinmann et al., 2013, Dohan et al., 2015). Full 3D process-
ing can handle data which cannot be reduced to height maps in
a straight-forward manner, in particular terrestrial data generated
from multiple scan positions, and mobile mapping data.

Training a good model requires an expressive feature set. A large
number of 3D point descriptors has been developed, which typ-
ically encode geometric properties within the point’s neighbor-
hood, like surface normal orientation, surface curvature, e.t.c..
Popular descriptors are for example spin images (Johnson and
Hebert, 1999), fast point feature histograms (FPFH) (Rusu et
al., 2009) and signatures of histograms (SHOT) (Tombari et al.,
2010). One drawback of these rich descriptors is their high com-
putational cost. While computation time is not an issue for small
point sets (e.g., sparse key points), it is a crucial bottleneck when
all points in a large point cloud shall be classified. A faster alter-
native – again for range images rather than true 3D point clouds
– is the NARF operator, which is popular for key point extraction
and description in the robotics community (Steder et al., 2010,
Steder et al., 2011). In order to achieve robustness against view-
point changes, it explicitly models object contour information.
A computationally cheaper alternative for full 3D point data are
features derived from the 3D structure tensor of a point’s neigh-
bourhood (Demantké et al., 2011), and from the point distribu-
tion in oriented (usually vertical) cylinders (Monnier et al., 2012,
Weinmann et al., 2013).

2.2 Deep learning for point cloud annotation

Neural networks (usually of the deep, convolutional network flavour)
offer the possibility to completely avoid heuristic feature design
and feature selection. They are at present immensely popular in
2D image interpretation. Recently, deep learning pipelines have
been adapted to voxel grids (Lai et al., 2014, Wu et al., 2015, Mat-
urana and Scherer, 2015) and RGB-D images (Song and Xiao,
2016), too. Being completely data-driven, these techniques have
the ability to capture appearance (intensity) patterns as well as
geometric object properties. Moreover, their multi-layered, hi-
erarchical architecture has the ability to encode a large amount
of contextual information. Deep learning in 3D has been pro-
posed for a variety of applications in robotics, computer graphics,
and computer vision. To the best of our knowledge, the earliest
attempt that applies a 3D-CNNs on a voxel grid is (Prokhorov,
2010). The author classifies objects in LiDAR point clouds and
improves classification accuracy despite limited amount of train-
ing data, by combining supervised and unsupervised training.
More recent 3D-CNNs that operates on voxel grids include (Mat-
urana and Scherer, 2015) for landing zone detection in 3D LiDAR
point clouds, (Wu et al., 2015) for learning representations of 3D
object shapes, and (Huang and You, 2016) to densely label Li-
DAR point clouds into 7 different object categories. A general
drawback when directly applying 3D-CNNs to dense voxel grids
derived from originally sparse point clouds is the huge memory
overhead for encoding empty space. Computational complexity
grows cubically with respect to voxel grid resolution, although
high detail would only be needed at object surfaces.

Therefore, more recent 3D-CNNs exploit the sparsity commonly
found in voxel grids. One strategy is to resort to an octree rep-
resentation, where empty space (and potentially also large, geo-
metrically simple object parts) are represented at coarser scales
than object details (Riegler et al., 2017, Engelcke et al., 2017,
Tatarchenko et al., 2017). Since the octree partitioning is a func-
tion of the object at hand, an important question is how to auto-
matically adapt to new, previously unseen objects at test time.
While (Riegler et al., 2017) assume the octree structure to be
known at test time, (Tatarchenko et al., 2017) learn to predict
the octree structure together with the labels. This allows general-
ization to unseen instances of a learned object category, without
injecting additional prior knowledge.

Another strategy is to rely only on a small subset of the most dis-
criminative points, while neglecting the large majority of less in-
formative ones (Li et al., 2016, Qi et al., 2017a, Qi et al., 2017b).
The idea is that the network learns how to select the most infor-
mative points from training data and aggregates information into
global descriptors for object shapes via fully-connected layers.
This allows for both shape classification and per-point labeling,
while using only a small subset of points, resulting in significant
speed and memory gains.

2.3 Benchmark initiatives for point clouds

Benchmarking efforts have a long tradition in the geospatial data
community and particularly in ISPRS. Recent efforts include,
for example, the ISPRS-EuroSDR benchmark on High Density
Aerial Image Matching3 that evaluates dense matching methods
for oblique aerial images (Haala, 2013, Cavegn et al., 2014) and
the ISPRS Benchmark Test on Urban Object Detection and Re-
construction, which contains several different challenges like se-
mantic segmentation of aerial images and 3D object reconstruc-
tion (Rottensteiner et al., 2013, Rottensteiner et al., 2014).

