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Abstract

Concurrency bugs are hard to find, reproduce, and debug.
They often escape rigorous in-house testing, but result in
large-scale outages in production. Existing concurrency-
bug detection techniques unfortunately cannot be part
of industry’s integrated build and test environment due
to some open challenges: how to handle code developed
by thousands of engineering teams that uses a wide
variety of synchronization mechanisms, how to report lit-
tle/no false positives, and how to avoid excessive testing
resource consumption.

This paper presents TSVD, a thread-safety violation
detector that addresses these challenges through a new
design point in the domain of active testing. Unlike pre-
vious techniques that inject delays randomly or employ
expensive synchronization analysis, TSVD uses light-
weight monitoring of the calling behaviors of thread-
unsafe methods, not any synchronization operations, to
dynamically identify bug suspects. It then injects corre-
sponding delays to drive the program towards thread-
unsafe behaviors, actively learns from its ability or in-
ability to do so, and persists its learning from one test
run to the next. TSVD is deployed and regularly used
in Microsoft and it has already found over 1000 thread-
safety violations from thousands of projects. It detects
more bugs than state-of-the-art techniques, mostly with
just one test run.
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1 Introduction

Concurrency bugs are hard to find, reproduce, and debug.
Race conditions can hide in rare thread interleavings
that do not occur during testing but nevertheless show
up in production. Thus, it is not uncommon for even the
simplest of concurrency bugs to escape rigorous testing
but result in large-scale outages in production. Even
when detected, these bugs are hard to reproduce in the
small. As such, tools for finding concurrency bugs is an
actively studied research area [7, 22, 43, 47, 58] with
many open challenges.

This paper specifically deals with a class of concur-
rency errors we call thread-safety violations or TSVs.
Libraries and classes specify an informal thread-safety
contract that determines when a client can and cannot
concurrently call into the library/class. A TSV occurs
when a client violates this contract. Figure 1 shows an
example. The implementation of the Dictionary class
allows multiple threads to concurrently call read oper-
ations, such as ContainsKey, but requires write opera-
tions, such as Add, to only be called in exclusive contexts.
By violating this contract, Figure 1 contains a TSV.

This paper is motivated by the prevalence of such
TSVs in production code. In fact, our evaluation discov-
ered that the pattern in Figure 1 is fairly common as
developers erroneously assume that concurrent accesses
on different keys are “thread safe.” TSVs, while common,
can have drastic consequences, including unexpected
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// Dictionary dict

// Thread 1:
dict.Add(keyl, value)
// Thread 2:
dict.ContainsKey (key2)
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Figure 1. A thread-safety violation (TSV) bug

crashes or worse, silent data corruption that are difficult
to diagnose and fix.

This paper describes TSVD, a dynamic-analysis tool
for detecting TSVs. The tool is specifically designed to be
used in an integrated build and test environment, such as
Bazel [4] or CloudBuild [15]. Here, hundreds to thousands
of machines build and run tests on software modules from
thousands of engineering groups. We have designed the
system end to end to operate at this scale. For instance,
it is important to design tools that produce little to
no false bug reports. A small loss of productivity per-
user in chasing false bugs can quickly multiply to huge
productivity losses across the organization. Similarly, it
is important to design tools that incur small resource
overhead. For instance, if a tool incurs a 10X run-time
overhead or requires rerunning the same test 10x times,
then the test environment needs to allocate 10x more
machines to provide the same turnaround time to its
users.

Since TSVs generalize the notion of data races to
coarser-grain objects, techniques for detecting TSVs are
naturally related to data-race detection (Section 2 has
more discussion). But existing approaches fall short for
our purposes.

Considering the goal about having little to no false bug
reports, the approach of active delay-injection [14, 47, 58]
is promising. This approach directs program threads
towards making conflicting accesses by delaying threads
at strategic locations at run time. Consequently, this
approach only reports bugs that are validated at runtime,
and thus are not false bugs.

Considering the goal about having small overhead
however, existing active delay-injection techniques do
not work. To better understand their limitations, we
can broadly classify them based on the inherent tradeoff
between the cost of injecting too many delays versus
the sophistication of analysis required to select where to
inject delays:

At one extreme, as illustrated in the lower-right corner
of Figure 2, tools like RaceFuzzer [58] and CTrigger [47]
conduct static or dynamic analysis of memory accesses
and synchronization operations in a program to identify
potential buggy locations, and selectively inject delays
only at these locations. While this reduces the number
of delays injected, these techniques bear the cost of
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Figure 2. The design space of active testing

performing analysis, either through run-time overhead
for dynamic analysis or the inscalability of precise static
analysis required for identifying potentially conflicting
accesses.

At the other extreme, as illustrated in the upper-left
corner of Figure 2, tools like DataCollider [14] conduct
little to no analysis, but instead probabilistically inject
delays at many program locations. Such tools require
many repeated executions of the same test to find a bug,
which we deem unacceptable in our context as described
above.

The goal of TSVD is to explore the middle ground in
the design space of delay-injection tools, as illustrated
in Figure 2. TSVD uses lightweight instrumentation and
dynamic analysis to identify potential conflicting accesses
without paying the overhead while being effective in
finding bugs.

First, TSVD performs a lightweight near-miss tracking
to identify potential thread-safety violations. It dynami-
cally tracks threads that invoke conflicting methods to
the same object close to each other in real time, without
monitoring or analyzing synchronization operations.

Second, TSVD uses a happens-before (HB) inferenc-
ing technique that leverages the feedback from delay
injections to prune call pairs that are likely ordered by
the happens-before relation [34] and thus cannot execute
concurrently. The key observation is that if there is a HB
relationship between two events a and b, then a delay
in a will cause a delay in b. By inferring this causal-
ity, TSVD avoids injecting delays at these pruned pairs
subsequently. Note, that unlike HB analysis performed
by dynamic data-race detectors, HB inference does not
require modeling, identifying, and analyzing synchroniza-
tion operations in a program, which is expensive and
complicated given the wide variety of synchronization
mechanisms in production software.

An interesting benefit of the near-miss tracking and
the HB inferencing is that it only requires local instrumen-
tation. That is, only the libraries/classes whose thread-
safety contract is checked need to be instrumented. All
other parts of the code, including synchronizations such



as forks, joins, locks, volatile accesses, and ad-hoc syn-
chronization, do not need to be instrumented. This mod-
ularity dramatically reduces the runtime overhead. Fur-
thermore, it enables incremental “pay-as-you-go” thread-
safety checking of different classes and libraries, greatly
simplifying the deployment of TSVD to thousands of
engineering groups, who can configure the tool based on
their needs.

Another key benefit of TSVD is that it is independent
of the underlying concurrency programming model and
oblivious to synchronization semantics, and thus can work
across different programming models, such as threads,
task-based programming, asynchronous programming,
etc., and be applied to software using a variety of syn-
chronization primitives.

Finally, TSVD compacts its delay injections, delay-
location identification and adjustment all into the same
run. In contrast, RaceFuzzer and CTrigger, require at
least two runs, first to do the analysis and the second
to inject delays. In many cases, as our evaluation shows,
TSVD finds a large fraction of bugs in the first test run,
making the best use of testing resources. This also allows
TSVD to be effective where running many repetitions of
the same test is not feasible due to large test setup and
shutdown overheads.

We evaluate TSVD on tests from roughly 43,000 soft-
ware modules developed by various product teams at
Microsoft. By design, TSVD produces no false error re-
ports, with each report containing stack traces of the
two conflicting operations that violate the thread-safety
contract. Overall, TSVD has found over 1,000 previously-
unknown bugs, involving over 1,000 unique static pro-
gram locations and over 20K unique call-stacks. To
validate our results, we drilled into reports from four
product teams in Microsoft. These groups confirmed
that all the bugs reported are real bugs, 48% have been
classified as high-priority bugs that would have otherwise
resulted in service outages, and 70% have been fixed so
far. Our evaluation also shows that TSVD introduces an
acceptable overhead to the testing process — about 33%
overhead for multi-threaded test cases while traditional
techniques incur several times slowdowns.

