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Abstract— Direct visual odometry and Simultaneous Lo-
calization and Mapping (SLAM) methods determine camera
poses by means of direct image alignment. This optimizes a
photometric cost term based on the Lucas-Kanade method.
Many recent works use the brightness constancy assumption in
the alignment cost formulation and therefore cannot cope with
significant illumination changes. Such changes are especially
likely to occur for loop closures in SLAM. Alternatives exist
which attempt to match images more robustly. In our paper, we
perform a systematic evaluation of real-time capable methods.
We determine their accuracy and robustness in the context of
odometry and of loop closures, both on real images as well
as synthetic datasets with simulated lighting changes. We find
that for real images, a Census-based method outperforms the
others. We make our new datasets available online3.

I. INTRODUCTION

Direct methods for camera pose estimation based on the
Lucas-Kanade method [1] have become popular recently in
visual odometry and SLAM (c.f . [2]–[5]). They can use
more image information than feature-based methods which
are limited to certain feature types. Feature-based methods
compute descriptors such as SIFT [6] to gain invariance
against appearance changes. In contrast, many recent works
that use direct methods [2]–[5], [7]–[15] compare pixels
based on the brightness constancy assumption and treat
appearance changes due to lighting variations as outliers. As
our results show (c.f . Fig. 5), this fails as soon as larger
illumination changes occur. Since the illumination cannot
always be controlled in real-world applications, there is a
need for direct image alignment methods which are both
real-time capable and robust against light changes. In this
paper, we aim to evaluate such methods with respect to their
accuracy and robustness, determining the trade-off between
invariance and matching ambiguity that has to be made.

We evaluate this both in the context of visual odometry,
where illumination changes between subsequent frames are
usually small, and in scenarios such as loop closures, where
significant illumination changes are common. In particular,
we make the following contributions: i) We provide an
extensive evaluation of fast, lighting change robust direct
pose tracking methods. ii) We introduce an extension to the
ICL-NUIM dataset [16], [17] (see Fig. 1) and provide RGB-
D sequences recorded by a Kinect which allow to evaluate
robustness against global and local lighting changes.
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Fig. 1. Example images from our extension to the ICL-NUIM dataset [16]
exhibiting high temporal variation in illumination. Clockwise from the top
left: static lighting, global variation, flashlight, local variation.

II. RELATED WORK

We first survey methods for illumination invariance used
in recent works utilizing direct pose estimation. Then we
discuss related works on evaluating robust image matching.

Methods. A large number of recent works (e.g., [2]–[5],
[7]–[15]) rely on the brightness constancy assumption and do
not directly account for illumination changes. Small image
regions affected by local light changes are treated as outliers.
We describe this baseline approach in Sec. III.

[18]–[20] gain robustness against global intensity biases
by subtracting the median value from the pixel residuals.
Local illumination changes are downweighted by the Huber
function. We detail this method in Sec. IV-A.

Several works [21], [22] jointly optimize for the relative
pose as well as an affine brightness transfer function be-
tween the images. In DSO [23], in addition a photometric
calibration of the camera is used to explicitly account for
its response function, vignetting and exposure time changes,
if known. Jin et al. [24] estimate affine models for local
patches, handling more fine-grained illumination changes.
We evaluate the approach of [21] as described in Sec. IV-B.

Mutual Information (MI) is a metric which is well suited
for aligning images with vastly different appearance. While
it has not been used for visual odometry yet, efficient
optimization methods for it have been proposed. Dame and
Marchand [25] present an inverse compositional approach
in the context of real-time template tracking. In contrast to
earlier works (e.g. [26], [27]), they take second order terms
of the cost function’s Hessian into account and show that
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this is important for the optimization. However, as noted
by Fraissinet-Tachet et al. [28], their derivative terms are
incorrect. We evaluate the use of MI for tracking based on
[25], [28] as described in Sec. IV-D.

Another approach is to compare gradients (instead of
comparing raw image intensities) as used by Dai et al. [29].
We describe this approach in Sec. IV-F and also evaluate
using gradient magnitudes in Sec. IV-E.

In the context of planar template tracking, the use of
Zero-Mean Normalized Cross Correlation (ZNCC), which
is invariant against affine intensity changes, has also been
explored. Scandaroli et al. [30] present an efficient Newton-
style optimization for ZNCC-based tracking and propose to
increase its robustness against local outliers by subdivision
and weighting of the template region. Irani and Anandan
[31] propose to transform the images into high-pass energy
images and align those by optimizing a patch-based ZNCC
cost. We evaluate ZNCC applied to whole images using the
formulation in [30], described in Sec. IV-C.