3http://www.ifp.uni-stuttgart.de/ISPRS-EuroSDR/

ImageMatching/index.en.html



In computer vision, very large benchmark datasets with millions
of images have become standard for learning-based image in-
terpretation. A variety of datasets have been introduced, many
tailored for specific tasks, some serving as basis for annual chal-
lenges for several consecutive years (e.g., ImageNet, Pascal VOC).
Datasets that aim at boosting research in image classification and
object detection heavily rely on images downloaded from the in-
ternet. Web-based imagery has been a major driver of bench-
marks because no expensive, dedicated photography campaigns
have to be accomplished for dataset generation. This makes it
possible to scale benchmarks from hundreds to millions of im-
ages, although often weakly annotated and with a considerable
amount of label noise, that has to be taken into account when
working with the data. Additionally, one can assume that internet
images constitute a very general collection of images with less
bias towards particular sensors, scenes, countries, objects etc..
This mitigates overfitting, and enables the training of rich, high-
capacity models that nevertheless generalize well.

One of the first successful attempts to object detection in im-
ages at very large scale is tinyimages4 with over 80 million small
(32 × 32 px) images (Torralba et al., 2008). A milestone and
still widely used dataset for semantic image segmentation is the
famous Pascal VOC5 dataset and challenge (Everingham et al.,
2010), which has been used for training and testing many of the
well-known, state-of-the-art algorithms today like (Long et al.,
2015, Badrinarayanan et al., 2017). Another, more recent dataset
is MSCOCO6, which contains 300,000 images with annotations
that allow for object segmentation, object recognition in context,
and image captioning. One of the most popular benchmarks in
computer vision today is ImageNet7 (Deng et al., 2009, Rus-
sakovsky et al., 2015), which made Convolutional Neural Net-
works popular in computer vision (Krizhevsky et al., 2012). It
contains > 14× 106 images organized according to the semantic
WordNet hierarchy8, where words are grouped into sets of cogni-
tive synonyms.

The introduction of the popular, low-cost range sensor Microsoft
Kinect gave rise to several large rgb-d image databases. Popu-
lar examples are the NYU Depth Dataset V29 (Silberman et al.,
2012) and SUN RGB-D10 (Song et al., 2015) that provide labeled
rgb-d images for object segmentation and scene understanding.
Compared to laser scanners, low-cost, structured-light rgb-d sen-
sors have much shorter measurement range, lower resolution, and
work poorly outdoors, due to interference of the sunlight with the
projected infrared pattern.

To the best of our knowledge, no publicly available dataset with
laser scans at the scale of the aforementioned vision benchmarks
exists today. Thus, many recent Convolutional Neural Networks
that are designed for Voxel Grids (Brock et al., 2016, Wu et al.,
2015) resort to artificially generated data from the CAD models
of ModelNet (Wu et al., 2015), a rather small, synthetic dataset.
As a consequence, recent ensemble methods, e.g., (Brock et al.,
2016), reach performance of over 97% on ModelNet10, which
clearly indicates that the dataset is either too easy, or too small
and already significantly overfitted.

Those few existing laser scan datasets are mostly acquired with
mobile mapping devices or robots like DUT1 (Zhuang et al., 2015a),

4http://groups.csail.mit.edu/vision/TinyImages/
5http://host.robots.ox.ac.uk/pascal/VOC/
6http://mscoco.org/
7http://www.image-net.org
8https://wordnet.princeton.edu/
9http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.

html
10http://rgbd.cs.princeton.edu

DUT2 (Zhuang et al., 2015b), or KAIST (Choe et al., 2013),
which are small (< 107 points) and not publicly available. Pub-
lic laser scan datasets include Oakland (Munoz et al., 2009a)
(< 2 × 106 points), the Sydney Urban Objects (De Deuge et al.,
2013), Paris-rue-Madame (Serna et al., 2014) and data from the
IQmulus & TerraMobilita Contest (Vallet et al., 2015). All have
in common that they use 3D LIDAR data from mobile mapping
vehicles, which provides a much lower point density than static
scans, like ours. They are also relatively small and localised, and
thus prone to overfitting. The majority of today’s available point
cloud datasets comes without a thorough, transparent evaluation
that is publicly available on the internet, continuously updated
and that lists all submissions to the benchmark.

With the semantic3D.net benchmark presented in this paper, we
attempt to close this gap. It provides a much larger labelled 3D
point cloud data set with approximately four billion hand-labeled
points, comes with a sound evaluation, and continuously updates
submissions. It is the first dataset that allows fully-fledged deep
learning on real 3D laser scans, with high-quality, per-point su-
pervision.

