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ABSTRACT
In our recent work, we proposed a layer trajectory long short-term
memory (ltLSTM) model which decouples the tasks of temporal
modeling and senone classification with time-LSTMs and depth-
LSTMs. The ltLSTM model achieved significant accuracy improve-
ment over the traditional multi-layer LSTM models from our previ-
ous study. Considering the future context frames carrying valuable
information for predicting the target label evidenced by the success
of bi-directional LSTMs, in this work we investigate how to incor-
porate this kind of information with hidden vectors from either time-
LSTM or depth-LSTM. Trained with 30 thousand hours of EN-US
Microsoft internal data, the best ltLSTM model with future context
frames can improve the baseline ltLSTM with up to 11.5% relative
word error rate (WER) reduction and improve the baseline LSTM
with up to 24.6% relative WER reduction across different tasks.

Index Terms— LSTM, layer trajectory, future context frames,
temporal modeling, senone classification

1. INTRODUCTION

There has been a significant progress in automatic speech recogni-
tion (ASR) since the transition from the deep feedforward neural
networks (DNNs) [1, 2, 3, 4, 5] to recurrent neural networks (RNNs)
with long short-term memory (LSTM) units [6]. LSTMs alleviate
the gradient vanishing or exploding issues in standard RNNs by us-
ing input, output and forget gates, thus improving the capacity of
the network to capture long temporal context information in audio
sequences. LSTM-RNNs [7, 8, 9, 10, 11, 12] have been shown to
outperform DNNs on a variety of ASR tasks [13], and since then,
considerable amount of efforts have been devoted to improving the
structure of LSTM for ASR, such as convolutional LSTM DNN
(CLDNN) [14], time-frequency LSTM-RNNs [15, 16, 17, 18], grid
LSTMs [19, 20], residual LSTMs [21, 22], and highway LSTMs
[23, 24].

Recently, we proposed a layer trajectory LSTM (ltLSTM) model
[25] which is equipped with a depth-LSTM that scans the hidden
states of time-LSTMs for senone (tied triphone states) classification.
This architecture decouples the tasks of time recurrence modeling
and senone classification for standard LSTMs. Furthermore, the
depth-LSTM creates auxiliary connections for gradient flow, thereby
making it easier to train deeper LSTMs. This model achieved sig-
nificant accuracy improvement from traditional LSTMs or residual
LSTMs in our previous experiments. In [26], we extended our previ-
ous work by proposing the generalized ltLSTM architecture with the
concept of depth processing block. We integrated gated feedforward
units as well as max-pooling [27, 28, 29] feedforward units designed
for the depth processing block with lower computational cost.

In this study, we aim at further improving the accuracy of ltL-
STM by using future context frames, inspired by the success of re-
cent works of incorporating future context frames, such as latency-
control bi-directional LSTM (LC-BLSTM) [23], time-delay neural

network (TDNN) [30], and feedforward sequential memory network
(FSMN) [31]. LC-BLSTM reduces the latency of BLSTM by chunk-
wise forward and backward LSTM computation. TDNN and FSMN
are similar in terms of model structure, which can be viewed as 1-D
convolutional neural networks taking a window of acoustic frames
as input. These models can benefit from future acoustic frames to
improve recognition accuracy, though at the cost of higher latency
compared with standard uni-directional recurrent models. In this
work, we focus on improving the uni-directional recurrent models
by taking advantage of future context frames, which is only partially
addressed in [32].

The unique structure of ltLSTM provides more flexibility to in-
corporate the future context information compared to other model
structures as mentioned above. In particular, the future information
can be utilized by either time-LSTM or depth-LSTM, and both op-
tions will be investigated in this work. Our experiments were per-
formed using around 30 thousand hours of anonymized EN-US data,
which is a collection of Microsoft Cortana and Conversation data
with mixed close-talk and far-field audios. Our results show that
the ltLSTM with future context frames can significantly outperform
the baseline ltLSTM without future information with up to 11.5%
relative word error rate (WER) reduction and improve the baseline
LSTM with up to 24.6% relative WER reduction.