Crivellaro and Lepetit [32] present an approach based on
dense descriptor computation. They specifically aim to obtain
a clear global optimum of the cost function, allowing for a
wide basin of convergence on low-pass filtered images. We
evaluate their first-order descriptor, defined in Sec. IV-H.

Recently, the Census transform [33] has been proposed to
be used for direct camera tracking by Alismail et al. [34].
We describe this approach in Sec. IV-I.

Other related methods include that of Silveira and Malis
[35], who present a template tracking approach which explic-
itly models illumination changes on the planar template, as-
suming smooth changes. It does not directly apply to general
scenes, since the smoothness assumption is violated at depth
discontinuities. Meilland et al. [36] model the environment in
high dynamic range by estimating the exposure time jointly
with the pose, which allows to globally account for camera-
induced brightness changes. However, we are also interested
in accounting for externally introduced illumination changes.
Furthermore, Bartoli [37] describes how to extend the inverse
compositional approach for pose updates to also handle
photometric differences while keeping the ability for pre-
computing the inverse of the Hessian matrix.

Cross-Cumulative Residual Entropy [38] and Sum of Con-
ditional Variance [39] are further metrics for robust image
alignment that are used in template tracking, which are out
of the scope of this paper.

Evaluations. Antonakos et al. [40] look at the alignment
quality achieved by different descriptors in dense descriptor
based face alignment and fitting. They find that HOG [41]
and SIFT [6] work particularly well. For their case, warping
descriptors computed on the original images outperforms
computing descriptors on the warped images in each itera-
tion. In contrast to this our results indicate that, by adopting
good depth maps which can be used for reprojection, re-
computing descriptors on warped images significantly out-
performs warping descriptor images. We consider dense
computation of expensive descriptors like SIFT for whole

images as currently unsuitable for real-time tracking and
therefore do not evaluate this.

For the problem of optical flow computation, an evaluation
of matching costs has been carried out by Vogel et al. [42].
They find that the Census transform, and an approximate
variant of it, have a slight advantage over other methods.
Optical flow differs from direct image alignment in that
much more unknowns are optimized compared to the resid-
ual count, and regularization is necessary to constrain the
optimization.

Hirschmüller and Scharstein [43] evaluate different match-
ing metrics in stereo depth estimation for images with radio-
metric differences. They conclude that the Census transform
showed the best overall performance. Similar to optical flow,
stereo matching aims to determine much more unknowns
per residual than direct image alignment, thus potentially
requiring more discriminative cost metrics per pixel.

III. DIRECT ALIGNMENT FOR CAMERA POSE TRACKING

In this section, we describe the basic cost formulation that
other approaches presented later build on, as well as the
optimization approach we use. This basic formulation is in
this or a similar form used in many existing works (e.g., [2]–
[5], [7]–[15]), therefore allowing for wide applicability of our
results. We aim to look at the robustness of the photometric
residual in isolation and thus do not use depth residuals. We
refer to [13] for a comparison between using photometric
residuals only, depth residuals only, and both. In this section,
we also present two ways of using descriptors for alignment.

Cost. We model images as functions mapping a pixel
coordinate to an image intensity value obtained using bilinear
interpolation, e.g. I : R2 → R, respectively a depth value
computed using nearest-neighbor interpolation for depth
maps. The input images are a template T with a depth map
D, and an image I which shall be aligned to the template,
for which no depth information is needed. D contains depth
values for a subset ΩD of all pixels in T . A warp function
W (x, d,M) re-projects a pixel with coordinates x and depth
d from one image to another given the rigid transformation
matrix M ∈ R3×4 for their relative pose:

W (x, d,M) = πI1(M · π−1
I2

(x, d)) (1)

Here, πI1 denotes the projection of a 3D point into image
I1, and π−1

I2
analogously denotes un-projection of a pixel

with given depth from image I2 to a 3D point. The image
intrinsics for πI1 , π−1

I2
are given by the context of the re-

projection. The multiplication with M uses homogeneous
coordinates. Fig. 2 (left) illustrates the warp. In the following,
we abbreviate the notation as xM := W (x, D(x),M).