3. DATA

Our 30 published individual, non-overlapping terrestrial laser scans
consist of in total ≈ 4 billion 3D points. Although we would
have many more scans that overlap largely with the ones in our
benchmark data set and would facilitate co-registration for large
scenes, we prefer to keep this for a later extension. The main
reason for publishing only individual scans is the huge size per
scan (2.72 GB for the largest scan). For the same reason, we did
not record multiple echoes per pulse. The data set is split into 15
scans for training that come with labels and 15 scans for testing,
where labels are not publicly released and kept by the organiz-
ers (see parameters in Tab. 1 & 2). Submitted results on the test
set are evaluated completely automatically on the server and re-
peated submissions are limited to discourage overfitting on the
test set. Train and test data sets are always from different scenes
to avoid biasing classifiers and ensure that we verify generaliza-
tion capability. The data set contains urban and rural scenes,
like farms, town halls, sport fields, a castle and market squares.
We intentionally selected various different natural and man-made
scenes to prevent overfitting of the classifiers. All of the pub-
lished scenes were captured in Central Europe and depict urban
or rural European architecture, as shown in Figure 2. Surveying-
grade laser scanners were used for recording these scenes. Col-
orization was performed in a post processing step, by generat-
ing high-resolution cubemaps from co-rgistered camera images.
In general, static laser scans have a very high resolution and are
able to measure long distances with little noise. Especially com-
pared to point clouds derived via structure-from-motion pipelines
or Kinect-like structured light sensors, laser scanners deliver su-
perior geometric data quality.

Scanner positions for data recording were selected as usually done
in real field campaigns: only little scan overlap as needed for reg-
istration, so that scenes can be recorded in a minimum of time.
This free choice of the scanning position implies that no prior as-
sumption based on point density and on class distributions can be
made. We publish up to 3 laser scans per scene that have small
overlap. The relative position of laser scans at the same location
was estimated from targets.

The choice of output classes in a benchmark, independent of
downstream applications, is not obvious. Based on feedback from
geo-spatial industry experts, we use the following 8 classes, which
are considered useful for a variety of surveying applications: (1)



Train data set Number of points Scene type Description Download size [GB]
bildstein1 29′302′501 rural church in bildstein 0.20
bildstein3 23′765′246 rural church in bildstein 0.17
bildstein5 24′671′679 rural church in bildstein 0.18
domfountain1 35′494′386 urban cathedral in feldkirch 0.28
domfountain2 35′188′343 urban cathedral in feldkirch 0.25
domfountain3 35′049′972 urban cathedral in feldkirch 0.23
untermaederbrunnen1 16′658′648 rural fountain in balgach 0.17
untermaederbrunnen3 19′767′991 rural fountain in balgach 0.17
neugasse 50′109′087 urban neugasse in st. gallen 0.32
sg27 1 161′044′280 rural railroad tracks 1.87
sg27 2 248′351′425 urban town square 2.72
sg27 4 280′994′028 rural village 1.59
sg27 5 218′269′204 suburban crossing 1.25
sg27 9 222′908′898 urban soccer field 1.22
sg28 4 258′719′795 urban town square 1.40

Table 1: Parameters of the full resolution semantic-8 training data set. Identical names (left column) with different IDs identify scans
of the same scene (but with very low overlap). All ground truth labels together have size 0.01 GB for download. All parameters are
also provided on the benchmark website http://www.semantic3d.net/view_dbase.php?chl=1

Test data set Number of points Scene type Description Download size [GB]
stgallencathedral1 28′181′979 urban cathedral in st. gallen 0.22
stgallencathedral3 31′328′976 urban cathedral in st. gallen 0.22
stgallencathedral6 32′342′450 urban cathedral in st. gallen 0.22
marketsquarefeldkirch1 23′228′738 urban market square in feldkirch 0.17
marketsquarefeldkirch4 22′760′334 urban market square in feldkirch 0.15
marketsquarefeldkirch7 23′264′911 urban market square in feldkirch 0.15
birdfountain1 36′627′054 urban fountain in feldkirch 0.25
castleblatten1 152′248′025 rural castle in blatten 0.24
castleblatten5 195′356′302 rural castle in blatten 0.70
sg27 3 422′445′052 suburban houses 2.40
sg27 6 226′790′878 urban city block 1.27
sg27 8 429′615′314 urban city center 2.08
sg27 10 285′579′196 urban town square 1.56
sg28 2 170′158′281 rural farm 0.94
sg28 5 269′007′810 suburban buildings 1.35

Table 2: Parameters of the full resolution semantic-8 testing data set. Identical names (left column) with different IDs identify scans of
the same scene (but with very low overlap). All parameters are also provided on the benchmark website http://www.semantic3d.

net/view_dbase.php?chl=1



Figure 2: Intensity values (left), rgb colors (middle) and class labels (right) for example data sets.