TSVD is incorporated into the integrated build and
test environment at Microsoft. Over last one year, 1,500+
software projects under active development at Microsoft
have been tested with TSVD. An open-source version
of TSVD is available at https://github.com/microsoft/
TSVD.

2 Motivation and Background
2.1 Why Concurrency Testing in the Large?

The broader goal of this paper is to find concurrency
errors during testing, ideally “in the small.” Our spe-
cific goal here is to build a concurrency testing tool as
part of integrated build and test environments that are
becoming popular in software companies today [4, 15].
Such an environment provides a centralized code reposi-
tory for all the different engineering groups. The code
is incrementally built on every commit and on specific
successful builds; a collection of servers automatically
run unit and functional tests. It is not uncommon to
have hundreds of servers dedicated to run tests from
tens of thousands of modules written by many different
groups.

Testing at this scale introduces key challenges: to
minimize productivity loss, tools should have little/no
false positives; to reduce overheads, the tools should have
minimal runtime overhead and not require rerunning the
test too many times; for wide adoption across a variety
of product groups, the tool should be “push button”
requiring little or no configuration and support a variety
of programming models. TSVD discussed in this paper
is one such tool.

2.2 Why Thread-Safety Violations?

A data race occurs when two threads concurrently access
the same variable and at least one of these accesses is
a write. Thread-safety violations are a generalization of
data races to objects and data structures. Each class
or library specifies, sometimes implicitly, a thread-safety
contract that determines the set of functions that can
be called concurrently by threads in the program. For
instance, a dictionary implementation might allow two
threads to concurrently perform lookups, while another
implementation might disallow such calls if lookups can
sometimes trigger a “rebalance” operation. In the ex-
treme, a lock-free implementation might concurrently
allow any pairs of calls.

A thread-safety violation occurs when the client fails
to meet the thread-safety contract of a class or library,
as discussed earlier in Figure 1. While the notion of
thread-safety contract can be more general, in this paper
we will assume that the methods of a data structure
can be grouped into two sets — the read set and the
write set, such that two concurrent methods violate the
thread-safety contract if and only if at least one of them
belongs to the write set. All the data structures we study
in this paper have this property.

Thread-safety violations are easy to make but hard to
find in code reviews. Sometimes programmers deliber-
ately make such concurrent accesses due to their misun-
derstanding of the thread-safety contract. In fact, TSVD
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is particularly inspired by a thread-safety violation simi-
lar to Figure 1 that caused a significant customer-facing
service outage for days and took weeks to debug and fix.

Focusing on thread-safety violations solves some of the
issues with data race detection. By definition, every TSV
is a concurrency error while a data race can either be a
concurrency error or a benign one [44] (that is neverthe-
less disallowed by modern language standards [11, 41]).
Since thread-safety violations are defined at a larger
granularity of objects and libraries, TSVD needs not to
monitor every shared-memory access as data-race detec-
tors do, which is one, but not all, of the reasons for the
good performance of TSVD.

Note that in common parlance the term “thread safety”
is defined ambiguously. Our notion here is different from
high-level data race [46]. Similarly, Pradel and Gross
[49] use “thread-safety” as a synonym to linearizability.
Instead, throughout the paper, we will use TSVs to refer
the violation of the thread-safety contract as defined
above.

2.3 Why Not Happens-Before (HB) Analysis?

Happens-before [34] analysis is widely used in data-race
and general concurrency-bug detection. In theory, once
we capture all the synchronization/causal operations
at run time and figure out all the happens-before rela-
tionships, we can accurately tell which operations can
execute in parallel. Unfortunately, in practice, this is ex-
tremely challenging to conduct accurately and efficiently.
We discuss the challenges in the context of TSVD below,
which motivates the design of HB inference, instead of
HB analysis, in TSVD. We will also design a variant of
TSVD that conducts HB analysis (Section 3.5), which
allows us to compare TSVD with different detection
techniques.

General challenges First, it is difficult to capture all
synchronization actions, as programs developed by thou-
sands of engineering teams use numerous concurrent
libraries, system calls, asynchronous data structures,
volatile variables, and others for communication and co-
ordination. Missing an HB-edge associated with such an
action can result in false bug reports, while a spurious
edge can hide true bugs.

Second, the cost of tracking and analyzing all synchro-

nization actions, including many library calls, volatile/atomic

variable accesses, and others, is high. Particularly, the
analysis of HB relationships in programs that allow asyn-
chronous concurrency, like all C# programs TSVD tar-
gets, is extremely memory and time consuming [26, 40,
53, 56].

Challenges for arbitrary task parallelism Previous work
lowers the cost of dynamic HB tracking and analysis
based on certain assumptions, such as (1) a fixed or

1 async Task<double> getSqrt (double x,

2 Dict<double, double> dict) {
3 if (dict.ContainsKey(x)) {

4 return dict[x]; // fetch from cache
5 } else {

6 Task<double> t = Task.Run(() =>

7
8
9

Math.sqrt(x)); // background work

double s = await t; // resume when done
dict.Add(x, s); // save to cache

10 return s; }}

11

12 /* Assumes “a”, “b~, and “dict  exist */

13 Task<double> sqrtA = getSqrt(a, dict);
14 Task<double> sqrtB = getSqrt(b, dict);
15 Console.WritelLine(sqrtA.Result // blocks
16 + sqrtB.Result); // blocks

Figure 3. Example of task parallelism in C#. TSVs can
occur due to concurrent accesses of dict.

small number of threads, or (2) having many more data
accesses than synchronization operations [19, 48, 60], or
(3) having task forks and task joins in a structured task
parallel program restricted to series-parallel graphs only
[17, 51, 52).

These assumptions however do not hold for the pro-
grams TSVD targets: (1) these programs dynamically
create many tasks, many more than the number of
threads, and dispatch them to execute on concurrent
background threads; (2) the number of data accesses
no longer dominates that of synchronization operations,
which include frequent task creations and joins , because
data accesses are traced and checked at the granularity
of thread-unsafe method calls and hence have a much
smaller quantity in TSV detection; (3) these programs
pass around task handles as first-class values and join
with any task via its handle — forks and joins no longer
follow series-parallel graphs. Such paradigms include not
only traditional threading libraries like POSIX threads in
C, Java’s Thread class, and System.Threading in .NET,
but also task-parallel libraries built on top of such prim-
itives, like java.util. concurrent and std::future
in C++.

For example, in .NET Task-Parallel Library (TPL),
asynchronous work units are represented by Task ob-
jects. Tasks can be forked explicitly through APIs like
Task.Run, or implicitly through data-parallel APIs like
Parallel.ForEach, or through C# async/await para-
digm. Any task can join with any other task using vari-
ous mechanisms, such as explicit Task.Wait or implicitly
blocking on a task’s result via Task.Result. Task-level
parallelism is hence unstructured.