The rest of the paper is organized as follows. In Section 2, we
briefly overview the standard multi-layer LSTM and our previously
proposed ltLSTM. In Section 3, we describe how we incorporate
context future frames into ltLSTMs with different options. We eval-
uate the proposed models in Section 4, and conclude our study in
Section 5.

2. LAYER TRAJECTORY LSTM

2.1. LSTM

We refer to the standard LSTM as time-LSTM since it does temporal
modeling via time recurrence by taking the output of previous time
step as the input to the current time step. At the time step t, the
computation of the l-th layer LSTM units can be described as:

ilt = σ(Wl
ixxlt + Wl

ihhlt−1 + pli � clt−1 + bli) (1)

flt = σ(Wl
fxxlt + Wl
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where xlt is the input vector for the l-th layer with

xlt =

{
hl−1
t , if l > 1

st, if l = 1
(6)



Fig. 1. Diagram of layer trajectory LSTM (ltLSTM). Depth-LSTM
(D-LSTM) is used to scan the outputs of time-LSTM (T-LSTM)
across all layers at the current time step to get summarized layer
trajectory information for senone classification. Note that There is
no time recurrence in D-LSTM, which only occurs in T-LSTMs.

st is the speech spectrum input at the time step t; l = 1...L, where
L is the total number of hidden layers. The vectors ilt, olt, flt, clt are
the activations of the input, output, forget gates, and memory cells,
respectively. hlt is the output of the time-LSTM. Wl

.x and Wl
.h are

the weight matrices for the inputs xlt and the recurrent inputs hlt−1,
respectively. bl. are bias vectors. pli, plo, plf are parameter vectors
associated with peephole connections. The functions σ and φ are the
logistic sigmoid and hyperbolic tangent nonlinearity, respectively.
The operation � represents element-wise multiplication of vectors.

2.2. Layer trajectory LSTM

The layer trajectory LSTM (ltLSTM) model [25] performs temporal
modeling using time-LSTM and senone classification using depth-
LSTM separately, which was proven to perform better for acoustic
modeling than using the time-LSTM alone. The model structure is
illustrated by Figure 1. The formulation of time-LSTM is the same
as in Section 2.1. In this model, the l-th layer of the depth-LSTM
can be expressed as:

jlt = σ(Uljhhlt + Uljggl−1
t + qlj �ml−1

t + dlj) (7)
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glt = vlt � φ(ml
t) (11)

glt is the output of the depth-LSTM at time t and layer l. Comparing
Eqs. (1) – (5) with Eqs. (7) – (11), we can see the biggest differ-
ence is that the depth-LSTM takes its previous layer output gl−1

t and
the time-LSTM’s current layer output hlt as inputs, while the time-

LSTM takes its previous layer output hl−1
t and previous time step

output hlt−1 as inputs.
Note that there is no recurrence in depth-LSTM at different time

steps. The time recurrence only occurs in time-LSTM across time.
The structural difference between time-LSTM and depth-LSTM
helps them to deal with different aspects of the learning problem,
in particular, sequential modeling versus senone classification. Al-
though the total computational cost of the ltLSTM is almost doubled
compared to that using the time-LSTM alone, it can be significantly
reduced by using the gated deep neural network units instead of
LSTM units for the depth processing, which is shown to be effective
in [26].

3. LAYER TRAJECTORY LSTM WITH FUTURE
CONTEXT FRAMES

In this section, we study two approaches to incorporating the future
context frames into ltLSTMs for higher recognition accuracy. The
key idea is to get a fixed size vector representation of variable future
frames, referred to as lookahead embedding, as an additional feature
to the network. In this paper, we study the use a linear transform and
attention weights for this purpose.

3.1. Lookahead embedding through linear transform

Recall that hlt and gl−1
t are the inputs for computing glt in Eqs. (7) –

(11), here we seek to replace either hlt or gl−1
t by the lookahead em-

bedding vector in order to incorporate the future context information
when computing glt.