man made terrain: mostly pavement; (2) natural terrain: mostly
grass; (3) high vegetation: trees and large bushes; (4) low veg-
etation: flowers or small bushes which are smaller than 2 m;
(5) buildings: Churches, city halls, stations, tenements, etc.; (6)
remaining hard scape: a clutter class with for instance garden
walls, fountains, benches, etc.; (7) scanning artifacts: artifacts
caused by dynamically moving objects during the recording of
the static scan; (8) cars and trucks. Some of these classes are
ill-defined, for instance some scanning artifacts could also go for
cars or trucks and it can be hard to differentiate between large and
small bushes. Yet, we prefer not to alter the class nomenclature
in a way that might reduce ambiguities, but departs from the re-
quirements of the data providers and users. Note also, in many
application projects class 7, scanning artifacts, is filtered out in
pre-processing with heuristic rule sets. Within the benchmark we
prefer to also include that additional classification problem in the
overall machine learning pipeline, and thus do not perform any
heuristic pre-processing.

In our view, large data sets are important for two reasons: a)
Typically, real world scan data are large. To have an impact on
real problems, a method must be able to process large amounts
of data. b) Large data sets are especially important for modern
machine learning methods that involve representation learning
(i.e., extracting discriminative low- to high-level features from
the raw data). With too small data sets, good results leave strong
doubts about possible overfitting; unsatisfactory results, on the
other hand, are hard to interpret as guidelines for further research:
are the mistakes due to short-comings of the method, or simply
caused by insufficient training data?

3.1 Point Cloud Annotation

In contrast to common strategies for 3D data labelling that first
compute an automatic over-segmentation and then label segments,
we manually assign each point a class label individually. Al-
though this strategy is more labor-intensive, it avoids inheriting
errors from the segmentation; and, perhaps more importantly, it
ensures that the ground truth does not contain any biases from
a particular segmentation algorithm, that could be exploited by
the classifier and impair its use with other training data. In gen-
eral, it is more difficult for humans to label a point cloud by hand
than images. The main problem is that it is hard to select a 3D
point on a 2D monitor from a set of millions of points without
a clear neighbourhood/surface structure. We tested two different
strategies:

Annotation in 3D: We follow an iterative filtering strategy, where
we manually select a couple of points, fit a simple model to the
data, remove the model outliers and repeat these steps until all in-
liers belong to the same class. With this procedure it is possible to
select large buildings in a couple of seconds. A small part of the
point clouds was labeled with this approach by student assistants
at ETH Zurich.

Annotation in 2D: The user rotates a point cloud, fixes a 2D
view and draws a closed polygon which splits a point cloud into
two parts (inside and outside of the polygon). One part usually
contains points from the background and is discarded. This pro-
cedure is repeated a few times until all remaining points belong to
the same class. In the end, all points are separated into different
layers corresponding to classes of interest. This 2D procedure
works well with existing software packages (Daniel Girardeau-
Montaut, 2016) such that it can be outsourced to external labelers



more easily than the 3D work-flow. We used this procedure for
all data sets where annotation was outsourced.

4. METHODS

Given a set of points (here: dense scans from a static, terres-
trial laser scanner), we want to infer an individual class label per
point. We provide three baseline methods that are meant to rep-
resent typical categories of approaches recently used for the task,
covering the state of the art at the time of creating the benchmark.

4.1 2D Image Baseline

Figure 3: Top row: projection of ground truth to images. Bot-
tom row: results of classification with the image baseline. White:
unlabeled pixels, black: pixels with no corresponding 3D point,
gray: buildings, orange: man made ground, green: natural
ground, yellow: low vegetation, blue: high vegetation, purple:
hard scape, pink: cars

We convert color values of the scans to separate images (with-
out depth) with cube mapping (Greene, 1986). Cube maps are
centered on the origin of the laser scanner and we thus do not
experience any self-occlusions. Ground truth labels are also pro-
jected from the point clouds to image space, such that the 3D
point labeling task turns into a purely image-based semantic seg-
mentation problem in 2D (Figure 3). We chose the associative
hierarchical random fields method (Ladicky et al., 2013) for se-
mantic segmentation because it has proven to deliver good perfor-
mance for a variety of tasks (e.g., (Montoya et al., 2014, Ladický
et al., 2014)) and was available in its original implementation.