An example To illustrate the arbitrary task parallelism
and TSVs, Figure 3 shows a simple C# code snippet that



@G-
fork N7 >

* Thread safety violation

Figure 4. Happens-before graph for Figure 3, assuming
neither a nor b is in the dict. The nodes show the exe-
cuted line#; subscripts distinguish multiple executions
of the same line.

uses explicit task creation and the async/await paradigm.
Its core is the function getSqrt, which gets the square-
root of its first argument by either retrieving from a
table (lines 3-4) or computing from scratch (line 7).
Figure 4 illustrates the execution order of this code
snippet when neither a nor b is in the lookup table, with
the happens-before relation highlighted in arrows. As we
can see, a call to getSqrt from lines 13 quickly leads
to the fork of a Task by line 6 to carry out the compu-
tation (7a) in a concurrent background thread, while
the getSqrt itself returns the spawned task immediately
and moves on to the next call of getSqrt on line 14,
denoted by 8a— 14 in Figure 4. Later on, when the com-
putation of the forked task completes, the continuation
after the await statement is resumed from line 9 (i.e.,
9a and 10a in Figure 4). Meanwhile, any attempt to
retrieve the task’s result like that on line 15 blocks until
the corresponding continuation returns from getSqrt
after line 10, illustrated by the Join arrow in Figure 4.
As shown in Figure 4, two instances of dict.Add (9a
and 9b) are concurrent with each other and form a write-

write TSV. Similarly, dict.Add (9a) and dict.ContainsKey

(3b) form a read-write TSV. Detecting them via precise
happens-before analysis in a large program is difficult
due to challenges discussed earlier.

3 Algorithm

This section describes the design of TSVD along with
its variants that represent alternative designs and will
be used to compare with TSVD in our evaluation.

3.1 Overview

TSVD and its variants share the same trap framework
shown in Figure 5, similar with that in DataCollider [14].

We assume a static analysis that identifies all the
call sites to relevant data structures’ methods whose
thread-safety needs to be checked in the code (Section
4 will provide more details of such a list of methods
used in TSVD). This analysis is straightforward and it
reports call sites without checking their calling contexts
(e.g., even if they are used within locks). We will refer
to these call sites as TSVD points. We also assume
an instrumentation framework that can instrument the

1 0OnCall(thread_id, obj_id, op_id){

2 check_for_trap(thread_id, obj_id, op_id)

3 if (should_delay (op_id)){

4 set_trap(thread_id, obj_id, op_id)

5 delay ()

6 clear_trap(thread_id, obj_id, op_id) }}

Figure 5. The trap mechanism used by TSVD and its
variants

program with calls to TSVD right at these TSVD points.
The only interface to TSVD is the OnCall with arguments
that show the thread making the call thread_id, the
object being accessed obj_id, and the operation being
performed op_ id.

The trap mechanism works as follows. Consider a
thread calling the OnCall method. On some calls chosen
by the should_ delay function at line 3, the thread sets a
trap by registering the current method call in some global
table at line 4. A trap is identified by the triple of the
identifiers of the thread, the object, and the operation.
Then, the thread calls the delay method to sleep for
some period, during which the trap is “set.”

Every other thread on entering 0nCall checks if it con-
flicts with the traps currently registered at line 2. For-
mally, if a trap tidy, objy, op1 is set and another thread
enters the method with the triple tids, obja, ops, this
pair results in a TSV iff tid; # tida, obj; = objo, and at
least one of the two operations op; and ops is a write.

When such a conflict occurs, we have caught both
threads “red handed” as they are at their respective
program counters making the conflicting method calls to
a common object. We can report the TSV with enough
information gleaned from the current state for root caus-
ing this bug, such as the stack trace of the two threads.
In theory, we could report other relevant information
such as object content, but we have not found the need
to do so in our experience with TSVD so far.

When the first thread wakes up from its delay, irre-
spective of whether a conflict was found or not, it clears
the trap at line 6 and returns from the OnCall method.

TSVD and its variants differ in their answers to two
key design questions about should_ delay:

1. Where to inject delays? Which program locations
are eligible for should__delay to suggest delay in-
jections.

2. When to inject delays? In which program runs
and at which dynamic instances of an eligible de-
lay location, should should_ delay suggest a delay
injection.

When making the design decisions above, we have to
keep the following goals and constraints in mind:



Runtime overheads — since the should__delay function
is called inside every OnCall function, it is important to
limit its complexity to reduce the runtime overhead. At
the same time, if this function is not selective enough,
we will inject too many delays, which in turn increases
the runtime overhead.

Number of testing runs — if the should__delay function
is too selective, then it can either miss bugs or require
running the test too many times, increasing the testing-
resource requirements.

Accuracy goals — no/little false positives are demanded;
few false negatives without consuming too much resource
is desired.

Complezity constraints — we would like the tool to
work across code from many engineering teams. Specifi-
cally, the tool should handle a variety of synchronization
mechanisms that developers can use to prevent TSVs.
Moreover, sophisticated static analysis for arbitrary C#
is challenging. For instance, a ForEach.Parallel block can
sometimes be translated to a sequential loop when only
one physical thread is available, and to a parallel loop
otherwise. Determining this statically is a hard prob-
lem. For this paper, we restrict ourselves to dynamic
techniques. As any dynamic analysis tool, TSVD cannot
guarantee to find all TSVs in the program. However, by
guaranteeing to not report any false errors, it guarantees
“soundness of bugs” [23].

Next, we present the variants that take different design
points in the design space in Figure 2. We start with
two simple variants that occupy the top-left corner in
Figure 2 and serves as baselines for TSVD.

3.2 DynamicRandom

The simplest algorithm takes every TSVD point as an
eligible delay location (where), and injects delays at
random moment (when). In other words, the call to
should_ delay return true with some (small) probability.
Once deciding to delay a thread, the thread sleeps for a
random amount of time.

3.3 StaticRandom

Previous work that uses delay injections to expose data
races, such as DataCollider [14], observed that dynamic
sampling is ineffective, as it tends to insert a lot more
delays along hot paths and ignore cold paths where even
more bugs may be hidden. To avoid redundantly intro-
ducing delays in hot paths and to focus on cold paths,
DataCollider samples memory accesses “statically” —
that is, static program locations are sampled uniformly
irrespective of the number of times a particular location
is sampled. We emulated this algorithm in our Stati-
cRandom variant, where static call sites of relevant data
structures’ methods are sampled uniformly.

Comparing with DynamicRandom, where to inject
delays does not change, still all the TSVD points, but
when to inject delays differentiates code paths from hot
paths.

3.4 TSVD

Our motivation for TSVD came after our initial experi-
ence implementing DynamicRandom and StaticRandom
in our setting. While these variants were finding bugs,
many of the bugs required running the same test tens
of times, which was unacceptable in our setting. On
investigating further, we found that these variants were
injecting a large fraction of its delays at the “wrong”
places — either when the program is executing in a
single-threaded context, say when all other threads are
waiting for external events, or when the program was
accessing the data structure in a “safe” manner - say by
holding the right lock. In both cases, a delay directly
translates to an end-to-end slowdown, forcing us to drop
the probability of delays to reduce the runtime overhead.
This, in turn, resulted in missed bugs or a proportionally
more number of runs to find true bugs.

TSVD is specifically designed to avoid these problems.
As illustrated in Figure 2, TSVD explores a new design
point. It uses local instrumentation and no synchroniza-
tion modeling or happens-before analysis to reduce the
runtime overhead, while identifying potential candidates
for delay injection. By focusing on more likely candidates
of thread-safety violations, it can achieve much better
bug-exposing capability with no more, much less in fact,
resource consumptions.

3.4.1 Where to inject delays?

At high level, TSVD uses lightweight analysis to dy-
namically maintain a set, called trap set, of dangerous-
pairs of program locations that can likely contribute to
thread-safety violations and injects delays at only these
locations.

During a testing run, the size of the trap set grows
as TSVD discovers new dangerous pairs, or shrinks as
TSVD prunes existing dangerous pairs.

TSVD identifies a pair of program locations as a dan-
gerous pair if (1) they correspond to a near-miss TSV
(§3.4.2) — intuitively, TSVD hopes to turn previous near
misses into true conflicts, and (2) at least one of these
two locations runs in a concurrent phase with multiple
active threads of the program (§3.4.3).

A dangerous pair is pruned from the trap set if (1)
TSVD infers a likely happen-before relationship between
the two locations (§3.4.4) and hence the pair is unlikely
to violate thread-safety, or (2) a violation is already
found at the pair.