A simple approach to obtaining the embedding vector, denoted
as ηlt, is to use linear transforms. Suppose we have τ hidden vectors
hlt+1:t+τ from the time-LSTM corresponding to the future frames,
we can compute the embedding vector as:

ηlt =

τ∑
δ=0

Hl
δhlt+δ, (12)

where Hl
δ is a weight matrix corresponding to the time step t + δ.

If we share the weight across all time steps, it is equivalent to a 1-
D convolutional operation. As it does not save computation, nor
improves accuracy, we did not focus on the sharing approach in this
study. Given the embedding vector, we then replace hlt by ηlt in Eqs.
(7) – (11) to calculate glt. In this study, we apply Eq. (12) to all
the hidden layers, and refer to this model as ltLSTM-Tτ , where τ
indicates how many future frames we look ahead in time-LSTM.

Similarly, we can compute the embedding vector from the depth-
LSTM, such as

ζl−1
t =

τ∑
δ=0

Gl−1
δ gl−1

t+δ, (13)

where Gl−1
δ denotes the weight matrix, and for clarity, we denote

this embedding vector as ζl−1
t . In this case, we replace gl−1

t by
ζl−1
t in Eqs. (7) – (11) to compute glt. Again, we apply Eq. (13)

to all hidden layers in our experiments, and refer to this model as
ltLSTM-Dτ . When we apply both Eq. (12) and Eq. (13) at the same
time, we will refer to the model as ltLSTM-TτDτ .

In Figure 2 and Figure 3, we show the computational steps to
update the l + 1th layer depth-LSTM output gl+1

t when incorpo-
rating τ future frames from time-LSTM and depth-LSTM, respec-
tively. When we incorporate the future frames from time-LSTM
only as Figure 2 shows, the evaluation of gl+1

t depends on glt and
ηl+1
t which is generated from [hl+1

t ......hl+1
t+τ ] as in Eq. (12). When



Fig. 2. The process used to evaluate the l + 1th layer depth-LSTM
output when incorporating τ future frames of hidden vectors from
time-LSTM at every layer.

we stack multiple layers, there is no latency accumulation, so the to-
tal number of lookahead frames in this case is still τ . However, when
incorporating the future frames from the depth-LSTM as Figure 3,
there is latency accumulation when we stack multiple layers. For a
L layer ltLSTM with τ future context frames, the total number of
additional lookahead frames will be Lτ .

3.2. Lookahead embedding through attention weights

Another way to incorporate future frames is to use the attention
mechanism to generate an embedding vector of a context window
with input-dependent weights. This method was used successfully to
improve the accuracy of connectionist temporal classification (CTC)
modeling in [33]. The only difference from [33] is that we apply the
attention modeling to all the hidden layers instead of the top layer
only.

In the following, we briefly summarize the process of using at-
tention to calculate ηlt which is then used to replace hlt in Eqs. (7) –
(11) to calculate glt. We can use a similar process to calculate ζl−1

t

which is later used to replace gl−1
t .

We first transform hlδ in a context window for each δ ∈ [t −
τ, t+ τ ] as

rδ = W′t−δhlδ (14)

Then define the energy signal for location-based attention as

et,δ = tanh(Wrδ + Vβt−1 + b) (15)

where βt−1 = F ∗αt−1, with the elements of α defined as

αt,δ,j =
exp(et,δ,j)∑t+τ

δ′=t−τ exp(et,δ′,j)
, j = 1, · · · , n. (16)

Here, αt,δ,j can be interpreted as the amount of contribution from
rδ(j) in computing ηlt(j). Now, the context vector ηlt can be com-
puted using

ηlt = γ

t+τ∑
δ=t−τ

αt,δ � rδ. (17)

Fig. 3. The process used to evaluate the l + 1th layer depth-LSTM
output when incorporating τ future frames of hidden vectors from
depth-LSTM at every layer.