The method works as follows: four different types of features –
textons (Malik et al., 2001), SIFT (Lowe, 2004), local quantized
ternary patters (Hussain and Triggs, 2012) and self-similarity fea-
tures (Shechtman and Irani, 2007) – are extracted densely at every
image pixel. Each feature category is separately clustered into
512 distinct patterns using standard K-means clustering, which
corresponds to a typical bag-of-words representation. For each
pixel in an image, the feature vector is a concatenation of bag-
of-word histograms over a fixed set of 200 rectangles of vary-
ing sizes. These rectangles are randomly placed in an extended
neighbourhood around a pixel. We use multi-class boosting (Tor-
ralba et al., 2004) as classifier and the most discriminative weak
features are found as explained in (Shotton et al., 2006). To
add local smoothing without loosing sharp object boundaries, the
model includes soft constraints that favor constant labels inside
superpixels and class transitions at their boundaries. Super-pixels
are extracted via mean-shift (Comaniciu and Meer, 2002) with 3
sets of coarse-to-fine parameters as described in (Ladicky et al.,
2013). Class likelihoods of overlapping superpixels are predicted
using the feature vector consisting of a bag-of-words representa-
tion for each superpixel. Pixel-based and superpixel-based clas-
sifiers with additional smoothness priors over pixels and super-
pixels are combined in a conditional random field framework, as

proposed in (Kohli et al., 2008). The maximum a-posteriori la-
bel configuration is found using a graph-cut algorithm (Boykov
and Kolmogorov, 2004), with appropriate graph construction for
higher-order potentials (Ladicky et al., 2013).

4.2 3D Covariance Baseline

The second baseline was inspired by (Weinmann et al., 2015,
Hackel et al., 2016). It infers the class label directly from the 3D
point cloud using multiscale features and discriminative learning.
Again, we had access to the original implementation of (Hackel et
al., 2016). That method uses an efficient approximation of multi-
scale neighbourhoods, where the point cloud is sub-sampled into
a multi-resolution pyramid, such that a constant, small number
of neighbours per level captures the multi-scale information. The
multi-scale pyramid is generated by voxel-grid filtering with uni-
form spacing.

The feature set extracted at each level is an extension of the one
decribed in (Weinmann et al., 2013). It uses different combina-
tions of eigenvalues and eigenvectors of the covariance per point-
neighborhood to represent geometric surface properties. Further-
more, height features based on vertical, cylindrical neighbour-
hoods are added to emphasize the special role of the gravity di-
rection (assuming that scans are, as usual, aligned to the vertical).
Note that we do not make use of color values or laser intensities.
We empirically found that they did not improve the point cloud
classification, moreover color or intensity information is not al-
ways available. As classifier, we use a random forest, for which
optimal parameters (number of trees and tree depths) are found
with grid search and five-fold cross-validation.

4.3 3D CNN Baseline

We design our baseline for the point cloud classification task fol-
lowing recent ideas of VoxNet (Maturana and Scherer, 2015) and
ShapeNet (Wu et al., 2015) for 3D encoding. The pipeline is il-
lustrated in Fig. 4. Instead of generating a global 3D voxel-grid
prior to processing, we create 16× 16× 16 voxel cubes per scan
point11. We do this at 5 different resolutions, with voxel sizes

Figure 4: Our deep neural network baseline.

ranging from 2.5 cm to 40 cm (multiplied by powers of 2) and
encode empty voxel cells as 0 and filled ones as 1. The input

11This strategy automatically centers each voxel-cube per scan point.
Note that for the alternative approach of a global voxel grid, several scan
points could fall into the same grid cell in dense regions of the scan. This
would require scan point selection per grid cell, which is computationally
costly and results in (undesired) down-sampling.



to the CNN is thus encoded in a multidimensional tensor with
5× 16× 16× 16 cube entries per scan point.
Each of the five scales is handled separately by a VGG-like (Si-
monyan and Zisserman, 2015) network branch that includes con-
volutional, pooling and ReLU layers. The 5 separate network
paths are finally concatenated into a single representation, which
is passed through two fully-connected layers. The output of the
second fully-connected layer is an 8-dimensional vector, which
contains the class scores for each of the 8 classes in this bench-
mark challenge. Scores are transformed to class conditional prob-
abilities with the soft-max function.
Before describing the network architecture in detail we introduce
the following notation:
c(i, o) stands for convolutional layers with 3×3×3 filters, i input
channels, o output channels, zero-padding of size 1 at each border
and a stride of 1. f(i, o) stands for fully-connected layers. r
stands for a ReLU non-linearity, m stands for a volumetric max-
pooling with receptive field 2 × 2 × 2, applied with a stride of
2 in each dimension, d stands for a dropout with 0.5 probability,
and s stands for a softmax layer.

Our 3D CNN architecture assembles these components to a VGG-
like network. We choose the filter size in convolutional layers as
small as possible (3×3×3), as recommended in recent work (He
et al., 2016), to have the least amount of parameters per layer and,
hence, reduce both the risk of overfitting and the computational
cost. Each of the 5 separate network paths, acting at different
resolutions, has the sequence:

(c(1, 16), r,m, c(16, 32), r,m, c(32, 64), r,m).

The output is vectorized, concatenated across all branches (scales),
and fed through two fully-connected layers to predict the class re-
sponses:

(f(2560, 2048), r, d, f(2048, 8), s).