Finally, the delay injection is probabilistic—each pro-
gram location loc in the trap set is associated with a



probability P, at which delay is injected at location
loc. TSVD sets P, = 1 when a dangerous pair contain-
ing loc is added to the trap set, and the probability is
decayed with time (§3.4.5). This probabilistic design
can help avoid excessive overhead caused by too many
delays for dangerous pairs that are actually not bugs.
We now describe the lightweight mechanisms TSVD
uses to infer the key components required to make the
above decisions. Note that, our evaluation section will
show thorough parameter-sensitivity study of all the
thresholds/parameters mentioned below.

3.4.2 Identifying near misses

Intuitively, if a pair of program locations never even
get close to creating a thread-safety violation under the
intensive testing environment, they might just never be
able to create one due to underlying program seman-
tics and synchronization operations. On the other hand,
say an access' happens at program location loc; with
the access triple tidy, 0bj1,0p; at time t; and another
access happens at program location locy with the access
triple tids, 0bja, op2 at time to. TSVD considers the pair
locy, locs as a dangerous pair if tidy # tide, obj1 = obja,
at least one of op; and opy is a write, and |t1 — to] <6
for some time threshold ¢.

To make this judgment, TSVD maintains a list of
accesses per object since § time ago. For implementation
simplicity, rather than storing this state in the object
metadata, TSVD maintains a global hash table indexed
by the object’s hash-code containing this list of previous
accesses. On each access, TSVD consults this list to
identify dangerous pairs.

3.4.3 Inferring Concurrent Phases

Synchronization operations like forks, joins, barriers,
and locks could lead to sequential execution phases
during the execution of a concurrent program, like ini-
tialization phase, clean-up phase, join-after-fork phase,
and so on, and a TSVD point inside such a sequential
phase can never execute in parallel with another TSVD
point.

TSVD infers concurrent execution phases by checking
the execution history of TSVD points. Specifically, it
maintains a global history buffer with a fixed number
of most recently executed TSVD points. If the TSVD
points in this buffer come from more than one thread,
TSVD considers the execution to be inside a concurrent
phase.

Thd2 ‘

Thdl —’l delay:d

tlstart tlena

Figure 6. Happens-before inference in TSVD (the thick
arrows indicate inferred happens-before relationship)

3.4.4 Inferring likely HB relationship

TSVD’s identification of dangerous pairs based on near-
misses and concurrent phases can potentially be incor-
rect. For instance, two accesses that are consistently
protected by the same lock can happen close to each
other. TSVD will fail to convert these near misses into
true conflicts due to the dynamic happens-before (HB)
relation between the two accesses. Rather than track
synchronizations to calculate this HB relation, TSVD
uses the lightweight technique below to infer likely HB
relationships.

TSVD’s dynamic HB inference works based on the
following crucial observation. If loc; happens-before loco
in an execution, then a delay right before loc; will cause
a proportional delay of loca. As shown in Figure 6,
consider the case when loc; and locy are consistently
protected by a lock and loc; occurs first. When one
injects a delay right before locy, this delay occurs when
the thread executing loc; is still holding the lock. Thus,
when the thread executing locy tries to acquire this lock
(which it needs to before accessing loca), it will block.
By dynamically tracking this causality between program
locations, TSVD infers likely HB relationships between
them.

Tracking this causality works as follows. Apart from
per-object history described above, TSVD additionally
maintains a history of the most recent access made by
every thread. Consider a delay d; injected right before
access locy that starts at tlgiart and ends at tlgng. At
a subsequent access at loco in a different thread Thds
happening at time t2, we will check when the previous
access from Thdy occurred, denoted as t0, and infer a
dynamic HB relationship between loc; and locy if (1)
there is a long gap between loco and that previous access,
t2 — t0 > Opp * delay_time, a causal delay threshold
and (2) the long gap overlaps with the injected delay,
t0 < tlend. If multiple delays {d at loc} satisfy the
inferring condition for Thds and loca, we contribute the

1For the ease of discussion, we do not differentiate an access to
an object and a thread-unsafe method call of an object in this
section.



long gap in Thds to the most recently finished delay d
and infer the HB relationship accordingly. Considering
the transitivity of happens-before relationship, the next
knp accesses in thread Thds are also considered as likely
happens-after loc;. Again, kp;, is a tunable parameter
and we will evaluate its sensitivity in the evaluation
section.

3.4.5 Delay Decaying

Of course, all the inferences above, including the near-
miss tracking, the concurrent phase inference, and the
likely HB-relationship inference, still do not guarantee
to prune out all non-TSV pairs. Consequently, for every
dangerous pair {p1, p2} in the dangerous list, every delay
injection at either p; or ps that fails to make p; and
p2 execute in parallel with the same object accessed
will cause TSVD to decay the probability of future delay
injection at p; and p2. When the probability of a location
loc drops to 0, all its related pairs are removed from the
trap set.

3.4.6 When to inject delays?

Different from previous work that separates delay plan-
ning and delay injection into different runs [47, 58]
and/or using many runs to gradually inject delays to
all planned locations [14, 47, 58], TSVD conducts its
delay planning and injections in the same run, making
the best use of testing resources.

Planning & injection in the same run Once TSVD iden-
tifies a dangerous pair of program locations (that nearly
missed each other), TSVD does not wait until the next
run to expose a potential thread-safety violation between
them. The rationale is that most instructions execute
more than once and hence most bugs have multiple
chances to manifest. This is confirmed by our experimen-
tal results in Section 5 showing that TSVD hits the same
bug multiple times. Consequently, TSVD can still try
to expose a bug after an initial near-miss. Specifically,
whenever a program location loc is going to be executed,
TSVD checks if loc is part of the current trap set. If it
is, TSVD will insert a delay at loc with probability Pj,..

Multiple testing runs The above delay injection scheme
would miss a bug if the near-miss situation observed
by TSVD was actually the only chance to expose the
bug; i.e., if the dangerous pair of locations never run
together after the pair is identified. When the testing
resource allows, TSVD runs the program for another
time, carrying the knowledge obtained from the first run,
to help discover these bugs.

During the first run, TSVD records its trap set in
a persistent trap file. At the end of the run, the trap
file contains the final set of dangerous pairs. At the
beginning of the second run, TSVD initializes its trap

set from the file, allowing it to inject delays at pairs even
at their first occurrences.

Parallel delay injection There are clear trade-off among
injecting only one delay or multiple delays throughout a
run, and allowing only one thread or multiple threads to
be delayed at a time: when multiple delays are injected,
they could cancel each other’s effect; when few delays are
injected, we will need too many runs to test all possible
delay situations.

TSVD decides to conduct delay injection in an ag-
gressive way — delays are inserted strictly following the
dangerous pair list and the decay-probability scheme,
regardless of whether another thread is already blocked.
Note that, although this aggressive strategy can cause
some injected delays to overlap with each other, the
overlaps will only be partial and are unlikely to cancel
each other out. This is because different threads will be
unblocked at different time and our decay-probability
scheme also helps avoid too many threads blocked at the
same time. On the other hand, an alternative design that
strictly avoids delay overlaps would lead to too few delay
injections and hence hurts our chance of exposing bugs
within the tight testing budget, as we will demonstrate
in the evaluation section.

3.5 TSVD with happens-before analysis

To compare TSVD with existing techniques that rely on
HB analysis, we designed a variant of TSVD, referred
to as TSVDpyp, that follows the approach of RaceFuzzer
[58]. Note that, TSVDyp uses a few optimizations to
speed up traditional HB analysis following the type of
bugs it targets.

Where to inject delays? Just like that in TSVD, TSVDyp
dynamically maintains a trap set, with every program
location appearing in the trap set a delay-injection can-
didate. At run time, TSVDyp adds a pair of program
locations {locy, loca} into the trap set, if the correspond-
ing accesses tidy, obj1,o0p; and tidy, obji, opy satisfy that
tidy # tida, obj1 = obja, op1 and opy conflict, and most
importantly they do not have happens-before relation-
ship with each other.

