
UNIVERSAL ACOUSTIC MODELING USING NEURAL MIXTURE MODELS

Amit Das∗, Jinyu Li, Changliang Liu, Yifan Gong

Microsoft, One Microsoft Way, Redmond, WA 98052
amitdas@illinois.edu, {jinyli, chanliu, ygong}@microsoft.com

ABSTRACT

Acoustic models are domain dependent and do not perform well if
there is a mismatch between training and test conditions. As an al-
ternative, the Mixture of Experts (MoE) model was introduced for
multi-domain modeling. It combines the outputs of several domain
specific models (or experts) using a gating network. However, one
drawback is that the gating network directly uses raw features and
is unaware of the state of the experts. In this work, we propose sev-
eral alternatives to improve the MoE model. First, to make our MoE
model state-aware, we use outputs of experts as inputs to the gating
network. Then we show that vector based interpolation of the mix-
ture weights is more effective than scalar interpolation. Second, we
show that directly learning the mixture weights without using any
complex gating is still effective. Finally, we introduce a hybrid at-
tention model that uses the logits and mixture weights from the pre-
vious time step to generate the mixture weights at the current time.
Our best proposed model outperforms a baseline model using LSTM
based gating achieving about 20.48% relative reduction in word er-
ror rate (WER). Moreover, it beats an oracle model which picks the
best expert for a given test condition.

Index Terms— mixture of experts, universal acoustic model,
adaptation, attention, speech recognition

1. INTRODUCTION
Recent advances in speech recognition [1, 2] have been mostly due
to the advent of deep learning algorithms such as Deep Neural Net-
works (DNN) [3], Convolutional Neural Networks (CNNs) [4], and
Recurrent Neural Networks (RNN) [5, 6]. However, one fundamen-
tal limitation for neural networks to work well is that the joint dis-
tribution of the acoustics and the labels in the training data must
match the distribution of the test data. If not, they tend to perform
poorly [7]. Thus, acoustic models (AMs) tend to be highly domain
dependent and domain specific or expert AMs have to be built in-
dividually for each domain. This hinders real-world deployment of
AMs due to the presence of a wide variety of domains.

One way to alleviate this problem is to train a global model with
data from K possible domains. A drawback of the global model
is that it does not perform at par with an expert model. Moreover,
the number of parameters and the training times tend to increase by
several orders of magnitude. Yet another problem is that when ad-
ditional amounts of data become available, the global model has to
be retrained from scratch. A better solution is to combine the out-
puts of a mixture of pre-trained experts using a small gating network
(switch) thereby reducing computational times and complexity. This
is the MoE model proposed by Jacobs et al. [8] and is the first one in
this direction. Their gating network mapped the input data to a prob-
ability distribution over the experts better known as mixture weights.
The mixture weights determine the degree of relevance between the

∗Work performed during an internship at Microsoft.

expert outputs and the input data. The expert outputs are linearly
combined using the mixture weights to produce a unified output.

Following the work in [8], [9] used a mixture of recurrent ex-
perts. Later [10] suggested a tree-like hierarchical MoE model where
the experts represented the leaves of the tree and the gates were
stacked in a layer-wise fashion going up the tree. As an alternative,
the authors in [11] proposed a deep MoE model where each layer
constituted an MoE model (multiple experts and a single gate) and
there were multiple such layers stacked one on top of the other. The
MoE models have been used for noise-robust ASR [12–14], speech
enhancement [15], and intent classification and slot tagging [16].
In [17, 18], HMM based MoE models were used for speaker adap-
tation where cluster weights were estimated to maximize the likeli-
hood or minimize the minimum phone error. Similar idea has been
applied to deep learning models as cluster adaptive training [19,20].
More recently, Irie et al. [21] proposed the Recurrent Adaptive Mix-
ture Model (RADMM) for training a language model in diverse do-
mains. They constructed the gating network as a mixer long short-
term memory (LSTM) [5] network. However, one problem with this
approach is that the mixer LSTM is unaware of the state of the ex-
perts as it uses raw features to produce the mixture weights.

To address this drawback, we propose improving this MoE by
using expert outputs (or their linear projections), instead of raw fea-
tures, as inputs to the mixer LSTM. Furthermore, we show that
vector based interpolation of expert outputs is more effective than
scalar interpolation. Then, we experiment with directly learning the
weights of the experts without using any mixer LSTM. Finally, we
introduce a hybrid attention model that uses the logits and the mix-
ture weights from the previous time step to generate the mixture
weights at the current time. With all these components in place,
our final model improves the baseline RADMM achieving a relative
reduction in WER of about 20.48% across 8 different test conditions
on Microsoft products. Moreover, it was also able to beat an oracle
model which picks the best expert for a given test condition.