The network is trained by minimising the standard multi-class
cross-entropy loss, with stochastic gradient descent (SGD, (Bot-
tou, 2010)). The SGD algorithm uses randomly sampled mini-
batches of several hundred points per batch to iteratively update
the parameters of the CNN. We use the popular adadelta (Zeiler,
2012) variant of SGD. We use a mini-batch size of 100 train-
ing samples (i.e., points), where each batch is sampled randomly
and balanced to contain equal numbers of samples per class. We
run training for 74,700 batches and sample training data from
a large and representative point cloud with 259 million points
(scan sg28 4). A standard pre-processing step for CNNs is data
augmentation to enlarge the training set and to avoid overfitting.
Here, we augment the training set with a random rotation around
the z-axis after every 100 batches. During experiments it turned
out that additional training data did not improve performance.
This indicates that in our case we rather face underfitting (as op-
posed to overfitting), i.e., our model lacks the capacity to fully
capture all the evidence in the available training data12. We thus
refrain from further possible augmentations like randomly miss-
ing points or adding noise. The network is implemented in C++
and Lua and uses the Torch7 framework (Collobert et al., 2011)
for deep learning. Code and documentation are available at https:
//github.com/nsavinov/semantic3dnet.

4.4 Submissions to the benchmark

The two top-performing approaches (Boulch et al., 2017, Lawin
et al., 2017) submitted to the benchmark so far13 both project 3D

12Our model reaches the hardware limits of our GPU (TitanX with
12GB of RAM), we thus did not experiment with larger networks at this
point.

13as of August 28, 2017

point clouds to 2D images, so as to harness the strength of well-
established CNN models in 2D space. Their strategy is to: (i)
render virtual 2D images from viewpoints in the 3D point cloud;
(ii) perform semantic classification on the 2D images; (iii) lift
the results back into 3D space, and merge the predictions from
different 2D views. In the following, we provide a brief overview
of both methods. Schematic work-flows are shown in Fig. 5 & 6.

The currently top-performing method is SnapNet (Boulch et al.,
2017). The processing pipeline consists of four main parts (Fig. 5):

1) Point clouds are down-sampled with a voxel grid filter, 3D
features are extracted (e.g., the deviation of surface normals to
a vertical vector, sphericity etc.), and 3D meshes are generated
by running the surface reconstruction approach of (Marton et al.,
2009);

2) Virtual images are rendered from meshes at a high number
(400 per point cloud for training) of different camera positions.
RGB images as well as composite images with a channel for
depth, the deviation of surface normals and sphericity are com-
puted. For training and validation sets also virtual ground truth
images are rendered. The authors propose to select camera view
points either randomly in the bounding box of the scene ( alti-
tudes vary between 10 and 30 meters above ground) or to apply a
multi-scale strategy, where three camera poses are generated for
a subset of points that vary in distance to the selected point. A 3D
mesh viewer renders virtual 2D images from the mesh.

3) Two different encoder-decoder CNNs, SegNet (Badrinarayanan
et al., 2017) and U-Net (Ronneberger et al., 2015), are compared
for semantic labeling of the rendered virtual images. Moreover,
different strategies to combine RGB and depth information are
tested, for example, model averaging and adding a shallow net-
work to the output of the two separate depth and RGB networks.

4) Class responses of the neural network are back-projected to
the mesh and averaged over the different virtual views. Finally,
a kd-tree is used to assign the class label with the highest class
response in the mesh to close points in the point cloud. The over-
all best results (i.e., those reported for the benchmark, cf. Tab. 3
& 4) are obtained with a combination of U-Net, shallow network
for depth and RGB fusion, and multi-scale view generation.

The second-best submission at present is DeePr3SS (Lawin et
al., 2017) (Fig. 6), which follows a coneptually similar strategy
as (Boulch et al., 2017):

1) Virtual images with RGB channels as well as channels for
depth and surface normals are rendered directly from the point
clouds by point splatting (Zwicker et al., 2001) (which, unlike
(Boulch et al., 2017), works without an intermediate mesh gen-
eration step). In total, 120 camera views are rendered per point
cloud by rotating the camera around four vertical axis in the scene.
Low quality images are discarded by using two filter strategies:
First, images with a coverage below a threshold are removed.
Second, views which are too close to large objects are neglected
by thresholding the percentage of small depths.

2) Semantic segmentation is performed using fully convolutional
networks, where the different inputs are fused by using a multi-
stream architecture (Simonyan and Zisserman, 2014) that aver-
ages the output of the different streams. The authors use pre-
trained VGG16 networks (Simonyan and Zisserman, 2015) for
each stream and experiment with different combinations of streams
for RGB, depth and normal channels. As often done, pre-training
is performed on the ImageNet dataset (Russakovsky et al., 2015).



Figure 5: Work-flow of the SnapNet approach, figure taken from the original paper (Boulch et al., 2017).