TSVDyp monitors synchronization operations, such
as locks, forks, and joins, and uses vector clocks [18] to
compute the happens-before relation between accesses.

TSVDyp optimizes traditional race detection to speed
up its HB analysis following the observation that, dif-
ferent from traditional race detection, where execution
traces contain few synchronization operations but many
memory accesses, TSVDyp faces many synchronization
operations (the large number of async/await in C#
cloud service modules) yet relatively few accesses (i.e.,
TSVD points — invocations of thread-unsafe methods
of some data structures).



The first optimization is to increase local timestamps
at accesses (TSVD points), which are relatively few at
run time, but not at synchronization operations, which
are relatively frequent, opposite from traditional race
detection [19].

The second optimization is that TSVDyp uses im-
mutable data structures—AVL tree-maps—to represent
vector clocks, unlike traditional implementations which
use mutable arrays or hashtables. For vector clocks with
n components, a message-send (or other similar types
of synchronization) event requires an On-time/memory
copy with traditional mutable tables, whereas immutable
clocks can be passed by reference in O1-time. On the flip
side, TSVDyp requires Ologn time/memory to perform
increment operations, whereas mutable clocks can be
updated in-place in O1 time. Fortunately, TSVDyp re-
stricts increment operations to infrequent TSVD points
only. Finally, message-receive (or other similar type of
synchronization) events require On time with both data
structures, since an element-wise max must be computed.
Fortunately, in the relatively common case where tasks
fork and join without going through any TSVD points,
the vector clocks associated with the join-message and
with the receiving thread are exactly the same object;
such an operation can be optimized to O1 by simply
checking for reference equality.

When to inject delays Unlike RaceFuzzer, which uses
many runs that are each targeted at a specific pair of
potential data races, TSVDyp aims to expose bugs in
a small number of testing runs just like TSVD. Conse-
quently, just like that TSVD, TSVDyp injects delays in
the same run as the happens-before analysis and trap-
set fill-up; it can delay multiple threads simultaneously.
When one testing run is finished, those remaining pairs
in the trap set are recorded and fed to the testing run,
if there is one. Like TSVD, TSVDyp uses a probability
decay to prune possibly spurious dangerous pairs.

4 Implementation

We have implemented TSVD for .NET applications (e.g.,
C+# and F#). It has two key components: (1) TSVD
runtime library that implements the core algorithm, and
(2) TSVD instrumenter that, given a .NET binary, au-
tomatically incorporates TSVD runtime library into it
by static binary instrumentation. We chose static in-
strumentation of application binary as this enables us
to use TSVD instrumented binaries with unmodified,
existing test pipeline (unlike framework instrumenta-
tion [65], which requires updating test pipeline with
instrumented Common Language Runtime (CLR) or
dynamic instrumentation [2], which requires modifica-
tion of test environment). While our implementation is
specific to .NET, we believe the techniques underlying

1 List<int> listObject = new List<int>();
listObject.Add (15);

(a) Original code

1 List<int> listObject = new List<int>();
int op_id = GetOpId();
3 Proxy_123(listObject, 15, op_id);
(b) Instrumented code

void Proxy_123(0Object obj,int x,int op_id) {
var thread_id = GetCurrentThreadId();
var obj_id = obj.GetHashCode ();
OnCall (thread_id, obj_id, op_id);
obj.Add(x); }

(¢) Proxy method
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Figure 7. TSVD instrumentation

TSVD can be easily implemented for other languages
and runtimes.

TSVD Instrumenter This takes a list of application
binaries and a list of target thread-unsafe APIs. In
the current prototype of TSVD, we focus on 14 C#
thread-unsafe classes (e.g., List, Dictionary) and manu-
ally identified 59 of their APIs to be write-APIs and 64
as read-APIs. This process is straightforward for these
data-structure classes and has a small cost that is easily
amortized by reusing this list for all C# program test-
ing. It then instruments the binaries by replacing each
thread-unsafe API call with an automatically generated
proxy call, as shown in Figure 7. The proxy wraps the
original call; but, before making the original call, it calls
the OnCall method (Figure 5) implemented in TSVD
runtime library. TSVD uses Mono.Cecil [28] to do the
instrumentation.

The TSVD instrumenter can be used as a command
line tool or with Visual Studio (as a post-build step).
To allow a developer to use TSVD without additional
configuration, TSVD comes with an extensible list of
thread-unsafe APIs in .NET standard libraries. The list
also includes information about whether the APIs are
read- or write-APIs.

TSVD Runtime This implements the OnCall method,
which executes the core TSVD algorithm (Figure 5).
In addition, (1) it logs runtime contexts when a bug
is detected. The contexts include bug locations (e.g.,
method name and source code line number) and stack
traces of racing threads. (2) It tracks total delay injected
per thread and per request so that one can limit the
maximum delay per thread or request. This helps in
avoiding test timeouts. (3) It tracks test coverage of
instrumented APIs. (4) Finally, it updates signatures of
instrumented signed binaries.



While using TSVD in Microsoft, we observed that
many asynchronous programs using async/await run syn-
chronously in test settings, and therefore, TSVD cannot
find thread-safety bugs that could manifest in produc-
tion runs when the programs do run asynchronously.
We found that the underlying reason is a .NET run-
time optimization that executes fast async functions syn-
chronously. This affects many tests that replace async
I/0 calls with fast mock implementations. To address
this, TSVD instruments async/await code to force all
async functions, slow or fast, to run asynchronously.
Note that, in our experiments (Section 5), this strat-
egy will be applied to not only TSVD but also all the
techniques that will be compared with TSVD.

An open-source version of TSVD is available at https:
//github.com /microsoft/ TSVD.

5 Evaluation
5.1 Methodology

Benchmarks For our evaluation, we collected approxi-
mately 43K software modules from 1,657 projects under
active development at Microsoft. We call this the Large
benchmark. These modules are regularly tested in an
integrated build and test environment. Each module
contains a collection of unit tests as well as all binaries
required to execute the tests. Together, they contain
a total of around 122K multi-threaded unit tests and
89K program binaries. To test a module with TSVD,
we instrument its binaries and run its existing unit tests.
2% of the modules also included long-running end-to-end
tests, that we also run. Of all the software modules that
were available in the integrated environment we selected
those modules which a) were written in a NET language
such as C# or F# as TSVD is currently implemented
for NET programs, b) passed all their tests over the
past 2 builds, ensuring that these modules are stable and
well-tested, and ¢) used multithreading primitives or C#
async/await mechanisms at least once. We will use this
to evaluate the bug-exposing capability and performance
of TSVD.

To evaluate TSVD against alternate designs and pa-
rameter settings, we sampled 1000 modules randomly
from the Large benchmark. We call this the Small bench-
mark. Together, this suite consists of 3350 multi-threaded
unit tests.

Experiment Setting We run the small benchmark suite
on a small server (S1), with Intel(R) Xeon(R) E5-1620
CPU, 16G Memory, and 1T SSD. Since all the software
modules under test are independent with each other, we
run 10 modules at a time on S1. We run the big suite
on a large server (S2), with Intel(R) Xeon(R) E5-2650
CPU, 128G memory, and 6T SSD. Both S1 and S2 use
Windows10 operating system.

Test Targets

# of projects 1,657

# of test modules ~ 43K

# of binaries ~ 89K

# of tests ~ 122K

Bugs found

# of unique bugs (location pairs) 1,134

# of unique bug locations 1,180

# of unique stack trace pairs 21,013

% of projects with bugs 9.8%

% of modules with bugs 1.9%
Bugs properties

% of read-write bugs 48%

% of same location bugs 34%

% of bugs in async code 70%

Avg. (Median) occurrence of a bug loca- | 36(4)

tion

Avg. (Median) # stack trace pairs/bug | 18.5(3)

Avg. Stack depth 9.1

% of Dictionary bugs 55%

% of List bugs 37%

Table 1. Summary of bugs found by TSVD tools.