Starting from an initial guess for the pose, the image align-
ment can then be formulated as an optimization problem. The
basic cost term is:

C(M) =
1

|ΩD|
∑

x∈ΩD

ρ (I(xM)− T (x)) (2)

Here, ρ is a robust weighting function which downweights
outliers such as moving objects and specular reflections, for
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Fig. 2. Left: Sketch of the warping function for pixel-wise cost calculation.
Each pixel x with a depth estimate d is unprojected from the template T ,
and reprojected into the image I for the intensity lookup. Middle: If looking
up pre-computed patch descriptor vectors based on the warped center pixel
(blue), patch pixels (gray) used for descriptor computation do not necessarily
correspond to the same surface points, even at the correct pose estimate. We
depict interpolated pixel rays here for clarity. Right: If the depth of all patch
pixels is known, warping each pixel separately allows using patch-based
metrics while all patch pixels correspond in the case of correct alignment.

which we choose the Huber norm [44]:

ρk(r) =

{
r2

2 , if |r| ≤ k
k(|r| − k

2 ), otherwise
(3)

In this work, we use the inverse compositional (IC)
formulation [1] of the cost which allows to precompute some
terms for higher runtime performance. In this formulation,
the roles of the image and template are swapped, and the
cost is optimized with respect to a transformation increment
∆M over the current estimate M:

C(∆M) =
1

|ΩD|
∑

x∈ΩD

ρ(I(xM)− T (x∆M)) (4)

After determining ∆M, M is then updated as M :=
M(∆M)−1 and ∆M reset to 0. For evaluations of the
IC formulation compared to the forwards compositional and
efficient second order method, we refer to [21], [32].

Optimization. Eq. (4) is typically minimized using the
Gauss-Newton or Levenberg-Marquardt algorithm. In this
work we use the latter, and account for the robust cost
functions with Iterative Re-weighted Least Squares. For a
minimal parametrization of pose updates, we represent them
as se(3) Lie algebra elements in minimal notation and use
the exponential map to obtain pose updates in SE(3) [45].
∆M in Eq. (4) is therefore replaced by exp(ε̂) with ε̂ ∈
se(3), where the hat operator (̂·) transforms the minimal
representation to a Lie Algebra element. As is also common,
the optimization is embedded into a multi-resolution scheme
to achieve a larger basin of convergence.

Descriptors. In Sec. IV, variations of Eq. (4) will be
introduced which compute the cost based on patches of pixels
instead of operating on single pixels only. We denote the
descriptor vector computed from a patch P = {x1,x2, . . .}
in image I as d(I, P ).

We evaluate two different ways of using descriptors. The
first is to compute dense descriptor images for T and I ,
DT and DI . For each pixel in those images, a descrip-
tor is computed based on its local neighborhood N(x):
DI(x) = d(I,N(x)). Then, descriptor images are aligned
by minimizing:

C(∆M) =
1

|ΩD|
∑

x∈ΩD

ρ(‖DI(xM)−DT (x∆M)‖2) (5)

This is fast to compute as the descriptor images can be
precomputed, but does not take the warp into account for
descriptor computation. As a result, in general corresponding
patches are not computed from the same surface points, as
illustrated in Fig. 2 (middle), which will degrade the results.

An alternative is to compute descriptors from warped
images, as shown in Fig. 2 (right):

C(∆M) =
1

|ΩD|
∑

x∈ΩD

ρ(‖d(I,N(x)M) −

d(T,N(x)∆M)‖2) (6)

Here, we extend the notation xM for a reprojected pixel to
sets of pixels where each pixel is reprojected separately. We
drop any pixels x for which at least one depth value in N(x)
is missing in this formulation, as the warped image values
for computing the descriptor cannot be obtained in this case.
An exception to this is the method presented in Sec. IV-G,
which uses each pixel having a depth estimate and at least
one additional depth estimate in N(x).

While the latter variant of using descriptors is slower, it
correctly takes the warp into account for comparing patches.
Note that the derivatives of this variant can be slow to
compute or uninformative depending on the descriptor. We
therefore use an approximation which is also employed in
[40] and use the descriptor image gradient instead, assuming

∂

∂ε
d(T,N(x)∆M) ≈ ∇DT

∂

∂ε
x∆M (7)

IV. ILLUMINATION CHANGE ROBUST FORMULATIONS

In this section, we present variations to the brightness
constancy assumption (BCA) based formulation of Sec. III
which aim to improve its robustness against illumination
changes. The selection of methods is intended to cover
real-time capable methods suited for direct SLAM. The
methods described in Sec. IV-A - IV-D use global models
for intensity changes between the images. The following ones
described in Sec. IV-E - IV-G are based on image gradients
which leads to invariance against local intensity bias changes.
Finally, Sec. IV-H, IV-I present patch-based methods similar
to matching cost metrics in 3D reconstruction, respectively
descriptors in feature-based SLAM. Tab. I lists the theoretical
invariance properties of the presented methods, and (quali-
tative) actual robustness against global and local changes as
derived from our results (Fig. 5).