3) Finally, class responses of the CNN are back-projected to the
point cloud. Mapping between 3D points and pixels in the virtual
images is given by rendering with point splatting. Class responses
of the CNN for all pixels which correspond to the same 3D point
are summed up, and the maximum average class response is used
as final class label. The authors report that the multi-stream ar-
chitecture with streams for all RGB, depth and normal channels
works best (that workflow is used to produce numbers shown in
Tab. 4 for the benchmark) for DeePr3SS.

5. EVALUATION

We follow the Pascal VOC challenge (Everingham et al., 2010)
and choose the Intersection over Union (IoU ), averaged over all
classes, as our principal evaluation metric.14. Let the classes be
indexed with integers from {1, . . . , N}, with N the number of
different classes. Let C be an N × N confusion matrix of the
chosen classification method, where each entry cij is a number
of samples from ground-truth class i predicted as class j. Then
the evaluation measure per class i is defined as

IoUi =
cii

cii +
∑
j 6=i

cij +
∑
k 6=i

cki
. (1)

The main evaluation measure of our benchmark is thus

IoU =
1

N

N∑
i=1

IoUi. (2)

We also report IoUi for each class i and overall accuracy

OA =

N∑
i=1

cii

N∑
j=1

N∑
k=1

cjk

(3)

as auxiliary measures and provide the confusion matrix C. Fi-
nally, each participant is asked to specify the time T it took to
classify the test set as well as the hardware used for experiments.
The computation time (if available) is important to understand
how suitable the method is in real-world scenarios, where usually
billions of points are required to be processed.

For computationally demanding methods we additionally provide
a reduced challenge, consisting of a subset of the original test
data. The results of our baseline methods as well as submis-
sions are shown in Table 3 for the full challenge and in Table 4

14IoU compensates for different class frequencies as opposed to, for
example, overall accuracy that does not balance different class frequen-
cies, thus giving higher influence to large classes.

for the reduced challenge. Of the three published baseline meth-
ods the classical machine learning pipeline with hand-designed,
covariance-based features performs better than simplistic color
image labeling without 3D information, and it also beats our sim-
ple CNN baseline, DeepNet. Due to its computational cost we
could only run the DeepNet on the reduced data set. We note that
DeepNet is meant as a baseline for “naive” application of CNNs
to point cloud data, we do expect a more sophisticated, higher-
capacity network to perform significantly better. Both SnapNet
and DeePr3SS comfortably beat all baselines.

On the full challenge, two CNN methods, SnapNet and HarrisNet
(unfortunately unpublished), already beat our best baseline by a
significant margin (Table 3) of 12 respective 18 percent points.
This indicates that deep learning seems to be the way to go also
for point clouds, if enough training data is available. However,
it should be noted that both SnapNet and HarrisNet are no true
3D-CNN approaches in the sense that they do not process 3D data
directly. Both methods side-step 3D processing and cast semantic
segmentation of point clouds as a 2D image labeling problem.
For the future of the benchmark it will be interesting how true
3D-CNN approaches like (Riegler et al., 2017, Tatarchenko et
al., 2017, Qi et al., 2017a) will perform. As a lesson learned, a
future update of the benchmark should include multi-station point
clouds that challenge the reprojection strategy.

6. BENCHMARK STATISTICS

Class distributions in the test and training sets are rather similar,
as shown in Figure 7a. Interestingly, the class with most sam-
ples is man-made terrain because, out of convenience, operators
in the field tend to place the scanner on flat and paved ground.
Recall also the quadratic decrease of point density with distance
to the scanner, such that many samples are close to the scanner.
The largest difference between samples in test and training sets
occurs for class building. However, this does not seem to affect
the performance of the submissions so far. The most difficult
classes, scanning artefacts and cars, have only few training and
test samples and a large variation of possible object shapes. Scan-
ning artefacts is probably the hardest class because the shape of
artefacts mostly depends on the movement of objects during the
scanning process. Note that, following discussions with indus-
try professionals, the class hard scape was designed as a sort of
“clutter class” that contains all sorts of man-made objects except
for buildings, cars and the ground.

In order to quantify the quality of the manually acquired labels,
we also checked the label agreement among human annotators.
This provides an indicative measure how well different annota-
tors agree on the correct labeling, and can be viewed as an internal
check of manual labeling precision. To estimate the label agree-
ment between different human annotators, we inspect areas where



Figure 6: Work-flow of DeePr3SS, figure borrowed from the original paper (Lawin et al., 2017).