5.2 Overall Results

Bugs Found Over last few months, we have been us-
ing variants of TSVD on the Large benchmark. Table 1
summarizes the results. Overall we found 1,134 bugs,
uniquely identified by the pair of static program loca-
tions participating in the TSV, involving 1,180 unique
static program locations.? 1,009 of these bugs were found
using the core TSVD we present in this paper; while
the remaining bugs came from our previous attempts of
using variants of TSVD, namely DynamicRandom and
TSVDygp.

For each bug, TSVD produces a pair of stack traces
that shows two threads actively participating in a thread-
safety violation. Note that the same bug can manifest
at multiple stack trace pairs. On the other hand, mul-
tiple bugs in a high-level data structure might show
up as a conflict in a low-level data structure with the
same program-location pair. Overall, we found the above
bugs in 21,013 different stack trace pairs (i.e., 18.5 stack
trace pairs per bug). Due to our inability to identify
whether two different stack-trace pairs correspond to
the same “bug” or not, we will use the conservative
program-location pair for unique bug counts.

On average, we found at least one bug in 9.8% of the
projects and 1.9% of the modules. As TSVD find these

2Note that unsynchronized accesses to n locations can theoretically
result in n? location pairs. However, our reported bug count (i-e.,
1,134 location-pairs) is not bloated by this phenomenon (for 1,180
locations).
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bugs while running existing tests provided by developers,
TSVD does not report false error reports.

Bug Validation We contacted four product teams in
Microsoft to validate all bugs TSVD found in their soft-
ware (total 80). All of the bugs were confirmed as true
bugs. Of these, 77 were new bugs previously not known
to the developers and the remaining 3 were concurrently
found by other means. We are still in the process of
contacting other teams.

Bug Quality 38 of these bugs were confirmed as “high
priority.” This internal classification of bugs signifies that
these bugs, if manifested in production, would result in
a customer-facing outage and thus needs to be fixed
immediately. These bugs were immediately fixed by the
developers. 22 bugs were of “moderate priority” of which
18 have been fixed so far. The remaining 20 bugs were in
non-critical code, such as the test driver or mock code
written for unit testing. While these bugs are in lower
priority, they nevertheless need to be fixed for preventing
nondeterministic test failures.

Actionable Reports Overall, the developers found the
error reports to be sufficiently actionable. The stack
traces of the two conflicting threads provide enough
detail to root cause the problem. In many cases, the
fix involves introducing additional synchronization or
replacing the data-structure with a thread-safe version
of the data structure.

Apart from the error reports, TSVD also reports sta-
tistics on the instrumentation points that were hit during
the test in any context and in a concurrent context. One
team found these “coverage” statistics to be very useful
and identified a few blind spots in their testing, such as
critical parts only called in sequential contexts during
unit testing etc.

Bug Nontriviality Note that all these software teams
employ their usual production test pipelines to uncover
various types of bugs. The bugs TSVD found had been in
their systems for many months but remained undetected
by the test pipelines. To further confirm that the bugs
TSVD finds are not easy-to-find, we worked closely with
one of the teams to track and compare the bugs found
by TSVD and those found by their usual test pipeline.
During a 3-months period, TSVD found 15 thread-safety
bugs (all confirmed as “priority one” and immediately
fixed) in their code, none of which was found by the test
pipeline during the same period.

Bug Characteristics 49% of the 1,134 bugs we found
were due to concurrent read-write conflicts on thread-
unsafe objects. An interesting root cause of such bugs
is locking only writes, but not reads, to a thread unsafe
object. 70% of the bugs were triggered by code using

# bug
Total Runl Run2 overhead # delay
DataCollider 25 22 3 378% 77402
DynamicRandom 13 6 7 178% 31456
TSVDyup 41 25 16 310% 3328
TSVD 53 42 11 33% 22632

Table 2. Comparing TSVD with other detection tech-
niques.

async/await or Task Parallel Library. Many of these
bugs were found benefiting from TSVD’s instrumenta-
tion design that forces all async functions, slow or fast,
to run asynchronously (§4). 34% of the bugs manifest
due to two threads executing the same operation. Av-
erage stack depth of the bug location from test code is
9.1, indicating that many of the bugs appear deep inside
production code. Note that the same bug location can
appear in multiple bugs (counted as location-pairs) and
the same bug can appear multiple times during the same
test run. In our experiments, a bug location appeared
35.6 times on average (median 4 times). Despite repeated
appearances, the buggy locations remained undetected
with existing test techniques in Microsoft. More than
half of the bugs involve the Dictionary data structure.
Note that .NET’s standard library includes thread-safe
ConcurrentDictionary. Yet, our results show that de-
velopers often use thread-unsafe Dictionary in multi-
threaded applications, without necessary synchronization
primitives. Talking to developers, we found one inter-
esting cause behind such incorrect usage: erroneously
assuming that two writes to a dictionary would be thread-
safe as long as the keys are different.

5.3 Comparison with other detection techniques

We compare TSVD with DataCollider and other detec-
tion techniques discussed in Section 3 using the 1000-
module Small benchmark suite. We compare them in
terms of the number of bugs found in two rounds of run
and the overhead , which is computed based on the addi-
tional amount of time imposed by a tool upon uninstru-
mented baseline testing runs. Results are summarized
in Table 2 (DynamicRandom uses 0.05 probability in its
delay injection).

Number of bugs found TSVD found the most number
of bugs: 42 bugs in the first round, and 11 additional bugs
in the second run. Each of these 11 bugs contains a TSVD
point that only executes once during the unit testing,
and hence cannot be exposed after the near-miss at the
first run. DynamicRandom and DataCollider detected
significantly smaller number of bugs as they have a small
probability (0.05 for DynamicRandom) injecting delay
at a TSVD point. They can potentially find more bugs
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Figure 8. Number of bugs found after more runs

if run additional rounds, but it would take many rounds
for them to catch the bug-reporting capability of TSVD.
TSVD outperforms TSVDyp because TSVDyp can both
miss Happens-Before edges and add spurious ones, just
like other dynamic Happens-Before-based techniques [47].
The huge analysis overhead of TSVDyp also interferes
more with bug exposing at run time.

We observed a similar trend in a larger benchmark of
8000 modules. In two rounds of run, TSVD found 256
bugs (227 in the first round), while TSVDyp found 192
bugs and DynamicRandom found 79 bugs.

One interesting observation from Table 2 is that TSVD
found more bugs in its first round alone than other
techniques found in two rounds. Moreover, TSVD’s first
round found about 80% of all bugs found by all tools.
Both these observations hold for our full benchmark
suite as well. This justifies our design of not separating
delay planning and injection into different runs. It also
provides a more resource-conserving option for using
TSVD: while testing under severe resource constraints,
one can choose to run TSVD for only one round and
still capture vast majority of the bugs.

Note that even though TSVDyp found more new
bugs than TSVD in the second round in Table 2, they
both found comparable numbers of total bugs: 41 and 53
respectively.

Performance comparison As we can see in Table 2,
TSVD not only finds the most bugs, but also with the
least overhead. The performance advantage of TSVD
over all other variants comes from two aspects. Compar-
ing with DynamicRandom, TSVD injects most delays
when program running with multiple threads. Dynami-
cRandom injects many delays in sequential phase which
never detects bugs but also introduces huge overhead.
Comparing with TSVDyg, TSVD and TSVDyg both in-
ject delay in the concurrent phase, yet TSVDyp spends
much time in analyzing the happens-before relationship
at run time, which introduces 270% run-time overhead
on average in our experiments.