A. Global median bias normalization (GMedian)

[18], [19] suggest to normalize for global intensity bias
using the median of the residuals. Before each optimization
step, the bias is estimated as:

β = medianx(I(xM)− T (x∆M)) (8)

Eq. (4) then becomes:

C(∆M) =
1

|ΩD|
∑

x∈ΩD

ρ(I(xM)− T (x∆M)− β) (9)



TABLE I
ILLUMINATION INVARIANCE PROPERTIES OF THE EVALUATED METHODS. +, O, AND - DENOTE HIGH, MEDIUM, AND LOW INVARIANCE.

BCA (III) GMedian (IV-A) GAffine (IV-B) ZNCC (IV-C) MI (IV-D) GradM (IV-E) Grad (IV-F) LMean (IV-G) DF (IV-H) Census (IV-I)
Invariance domain none global global global global local local local local local
Invariance type none bias affine affine mutual inf. bias bias bias bias order-preserving
Global changes - o o + + + + + + +
Local changes - o o o o + + + + +

B. Global affine model (GAffine)
In this formulation (e.g., used in [21], [22]), the intensities

of one of the two images being aligned are transformed by
an affine function to model global light or exposure changes.
I(xM) is thus replaced by (1 +α)I(xM) +β in Eq. (4). By
using an inverse update rule, Eq. (4) becomes:

C(∆M, δα, δβ) =
1

|ΩD|
∑

x∈ΩD

ρ((1 + α)I(xM) + β −

(1 + δα)T (x∆M)− δβ)
(10)

Each iteration jointly optimizes for both ∆M and δα, δβ.
The coefficients α and β are then updated as follows after
each iteration, and δα and δβ are reset to zero afterwards:

α :=
α− δα
1 + δα

β :=
β − δβ
1 + δα

(11)

C. Zero-mean normalized cross correlation (ZNCC)
ZNCC is a correlation metric which is invariant against

affine intensity changes. The ZNCC of the template image
with the other image can be computed as:

ZNCC(∆M) =

∑
x∈ΩD

ixtx√∑
x∈ΩD

i2x

√∑
x∈ΩD

t2x

(12)

with ix = (I(xM) − Ī), tx = (T (x∆M) − T̄ ) where
Ī = 1

|ΩD|
∑

x∈ΩD
I(x). For image alignment, Eq. (12) is

maximized. We refer to [30] for details of the maximization.

D. Mutual information (MI)
Mutual information is a measure of the dependence of two

random variables. In the context of matching images, it can
be defined as:

MI(∆M) =
∑

r,t∈ΩI

pIT (r, t,∆M) log

(
pIT (r, t,∆M)

pI(r)pT (t,∆M)

)
(13)

where ΩI is the domain of a histogram of image intensities,
and p denotes the occurrence probability of the intensities
associated with a bin. pI(r) is the probability of intensity bin
r in image I. pT and pIT are the template bin and joint bin
probabilities, given ∆M. For calculation and optimization
of this metric, we largely follow the real-time capable
formulation of [25], with improvements as noted in [28]:
We use Levenberg-Marquardt as the optimization algorithm,
and use the derivatives of MI of [28]. In addition, since in
our case parts of the template may be unobserved in the other
image, we re-compute the Hessian at the start of every scale
in the multi-scale optimization to only take the currently
overlapping pixels into account.

E. Gradient magnitude (GradM)

Instead of aligning raw image intensities, this formulation
aligns gradient magnitudes and is therefore invariant against
local intensity bias changes. [32] includes this formulation in
its evaluation. Here, we view gradient computation for a pixel
in image I as a function depending on the pixel’s neighbor-
hood: ∇(I,N(x)). We thus use cost function (5) or (6) for
this method, with the single-component descriptor defined as
the gradient magnitude: d(I,N(x)) = ‖∇(I,N(x))‖2. This
allows to compute the gradient from warped neighbor pixel
coordinates, c.f . Eq. (6) and Fig. 2 (right).