Hence, our proposed method is a dimension-wise location-based at-
tention.

4. EXPERIMENTS

In this section, we evaluate the effectiveness of ltLSTM modeling
using future context frames. Our baseline models are the vanilla
LSTM, residual LSTM (ResLSTM), and ltLSTM without future
context frames. The ResLSTM model uses a direct shortcut path
across layers to alleviate the gradient vanishing issue in the multiple
layer LSTM. In our experiments, all models are uni-directional, and
were trained with 30 thousand hours of anonymized and transcribed
Microsoft production data, including Cortana and Conversation
data, recorded in both close-talk and far-field conditions. All LSTM
models use 1024 hidden units and the output of each LSTM layer
is reduced to 512 using a linear projection layer. The softmax layer
has 9404 nodes to model the senone labels. The target senone label
is delayed by 5 frames as in [8]. The backpropagation through time
(BPTT) [34] with truncation size 16 is used to train all models.
The input feature is 80-dimension log Mel filter bank for every 10
milliseconds (ms) speech. We applied frame skipping by a factor of
2 [12] to reduce the runtime cost, which corresponds to 20ms per
frame. The language model is a 5-gram with around 100 million
(M) ngrams.

We evaluate all cross entropy (CE) trained models with Mi-
crosoft Cortana and Conversation test sets. Both sets contain mixed
close-talk and far-field recordings, with 439k and 111k words, re-
spectively. The Cortana test set has shorter utterances related to
voice search and commands, while the Conversation test set has
longer utterances from conversations. We also evaluate the mod-
els on the third test set named as DMA with 29k words, which is not
in Cortana or Conversation domain. The DMA domain was unseen
during the model training, and is served to evaluate the generaliza-
tion capacity of the model.

Table 1 shows WERs of all the models. Among LSTMs with dif-
ferent number of layers, the 6-layer model performs the best. When
increasing the number of layers to 10, we observed considerable ac-



Table 1. WERs of all models on Cortana, Conversation, and DMA
test sets. All test sets are mixed with close-talk and far-field record-
ings.

Cortana Conversation DMA
4-layer LSTM 10.37 19.41 20.66
6-layer LSTM 9.85 19.20 20.19
10-layer LSTM 10.58 19.92 21.62
6-layer ResLSTM 9.99 18.85 19.49
10-layer ResLSTM 9.68 18.15 18.62
12-layer ResLSTM 9.59 18.19 18.78
6-layer ltLSTM 9.28 17.47 17.61
6-layer ltLSTM-T4 9.15 17.17 16.68
6-layer ltLSTM-D4 8.78 16.51 15.58
6-layer ltLSTM-T4D4 8.75 16.31 15.53
6-layer ltLSTM-T4
with attention 8.99 17.14 17.02

curacy degradation, which is consistent with the observations the in
literature [23, 20]. The 6-layer ResLSTM is close to the 6-layer
LSTM in terms of WERs, there are consistent improvements by in-
creasing to 10 layers for ResLSTM model, but no further improve-
ment when increasing to 12 layers.

The 6-layer ltLSTM clearly outperforms all the LSTM and
ResLSTM models, with 9.28%, 17.47% ad 17.61% WERs on Cor-
tana, Conversation, and DMA test sets, respectively. We use this
model as the baseline model to evaluate the effectiveness of ltLSTM
modeling with future context frames.

First, the 6-layer ltLSTM-T4 model which incorporates future 4
frames of time-LSTM output at each layer achieves 9.15%, 17.17%,
and 16.68% WERs on those 3 test sets. However, adding the atten-
tion module does not bring as much improvements as we observed
in the end-to-end CTC modeling [33, 35]. The reason maybe that the
attention scheme can relax the hard alignment modeling to alleviate
the frame independence assumption of CTC, which may not be a key
problem for the hybrid models in this study as the decoding space is
constrained with a lexicon and language model.