Number of bugs after more runs Given the non-deterministic

nature of TSVs and the probabilistic nature of some of
these techniques, we ran each of these techniques 50
times with the Small benchmark suite to see how many
bugs can be found at the end. As we can see in Figure 8,
even after many more runs, the bug detection advan-
tage of TSVD still holds over the other techniques. All
the four techniques altogether discovered 79 bugs at the
end, with 73 of them discovered by TSVD, 54 of them
discovered by TSVDyp, and much fewer by the other
two. Furthermore, most of these bugs (close to 70%) can
indeed get caught with just two runs of TSVD! We will
use these results to help understand the false negatives
of TSVD next.

False positives of TSVD TSVD does not report any
false positives. Every bug reported by TSVD is a true bug
— a thread-safety violation can and is already triggered
by TSVD.

False negatives of TSVD Given the non-deterministic
nature of TSVs and the tight testing budget TSVD
faces, TSVD inevitably has false negatives. Since it is
impractical to know the ground truth about how many
TSVs exist in our benchmarks®, we use the 79 bugs
discovered by 4 tools at the end of accumulated 200 runs
in Figure 8 as our best-effort ground truth. We analyzed
the 26 bugs that were missed by TSVD in its merely 2
testing runs and put them into three categories:

(1) Near-miss false negatives. For 19 bugs, the two
racing operations execute close to each other only under
rare schedules (e.g., a resource usage and a resource
de-allocation). In most runs, there is a long time gap be-
tween them, like more than a few seconds. Consequently,
the near-miss tracking in TSVD did not identify them as
a dangerous pair and hence injected no delays to expose
the bug in two runs. After running TSVD for 50 runs,
15 out of these 19 bugs were caught.

(2) Happens-before inference false negatives. For 2
bugs, TSVD’s HB inference mistakenly treats two con-
current operations as happens-before ordered, and hence
lost the opportunity of triggering the bug. Even after 50
runs, these 2 bugs still cannot be detected by TSVD.

(3) Delay-injection false negatives. For 5 bugs, the
timing during the two testing runs happens to be that
the injected delay was not long enough to trigger the
bug. After running a couple of more runs, these bugs
were all discovered by TSVD.

Finally, given the design goal of TSVD, it will natu-
rally miss timing bugs that are not TSVs. For example,
a recent study of real-world incidents in Azure software

3Note that, before the use of TSVD, few TSVs were known in the
code base tested by TSVD, which is exactly the motivation behind
TSVD.



[37], a similar set of software projects that TSVD ex-
periments target, showed that many more incidents are
caused by timing bugs than that in traditional single-
machine systems and about half of these timing bugs are
related to concurrent accesses to persistent data. The
current prototype of TSVD only focuses on in-memory
data structures and hence cannot detect these persistent-
data bugs. Future research can extend the idea of TSVD
to detect other types of timing bugs.

5.4 Evaluating TSVD parameters

We now use the 1000-module small benchmark suite for
parameter-sensitivity experiments.

Probabilistic nature of TSVD Since TSVD injects de-
lays probabilistically, one may wonder how much the
results of TSVD may vary across different tries. Fig-
ure 9(a) shows the number of detected bugs and the
overhead of TSVD across 12 tries. In every try, TSVD
uses the same default parameter setting and is applied
to two consecutive runs, just like that in Table 2. As we
can see in the figure, the results indeed vary across tries,
but only slightly: the number of detected bugs varies
from 52 to 54 and the overhead varies between 30% and
35%, with a median of 53 bugs and 33% overhead.

Near-miss tracking parameters TSVD uses two param-
eters for tracking near-misses: the number N,,,, of recent
accesses that TSVD keeps for each object and the physi-
cal time window T,,,, that TSVD considers two accesses
as a near miss. As shown in Figure 9(b) and (¢) (note
log-scale of the x-axis), roughly speaking, both bug count
and overhead increase with both parameters. Using too
small a value (e.g., Ny = 1 or Ty, = 1ms) misses many
bugs because of not identifying dangerous pairs. TSVD’s
default values of Ny, = 5 and T}, = 100ms finds al-
most all the bugs, with small overhead. Larger values
do not significantly increase bug count, but increases
overhead (especially for Ny, ).

HB inference parameters TSVD uses two parameters
for HB inference: a causal-delay blocking threshold dy
and an inference window of kpp, accesses (Section 3.4.4).
Figure 9(d) shows the effect of varying dpp from 0 to 0.8.
A value too small like 0 infers many non-existing HB
relationships, and hence misses many bugs; a larger value
has stricter constraints in inferring HB relationship. As
shown, the overheads and bug counts do not change much
beyond TSVD’s default value of 0.5. Figure 9(e) shows
the effect of varying kpp. A larger value translates to more
HB relationship, reducing the number of dangerous pairs,
and eventually the number of bugs and overhead. Too
large a value drastically reduces the bug count. TSVD’s
default value of kpp, = 5 gives a sweet spot between bug
count and overhead.

# bug
Total Runl Run2 overhead
TSVD 53 42 11 33%
No HB-inference 45 36 9 84%
No windowing in near-miss 46 35 11 143%

No concurrent phase detection 54 42 12 61%

Table 3. Removing one technique at a time from TSVD

Buffer size of concurrent phase detection Figure 9(f)
indicates that the overhead and the number of detected
bugs both grow with the size of the global history buffer
— with a large buffer, TSVD may mistakenly treat sequen-
tial operations as concurrent and generate dangerous
pairs that do not lead to any bugs; yet, with a small
buffer, real concurrent operations can be mistakenly
treated as sequential. TSVD uses a default size of 16
that gives a good trade-off between overhead and bug
count.

Delay injection Figure 9(g) shows the impact of decay-
ing delay injection probability at each TSVD point. A
particularly bad configuration is when the factor is 0,
meaning that TSVD injects delay in all occurrences of
these TSVD points without any decay. This configura-
tion would introduce too much overhead: for 3% mod-
ules, the overhead of zero decay was more than 100%
(maximum overhead we observed was 6600% for one
module!). These modules use TSVD points repeatedly
and frequently (e.g., they are inside loops). Figure 9(h)
shows the impact of the amount of delay TSVD injects
at one trap point. As expected, longer delay increases
runtime overhead, but also creates more opportunities
for conflicting operations to overlap in time. TSVD uses
100ms as the default value.

Effectiveness of various TSVD techniques Table 3 shows
how TSVD performs when one of its core components is
disabled at a time. (In “No windowing”, TSVD treats
conflicting accesses by different threads in the entire his-
tory as near-misses.) As the results show, HB-inferencing
and windowing are the most crucial techniques for find-
ing bugs—without them bug counts drop from 53 to
45 and 46. Windowing is the most important factor in
reducing overhead—without it, overhead increases from
33% to 143%. Overall, all the techniques are needed for
TSVD’s effectiveness.

5.5 TSVD CPU/Memory Consumption

To understand the detailed resource consumption of
TSVD, we ran every unit test in the Small benchmark
suite with and without TSVD, while recording the largest
memory usage and average CPU usage in each run.
Across all the unit tests, the median increase on maxi-
mum memory is 17% and the median increase on average
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Figure 9. Sensitivity analysis of various parameters of TSVD.

1 Async Task<T> ClientStatusUpdate(int clientID,
2 Status s){
3 C
4 GlobalStatus[clientID] = s;
5 }
(a) Device Manager
1 Parallel.ForEach(hostlist,
2 delegate(string host){
3 Configlevel cl = GetConfigLevel (host);
4 configureCache [host] = cl;
5 C
6 X )

(b) Network Validation
Figure 10. Examples

CPU utility is 82%. The extra memory is mainly used
for keeping the near-miss pairs and the access history
of every thread-unsafe object. The extra CPU utility is
mainly due to our instrumentation that forces all async
functions to run asynchronously, as explained in Section
4. In comparison, without TSVD, the .NET optimization
makes many async functions run synchronously, using
much fewer cores.