F. Gradient (Grad)

Similar to the previous formulation, this variant uses gra-
dients to be invariant against local bias changes, but matches
them directly in vector form. This has been used in [29]. The
descriptor for this method is d(I,N(x)) = ∇(I,N(x)).

G. Local mean bias normalization (LMean)

This formulation locally normalizes pixel intensities by
subtracting from them the mean intensity of a patch around
them and is therefore also invariant against local bias
changes. This normalization has for example been applied to
stereo depth estimation in [43]. The cost can be formulated
using a single-component descriptor:

d(I,N(x)) = I(x)− 1

|N(x)|
∑

y∈N(x)

I(y) (14)

H. Descriptor fields (DF)

This descriptor-based method [32] defines d as follows:

d(I,N(x)) =
[
[(f1 ∗ I)(x)]+, [(f1 ∗ I)(x)]−, . . . ,

[(fn ∗ I)(x)]+, [(fn ∗ I)(x)]−
]T

, (15)

where the fi are convolution kernels applied to the image I ,
and the [·]+ and [·]− operators keep only the absolute value
of positive respectively negative values:

[x]+ =

{
x, if x ≥ 0

0, otherwise
, and [x]− = [−x]+ . (16)

We implemented the first-order variant included in the open
source code of [32], which is well-performing according to
[32] and uses the derivatives of a Gaussian with standard
deviation 1 as convolution kernels: f1 = Gx, f2 = Gy .

I. Census transform (Census)

The Census transform [33] is popular in stereo depth esti-
mation. This local descriptor is invariant against all intensity
transformations that preserve the intensity ordering, but may



provide less precise information about the exact alignment
than other metrics. Recently, it has also been applied to visual
odometry as the ’bit-planes’ descriptor [34]. To compute
the Census transform for a pixel x, the intensity of each
pixel in its local neighborhood N(x) is compared to that of
pixel x. Each comparison results in one bit of information
indicating whether the central pixel is brighter or darker than
the other one. The choice of comparison operator (<, ≤, ≥,
>) must be consistent, but the exact choice is irrelevant.
All bits obtained by this procedure are concatenated to form
the descriptor. Following [34], we treat them as individual
components of a descriptor vector d(I,N(x)) here. We
use a 3×3 neighborhood in our implementation. The i-
th component of the descriptor is thus defined as follows,
depending on the i-th neighbor pixel xi ∈ N(x) \ {x}:

d(I,N(x))i =

{
1, if I(x) < I(xi)

0, otherwise
(17)

Gradient-based optimization is in principle not suited to op-
timize an alignment using this descriptor, since the gradient
is zero or undefined everywhere. The gradient approximation
in Eq. (7) makes it possible to obtain results. One can also
approximate the Census transform to avoid this issue [42].

V. EVALUATION

We first describe the datasets used in our evaluations in
Sec. V-A. We evaluate different parameter settings for our
methods in Sec. V-B. We then test the methods using the
best parameters we determined both in the context of high
frame rate visual odometry where changes between frames
tend to be small (Sec. V-C), as well as by aligning images
with different appearance to simulate loop closures (Sec. V-
D). We list the timings of our implementations in Sec. V-E.

A. Datasets
We perform visual odometry testing on datasets from three

different sources: first, we evaluate on sequences from the
commonly used TUM RGB-D dataset [46] to allow compar-
isons between our results, and those of previously published
works. However, these datasets only contain minor illumi-
nation variations. Thus, we generated synthetic sequences
based on the ICL-NUIM dataset [16] to specifically test for
robustness against such variations. Synthetic data was used
to have perfect ground truth and control over the sequence
setup. We apply noise to the depth maps as in [17]. Each
sequence (s1, s2) is generated in five variations: first, with
its default, fixed lighting configuration (const). Second,
with gradual temporal global and local lighting changes both
individually (global, local) and jointly (loc+glo). The
last variant (flash) simulates a flashlight attached to the
camera. Finally, to test illumination invariance on real data,
we acquired RGB-D sequences using a 1st-generation Kinect
with ground truth provided by a VICON system. We recorded
3 sequences with variations similar to our synthetic datasets:
global, local, flash.

For loop closure testing, we additionally generated syn-
thetic image pairs with a resolution of 320×240 by rendering
3D reconstructions created with a Google Tango device [47].