(a) (b)

Figure 7: (a) Number of points per class over all scans and (b) ground truth label errors estimated in overlapping parts of adjacent scans.

different scans of the same scene overlap (recall that overlaps of
adjacent scans can be established precisely, via artificial markers
placed in the scenes). Since we cannot rule out that some over-
lapping area might have been labeled twice by the same person
(labeling was outsourced and we thus do not know exactly who
annotated what), the observed consistency might in the worst case
be slighty too optimistic. Even if scan alignments would be per-
fect without any error, no exact point-to-point correspondences
exist between two scans, because scan points acquired from two

different locations will not fall exactly onto the same 3D loca-
tion. We thus have to resort to nearest-neighbor search to find
point correspondences. Moreover, not all scan points have a cor-
responding point in the adjacent scan. A threshold of 5 cm on the
distance is used to ignore those points where no correspondence
exists. Once point correspondences have been established, it is
possible to transfer the annotated labels from one point cloud to
the other and compute a confusion matrix. Note that this defini-
tion of correspondence is not symmetric, “forward” point corre-



Method IoU OA t[s] IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8

SnapNet 0.674 0.910 unknown 0.896 0.795 0.748 0.561 0.909 0.365 0.343 0.772
HarrisNet 0.623 0.881 unknown 0.818 0.737 0.742 0.625 0.927 0.283 0.178 0.671
TMLC-MS 0.494 0.850 38421 0.911 0.695 0.328 0.216 0.876 0.259 0.113 0.553
TML-PC 0.391 0.745 unknown 0.804 0.661 0.423 0.412 0.647 0.124 0.0* 0.058

Table 3: Semantic3d benchmark results on the full data set: 3D covariance baseline TMLC-MS, 2D RGB image baseline TML-PC,
and first submissions HarrisNet and SnapNet. IoU for categories (1) man-made terrain, (2) natural terrain, (3) high vegetation, (4)
low vegetation, (5) buildings, (6) hard scape, (7) scanning artefacts, (8) cars. * Scanning artefacts were ignored for 2D classification
because they are not present in the image data.

Method IoU OA t[s] IoU1 IoU2 IoU3 IoU4 IoU5 IoU6 IoU7 IoU8

SnapNet 0.591 0.886 3600 0.820 0.773 0.797 0.229 0.911 0.184 0.373 0.644
DeePr3SS 0.585 0.889 unknown 0.856 0.832 0.742 0.324 0.897 0.185 0.251 0.592
TMLC-MSR 0.542 0.862 1800 0.898 0.745 0.537 0.268 0.888 0.189 0.364 0.447
DeepNet 0.437 0.772 64800 0.838 0.385 0.548 0.085 0.841 0.151 0.223 0.423
TML-PCR 0.384 0.740 unknown 0.726 0.73 0.485 0.224 0.707 0.050 0.0* 0.15

Table 4: Semantic3d benchmark results on the reduced data set: 3D covariance baseline TMLC-MSR, 2D RGB image baseline TML-
PCR, and our 3D CNN baseline DeepNet. TMLC-MSR is the same method as TMLC-MS, the same goes for TMLC-PCR and TMLC-
PC. In both cases R indicates classifiers on the reduced dataset. IoU for categories (1) man-made terrain, (2) natural terrain, (3) high
vegetation, (4) low vegetation, (5) buildings, (6) hard scape, (7) scanning artefacts, (8) cars. * Scanning artefacts were ignored for 2D
classification because they are not present in the image data.

spondences from cloud A to cloud B are not in all cases the same
as “backward” correspondences from cloud B to cloud A. For
each pair, we calculate two intersection-over-union (IoUi) val-
ues, which indicate negligible differences between forward and
backward matching, an overall disagreement < 3%, and a max-
imum label disagreement for the worst class (low vegetation) of
< 5%, see Figure 7b. Obviously, no correspondences between
asynchronously acquired scans can be found on moving objects,
so we ignored the class scanning artefacts in the evaluation.

7. CONCLUSION AND OUTLOOK

The semantic3D.net benchmark provides a large set of high qual-
ity, individual terrestrial laser scans with over 4 billion manu-
ally annotated points and a standardized evaluation framework.
The data set has been published recently and the first results have
been submitted. These already show that deep learning, and in
particular appropriately adapted and well-engineered CNNs, out-
perform the leading conventional approaches, such as our covari-
ance baseline, on large 3D laser scans. Interestingly, both top-
performing methods SnapNet and HarrisNet are no true 3D-CNN
approaches in the sense that they do not process 3D data directly.
Both methods cast semantic point cloud segmentation as a 2D im-
age labeling problem. This leaves room for methods that directly
work in 3D and we hope to see more submissions of this kind in
the future.

We are confident that, as more submissions appear, the bench-
mark will enable objective comparisons and yield new insights
into strengths and weaknesses of different classification approaches
for point clouds, and that the common testbed can help to guide
future research efforts. We hope that the benchmark meets the
needs of the research community and becomes a central resource
for the development of new, more efficient and more accurate
methods for semantic data interpretation in 3D space.
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