5.6 Examples of bugs found by TSVD

Device Manager As shown in Figure 10(a), a device
manager uses a Dictionary GlobalStatus to maintain
the status of every client, where client ID is the key and
the client status is the value. The device manager has

a thread responsible for listening from multiple clients.
Whenever the manager receives a message from a client,
this listening thread will create an asynchronous task
shown in Figure 10(a) to update the status of the corre-
sponding client, and continue its listening. A concurrent
write violation on the Dictionary class could happen
when two clients send messages at similar time, which
could then cause two concurrent execution of Line 4
in the figure and hence two concurrent Dictionary-set
operations. As a result, the GlobalStatus Dictionary
could get silently corrupted.

Network Validation Figure 10(b) shows another exam-
ple of concurrent- write violation on a Dictionary class,
which has a very different code pattern from the first
example. When a network service starts up, a validator
needs to verify the configuration information of every
host, which involves reading a host’s configuration in-
formation (Line 3) and storing it to a configureCache
Dictionary for further verification. To speed up this pro-
cess, the validator uses a Parallel.ForEach primitive
(Line 1) to parallelize the validation for different hosts.
The Parallel.ForEach automatically generates multi-
ple concurrent threads and when some of these threads
concurrently execute Line 4, a concurrent-write violation
occurs to corrupt configureCache.

Production-Incident Example This is a bug about two
threads trying to sort a list at the same time in a pro-
duction run. The sorting result of an unprotected list
is undetermined when two threads are doing that con-
currently. This undetermined behavior propagated and



Project LoC # tests # run # TSV overhead
ApplicationInsights [3] 67.5K 934 2 1 1531%
DataTimeExtention [12] 3.2K 169 1 3 18.51%
FluentAssertion [20] 783K 3076 1 2 8.89%
K8s-client [33] 332.3K 76 2 1 11.79%
Radical [50] 96.9K 965 1 3 1552.13%
Sequolocity [59] 6.6K 209 1 3 2.97%
Stastd [62] 25K 34 2 1 972%
System.Ling.Dynamic [63] 1.2K 7 1 1 41.39%
Thunderstruck [64] 1.1K 52 1 2 3.33%

Table 4. TSVD results on open source projects.

finally caused the service to go down for several hours.
TSVD can reproduce this bug without any prior knowl-
edge and help the developers reduce the debugging effect.

5.7 TSVD on Open Source Projects

To evaluate whether TSVD can be used beyond Mi-
crosoft, we applied TSVD to 9 open source C# projects
(Table 4). Without any existing C# bug benchmark
suite, we searched Github using “race condition” key-
word and identified these 9 that contain (1) confirmed
bug reports about TSVs on standard library APIs and
(2) developer-written test cases.

Using exactly the same parameters as before, TSVD
successfully detects and triggers all the TSVs under test
in at most 2 runs. For all but 3 projects, TSVD detects
these bugs using the original test cases released with the
buggy software — if TSVD was used, these bugs would
have been caught before code release. For Thunderstruck,
TSVD detects one TSV that was not part of the original
bug report.

We also evaluated the performance of TSVD on all
the test cases. The overhead is mostly <20%, consistent
with earlier performance results. Two projects incur large
overhead, as they have many short-running tests (<1
ms). The average slowdown for their tests is actually less
than 400ms.

6 Related Work

Data Race Detection Since the tolerance for false error
reports is low in our context, we do not focus on static
data-race-detection techniques [13, 16, 36, 66]. TSVD
is closely related to dynamic active data-race detection
techniques [47, 58], as discussed in Section 1 and Fig-
ure 2.

Dynamic passive detection techniques [19, 48, 57, 60,
65] perform happens-before analysis, lock-set analysis, or
a combination of the two to predict whether a data race
could have manifested. Recent work [27, 32, 61] infer
more data races by generalizing beyond executions that
are happens-before equivalent to the current execution.
These techniques pay the runtime cost of monitoring
synchronization operations and also suffer from false

positives [30, 45, 58]. Several techniques have used sam-
pling to reduce the runtime overhead [5, 31, 42], but like
DataCollider [14], they need to repeatedly run the test
many times to expose bugs.

Another type of passive detection tools like AVIO [38]
and Bugaboo [39] catches concurrency bugs when they
manifest at run time. Since they do not predict or expose
bugs that have not manifested yet, which TSVD does,
they do not need to analyze happens-before relation but
are also fundamentally unsuitable for the build and test
environment TSVD targets.

Race detection was studied for asynchronous event-
driven programs such as Android apps and Web applica-
tions [25, 26, 40, 53]. There, the key challenge is to model
and analyze the causality between asynchronous requests
and responses, which incurs huge run-time slowdowns.
TSVD instead automatically infers happens-before rela-
tionships. While not the focus of this paper, techniques
behind TSVD can work for applications targeted by
these works.

Systematic Testing Systematic testing techniques dis-
cover concurrency errors by driving the program towards
different possible interleavings [6, 7, 21, 22, 24, 35, 43].
These techniques are either guided by the need to cover
all interleavings within some bound [21, 22, 35, 43], or a
coverage notion [6, 24], or provide a probabilistic guar-
antee of finding bugs [7]. While these techniques can
find general concurrency bugs, they are not designed to
discover most bugs in a small number of runs. Instead,
TSVD is specifically designed for finding TSVs within the
first few runs and without paying the cost of controlling
the thread scheduler.

Generating Unit Tests Tools were proposed to synthe-
size unit tests to help expose concurrency bugs inside
library functions [9, 49, 54, 55]. Given multi-threaded
libraries that are expected to allow safe concurrent in-
vocations, these tools synthesize concurrent method-call
sequences to help expose bugs inside the library imple-
mentation. They are orthogonal to TSVD: TSVD focuses
on improving the efficiency of exposing thread-safety vi-
olation bugs through existing unit tests of software that
uses thread-unsafe libraries.

Timing hypothesis Snorlax [29] reproduced and diag-
nosed in-production concurrency bugs leveraging a coarse
interleaving hypothesis. Snorlax experiments showed that
the time elapsed between events leading to concurrency
bugs ranges between 154 and 3505 micro-seconds, based
on which Snorlax could reproduce concurrency bugs
without fine granularity monitoring and recording. This
coarse-interleaving hypothesis and TSVD’s near-miss
tracking look at different aspects of concurrency bug’s
timing window characteristics — Snorlax believes the



timing window is not as small as people used to think,
and TSVD believes conflicting accesses in small windows
are more likely to lead to real bugs — and leverage the
characteristics in different ways.

Causality inference Past work has used run-time trace
analysis to infer happens-before relationship among mes-
sage sending/receiving operations or distributed sys-
tem tasks in the context of system-performance analysis
[1, 10] and network-dependency analysis [8]. Due to the
different usage scenarios, the exact inference algorithms
differ between TSVD and these previous tools. Previous
tools all require a large number of un-perturbed system
traces, and statistically infer happens-before relation-
ship based on whether two operations never flip execu-
tion order [10] or always execute with a nearly constant
physical-time gap in between [8]. Different from previous
tools, TSVD works in the unique testing environment
where the system trace contains much perturbation in-
troduced by TSVD; TSVD also faces the unique goal
of finding bugs in a small number of runs, and hence
cannot wait until a large number of traces become avail-
able. Consequently, TSVD’s happens-before inference
is uniquely designed based on observing delays in each
testing run.

7 Conclusion

This paper presents a new thread-safety violation detec-
tion technique TSVD. Being part of an integrated build
and test environment, TSVD provides a push-button no-
false-positive bug detection for .NET programs that use
complex multi-threaded and asynchronous programming
models with a wide variety of synchronization mecha-
nisms. TSVD provides a starting point for exploring
the wide design space of active testing and resource-
conscious delay injection design. Future research can
further explore how to balance bug exposing capability,
accuracy, and cost.
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