TABLE II
SELECTED HUBER PARAMETERS

BCA GMedian GAffine GradM Grad LMean DF
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Fig. 3. Left: Translational drift (black) and runtime (green) for varying
patch sizes in LMean. Right: Mean translational drift of visual odometry
for three groups of sequences: TUM, synthetic (ICL-NUIM) and real. The
green bars qualitatively show rotational drift, scaled to the same mean value.

B. Parameter evaluation

We tune the methods’ parameters by running them in
a visual odometry setting on a set of training sequences.
We use the tools provided in [46] to evaluate the accuracy.
Trajectory estimation is done frame-by-frame where each
frame is aligned against the previous one. We report mean
values over multiple datasets for the translational root mean
square error (RMSE) of relative pose change.

For the multi-resolution optimization, we compute image
pyramids down to a size of 40×30 pixels. The Levenberg-
Marquardt algorithm is run on each pyramid level until the
mean pixel position update (c.f . [28]) is less than 10−2, or
20 iterations are reached. We generally compute gradients
with centralized finite differences, which worked best over
multiple methods. The Sobel filter is used for the GradM
method, and for pixel selection for depth density variation.

The Huber parameter k in Eq. (3) is tuned for each method
by minimizing the mean translational drift over the TUM
RGB-D datasets fr1/desk, desk2, plant and floor
via a parameter sweep. The results are shown in Tab. II. The
Huber function is not used by ZNCC, MI, and Census.

To select a patch size for LMean, we run a parame-
ter sweep on the synthetic datasets {s1, s2}/const and
{s1, s2}/loc+glo. The results are shown in Fig. 3 (left).
Increasing the patch size reduces the drift, but makes the
algorithm slower. We select a size of 11×11 as a tradeoff.

If dense depth maps are available as input, a sub-selection
of depth pixels may be helpful to improve runtime perfor-
mance. Other ways of acquiring depth maps, such as multi-
view stereo, may only estimate depth values for high-gradient
pixels. We therefore evaluate the effect of varying depth map
density by discarding all pixels having a gradient magnitude
below a threshold. The relative change in translational drift
and time taken per frame induced by this is shown in Fig. 4.
Generally, sparser depth maps lead to higher drift while
reducing the runtime. However, in particular for Census,
discarding low-gradient pixels reduces the drift because
descriptors for those pixels are noisy. We therefore choose
the threshold minimizing the drift for each method.

As discussed in Sec. III, descriptors can be used by pre-
computing descriptor images (Eq. (5)), or by re-computing



0.6

0.7

0.8

0.9

1.0

pixel selection threshold

0.6

0.7

0.8

0.9

1.0

rel.
m

ean
tim

e
perfram

e
[m

s]

Trans. drift Time taken

0.8

1.0

1.2

1.4 BCA GMedian GAffine ZNCC MI

0 20 40 60
0.8

1.0

1.2

1.4 GradM

re
l.

m
ea

n
tra

ns
.

dr
ift

[c
m

/s
]

0 20 40 60

Grad

0 20 40 60

LMean

0 20 40 60

DF

0 20 40 60

Census
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threshold. MI fails for high thresholds. Evaluated on {s1, s2}/const
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TABLE III
TRANSLAT. DRIFT (cm / second) FOR DESCRIPTOR-BASED METHODS1

Pre-computation Re-computation
GradM 3.96 3.53
Grad 4.15 3.69
LMean 5.77 3.74
DF 7.17 3.78
Census 4.82 4.05
1 Evaluated on TUM and real sequences.

descriptors in every optimization iteration (Eq. (6)). We
show the translational drift for descriptor-based methods
over all real RGB-D sequences used in this evaluation for
both variants in Tab. III. Re-computation always results
in significantly lower drift. Notably, this is true also for
gradient-based methods.

C. Visual odometry

The results of all methods on the visual odometry datasets
described in Sec. V-A are shown in Tab. IV, with mean values
plotted in Fig. 3 (right). We generally only state translational
drift since we observed the rotational drift to behave similarly
(c.f . Fig. 3 (right)). As the TUM RGB-D datasets do not
exhibit strong illumination changes, the basic BCA performs
well on them. GMedian, GAffine, GradM, and LMean deal
with the slight lighting changes very well and outperform
more complex methods, with GMedian performing best
overall on these datasets by a slight margin. However, many
methods perform similarly well on these datasets. The results
on the synthetic datasets show that while all methods can
cope well with gradual global and local lighting changes,
the flash variant poses a harder challenge. GradM yields
the best results for these synthetic sequences. However, on
our real datasets, Census performs better than all other
methods. GradM still performs well, yielding the second
best results on average. GMedian, GAffine, and LMean do
not work as well on these datasets as they do on the TUM
RGB-D datasets.