When incorporating 4 future frames at each layer in depth-
LSTM, the 6-layer ltLSTM-D4 model can achieve larger improve-
ments, which are 8.78%, 16.51%, 15.58% WERs on Cortana, Con-
versation, and DMA test sets, respectively. This standards for
relative 5.4%, 5.5%, and 11.5% WER reductions from the baseline
6-layer ltLSTM and relative 10.9%, 14.9%, and 24.6% WER re-
ductions from the baseline 6-layer LSTM on those three test sets,
respectively. It is interesting to see that all these models with fu-
ture context frames achieved the largest improvement on the unseen
DMA test set. This may be because the future context frames pro-
vide much more information for unseen scenario to predict senones
labels as the baseline models have already been trained very well
to handle the matched test data. Adding future frames to both
time-LSTM and depth-LSTM, however, we only observe slight
improvement over the 6-layer ltLSTM-D4.

In Table 2, we compare the runtime costs of the baseline 6-layer
ltLSTM model and all 6-layer ltLSTM models with future context
frames as well as latency requirements in terms of the number of
lookahead frames. The ltLSTM baseline model does not use any fu-
ture context frame, while the ltLSTM-T4 model only requires overall
4 lookahead frames because it does not have latency accumulation
across the depth. Given its accuracy improvement with small in-
crease in latency, this model is appealing for scenarios with strict
latency requirement. In contrast, ltLSTM-D4 has totally 24 looka-

Table 2. Runtime cost of ltLSTM and its variants in terms of addi-
tional lookahead frames relevant to the standard LSTM and the total
number of parameters. All models have 6 hidden layers.

lookahead frames parameters (M)
ltLSTM 0 57
ltLSTM-T4 4 63
ltLSTM-D4 24 63
ltLSTM-T4 Attention 4 69
ltLSTM-T4D4 24 71

head frames due to the context expansion in depth-LSTM. The addi-
tional future context information helps to push down the WER fur-
ther, and it is therefore desirable for applications with less strict la-
tency requirement. Both ltLSTM-T4 and ltLSTM-D4 have 6M more
parameters than the baseline ltLSTM model. Note that we can im-
prove the recognition accuracy of the ltLSTM-T4 model by having
an ltLSTM-T24 model with 24 frames lookahead in each layer, how-
ever this will significantly increase the model size to around 100 M
parameters. Therefore, we didn’t pursue such a model. The ltLSTM-
T4 attention model also only requires 4 lookahead frames, but it is
computationally more expensive than the ltLSTM-T4 model.

5. CONCLUSIONS

In this paper, we investigated incorporating future context frames
into ltLSTMs for higher accuracy acoustic models. We have
shown that the lookahead embeddings from either time-LSTM
or depth-LSTM improves recognition accuracy. We presented two
approaches to obtaining this embedding vector, i.e., by linear trans-
forms and attention mechanism. From our experiments with around
30k hours of Microsoft internal speech training data, the 6-layer
ltLSTM with 4 future frames from the time-LSTM at each layer
improved the baseline by relative 1.4%, 1.7%, and 5.3% WER re-
ductions on Cortana, Conversation, and DMA sets, respectively. The
overall additional latency is only 4 frames, which is desirable for
applications with strict latency requirement. On the other hand, the
6-layer ltLSTM with 4 future frames from the depth-LSTM at each
layer improved the baseline 6-layer ltLSTM by relative 5.4%, 5.5%,
and 11.5% WER reductions compared to the baseline, respectively.
However, this model requires 24 lookahead frames in total, and
is suitable for application without strict latency requirement. We
also evaluate the effectiveness of attention modeling, and found its
gain for ltLSTM is mostly due to the introduction of future context
frames.

Note the extreme case of using lookahead frames is the bi-
directional modeling [36] which has an additional backward LSTM
running from the end of utterances to the beginning. In the future
study, we will compare the proposed contextual ltLSTM with bi-
directional LSTM, and investigate whether we can further improve
bi-directional LSTM with the layer trajectory modeling.
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