Overall, we note that GradM consistently performs very
well over all datasets. However, on the real-world datasets we
captured, it is outperformed by Census, potentially indicating
that the appearance variations found in real-world data are
too complex for gradients to provide invariance against them.
Nevertheless, the results on the synthetic and real data are
mostly consistent, showing that valid insights can be derived
from the synthetic data.

D. Alignment under image degradations

In this experiment, we evaluate the methods’ convergence
probabilities. We generated many synthetic image pairs with
given degradations applied, and evaluated the rate of suc-
cessful alignments achieved by each method depending on
the degradation. We treat poses which differ from the ground
truth by less than 2% in translation relative to the average
scene depth, and by less than 1◦ in shortest-path rotation, as
correctly aligned. Slightly increasing these parameters does
not significantly change the results since diverged poses are
usually far away. Results are shown in Fig. 5.

We test for robustness against translation, rotation, global
and local illumination changes, intensity and depth noise,
blur, and occlusion. The translation amount is defined by the
mean optical flow in pixels induced by only camera transla-
tion, to have a measure independent of scene depth. Rotation
is given in degrees. Affine global illumination changes are
simulated by transforming the image to be aligned (I) with
gain and bias parameters such that I ′ = α · I + β. We
choose α = 1 − d

2 , β = 255
2 d with d ∈ [0; 1] given in the

plots. We simulate flashlight-like local illumination changes
by multiplying each pixel’s intensity in I by 1− r

rmax
d. r is the

distance from the image center relative to the distance from a
corner to the center, rmax, while d ∈ [0; 1] is the degradation
amount given in the plots. Intensity noise is added to both
the template and I by for each pixel independently sampling
from a zero-mean normal distribution and adding the sample
to each color channel. We specify the noise intensity as
the standard deviation σ. Similarly, for depth noise we add
independent samples from a normal distribution to each
pixel’s depth in the template, with the intensity specified by
σ. For blur, we apply a Gaussian blurring kernel to I with the
standard deviation given in the plots. For occlusion we paint
a dot in the center of I and specify the distortion intensity
as the amount of the image area covered. We evaluate each
degradation type together with translation since degraded but
aligned images often do not offer a challenge.

Fig. 5 shows the convergence rates (mapped to a color
gradient shown at the bottom) for each method, depending
on the translation between the images (x axis of each plot)
and the other degradation given by the table row (y axis).
The leftmost column illustrates the maximum distortion
for each type by example. We used identity as the initial
estimate for each alignment. The results are not transferable
in an absolute sense, as they depend on e.g. the scene’s
texturedness. However, they offer a relative comparison.

The most important observations from this experiment are:
BCA fails even for relatively small, abrupt global or local
light changes. GAffine, due to the joint optimization process,
only shows partial robustness against global affine changes.
MI does not perform well. We believe that the optimization
easily gets stuck in local optima for this method. The results
of all gradient-based methods are very similar. They show
good robustness against the simulated light changes, but
have a smaller convergence basin compared to the previous
methods. For comparison, we also include results obtained by



TABLE IV
EVALUATION RESULTS FOR VISUAL ODOMETRY (TRANSLATIONAL DRIFT IN cm / second)

TUM RGB-D datasets ICL-NUIM datasets with illumination changes1 Real data with illum. changes
fr1/desk fr1/desk2 fr1/plant fr1/room fr2/desk mean const global local loc+glo flash mean global local flash mean

BCA 3.02 4.74 2.45 4.25 1.22 3.14 0.11 0.13 0.12 0.12 0.55 0.21 7.03 5.08 4.57 5.56
GMedian 2.93 4.34 2.42 4.00 1.21 2.98 0.11 0.12 0.12 0.12 0.67 0.23 5.25 4.78 4.23 4.76
GAffine 2.89 4.49 2.51 4.07 1.21 3.03 0.12 0.12 0.12 0.12 0.69 0.23 5.20 4.70 4.17 4.69
ZNCC 3.94 4.93 3.93 4.64 1.52 3.79 0.13 0.13 0.14 0.13 0.24 0.15 7.67 6.13 5.35 6.39
MI 4.01 5.40 3.99 5.76 1.96 4.22 0.16 0.16 0.17 0.16 0.26 0.18 7.54 6.59 6.23 6.79
GradM 2.88 4.35 2.56 4.10 1.34 3.05 0.11 0.11 0.11 0.11 0.17 0.12 4.77 4.51 3.71 4.33
Grad 3.13 4.78 2.15 4.19 1.47 3.14 0.13 0.13 0.13 0.13 0.18 0.14 5.14 4.62 4.07 4.61
LMean 2.84 4.29 2.47 4.30 1.36 3.05 0.13 0.14 0.14 0.14 0.19 0.15 5.47 4.90 4.32 4.90
DF 3.56 5.27 2.48 4.89 1.41 3.52 0.14 0.14 0.14 0.14 0.21 0.16 5.21 5.06 4.52 4.93
Census 2.94 4.33 2.85 4.69 2.72 3.50 0.14 0.15 0.14 0.15 0.20 0.16 4.79 4.19 3.72 4.23

1 Evaluated on two trajectories per variant: s1 and s2.

BCA GMed. GAff. ZNCC MI GradM Grad LMean DF Census SIFT
(III) (IV-A) (IV-B) (IV-C) (IV-D) (IV-E) (IV-F) (IV-G) (IV-H) (IV-I)
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Fig. 5. Convergence evaluation on image pairs with different image degradations. X axis of each plot: amount of translation between the images as mean
optical flow in pixels. Y axis of each plot: amount of degradation, given by the row. The color indicates the fraction of successful alignments as given by
the scale on the bottom: Yellow means all alignments succeeded, blue means that all failed. See Sec. V-D for a detailed explanation and analysis.

SIFT descriptor matching using COLMAP [48]. As expected,
this performs very well in this convergence evaluation since
it finds matches in descriptor space instead of only locally
optimizing the pose. It however performs poorly for intensity
noise and blur, since those degradation types corrupt the
image gradients. Furthermore, we also evaluated the resulting
mean alignment accuracy for all pairs on which all methods
converge, which showed that SIFT consistently resulted in
significantly less accurate alignments than the direct meth-
ods. Among the direct methods, GAffine and similar methods
have the largest convergence basin.

E. Runtime performance

We report the timings and average iteration counts of
all methods for the visual odometry scenario in Tab. V.

Evaluations are performed on a PC with an Intel Core i7
950 (3.07GHz) CPU and Nvidia GTX 950 GPU. All methods
apart from MI are implemented on the GPU using CUDA.
Our implementations are unoptimized. Furthermore, if good
initial estimates are available, e.g., from integrating data of
an inertial measurement unit, convergence will be faster.

VI. CONCLUSIONS

We evaluated real-time capable direct image alignment
methods for their accuracy and robustness under challenging
lighting conditions. Using the brightness constancy assump-
tion, as done by many recent works, fails in cases of abrupt
illumination changes. The GradM method performs well in
visual odometry accuracy evaluations while also being fast.
Analogously to other methods which compute residuals from



TABLE V
AVERAGE TIME (ms) AND NUMBER OF ITERATIONS PER FRAME1

Time Iter.
BCA 28 ± 13 25
GMedian 51 ± 21 26
GAffine 31 ± 11 25
ZNCC 58 ± 39 24
MI2 2374 ± 412 44

Pre-compute Re-compute
Time Iter. Time Iter.

GradM 35 ± 14 32 37 ± 15 32
Grad 67 ± 42 30 66 ± 40 29
LMean 100 ± 14 73 72 ± 30 31
Census 489 ± 195 72 355 ± 114 49
DF 114 ± 81 28 124 ± 86 28

1Evaluated on TUM and real sequences.
2CPU implementation. All others are GPU implementations.

pixel patches, it benefits from computing gradients based on
warped pixel coordinates. However, for real-world datasets
with significant illumination changes, we observed Census
to give the most accurate results. While it allows for some
interesting observations, care should therefore be taken when
using synthetic data only, and one possible direction of future
work is to increase its realism. For loop closures, as expected
SIFT descriptor matching is in many scenarios able to align
images with larger pose changes than the direct methods,
while the latter provide better accuracy. This suggests to first
use feature matching and then refine the pose with a direct
method (as in [29]).
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