2. UNIVERSAL ACOUSTIC MODEL (UAM)
Since we are interested in modeling AMs across a wide variety of
conditions, we will refer to these as UAMs. The training strategy
of the UAMs is as follows. First, experts in each of the K domains
are trained individually using large amounts of domain specific data.
Then the UAM is constructed by combining the outputs of an ensem-
ble of K experts with a gating network. While training the UAM, the
parameters of the gating network are updated whereas the model pa-
rameters of the experts remain unchanged.

2.1. RADMM With Raw Features(RADMM:R)
This is our baseline model [21]. The RADMM network consists of
the following components - multiple stacked LSTMs each represent-
ing a domain expert, a mixer LSTM, and a softmax output layer. We
provide a brief outline of the forward pass operations. Assume there
are K domains. An input feature vector xt at time t is fed to K experts

operating in parallel. The kth expert is identified by LSTMk where
k = 1, · · · ,K. Feedforwarding xt through LSTMk results in,

(h(k)
t , c

(k)
t) = LSTMk(xt,h(k)

t−1, c
(k)
t−1), (1)

where h(k)
t and c(k)

t are the hidden output and the cell state respec-
tively of the kth expert LSTMk at time t. The same input xt is fed to a
mixer LSTM (LSTMmix) with projection layer followed by softmax
activation. This generates the mixture (or expert) weight vector αt

(h(mix)
t , c(mix)

t) = LSTMmix(xt,h(mix)
t−1 , c(mix)

t−1), (2)

αt = softmax(Wmixh(mix)
t + bmix). (3)

The mixture weight vector αt = [α(1)
t · · ·α

(K)
t], is a vector of proba-

bilities and hence
∑K

k=1 α
(k)
t = 1. The mixture weight α(k)

t determines
the importance of the kth expert in producing the unified output st.
Thus, the mixture weights are used to linearly combine the hidden
outputs from the experts using,

st =

K∑
k=1

α(k)
t h(k)

t . (4)

Passing st through a fully connected layer with softmax activation
results in the final label posterior vector,

p(l|xt
1) = softmax(zt), (5)

where zt = Wost + bo is the vector of logits, l is the vector of labels
and (Wo, bo) are the weight and bias parameters of the softmax layer.

2.2. Proposed RADMMs
2.2.1. RADMM With Hidden Features (RADMM:H)
One problem with the baseline RADMM is that the mixer LSTM
produces mixture weights based on xt. Thus, it is agnostic to the state
of the individual experts. One way to incorporate expert knowledge
into the mixer LSTM is to feed it with hidden outputs of the ex-
pert LSTMs. This can be achieved by stacking the hidden outputs
(features) of each expert and feeding the stacked vector to the mixer
LSTM. In the preceding equations, Eq. (2) is replaced by Eq. (6) as

(h(mix)
t , c(mix)

t) = LSTMmix (̃ht,h(mix)
t−1 , c(mix)

t−1), (6)

where,

h̃t =


h(1)

t

h(2)
t
...

h(K)
t

 . (7)

With h(mix)
t known, mixture weights are determined using Eq. (3)-(5).

2.2.2. RADMM With Row Convolution (RADMM:RC)
It is possible to further improve RADMM by projecting the hidden
features h(k)

t of the expert LSTMs to a common subspace. Since
inputs to the domain dependent experts undergo different transfor-
mations, it is likely that the hidden features of the experts reside on
different subspaces. To alleviate this problem, we use linear trans-
forms, one for each expert, to project the hidden features to a com-
mon subspace. This is given by

g(k)
t = Wkh(k)

t . (8)

The projected features can now be stacked column-wise to form g̃t =

[g(1)
t g(2)

t · · · g(K)
t]T. This is fed to the LSTM mixer as,

(h(mix)
t , c(mix)

t) = LSTMmix (̃gt,h(mix)
t−1 , c(mix)

t−1). (9)

The difference between Eq. (9) and Eq. (2) (or Eq. (6)) is the use
of input g̃t instead of xt (or h̃t). Following this, the expert weights
are determined as usual using Eq. (3). Instead of h(k)

t , g(k)
t from the

experts are linearly combined. Therefore, instead of Eq. (4), Eq. (10)
is used and is given by,

st =

K∑
k=1

α(k)
t g(k)

t . (10)

Finally, label posteriors are evaluated using Eq. (5).
2.2.3. RADMM With Component Weighting (RADMM:COM)
So far we have restricted ourselves to improving the inputs of the
mixer LSTM. However, it is possible to improve the outputs by in-
troducing component-wise (or element-wise) weighting of the out-
puts from the experts. This means instead of using scalar weight α(k)

t

for each expert, we use a vector of weights in α(k)
t . This can be at-

tained as follows. Assume h(mix)
t is available from the mixer LSTM.

A scoring vector e(k)
t ∈ R

J is generated for each expert after pass-
ing h(mix)

t through an affine transform (Vk,bk), one for each expert,
using,

e(k)
t = Vkh(mix)

t + bk. (11)

A J ×K scoring matrix E is then constructed by stacking the scoring
vectors column-wise,

E =

e(1)
t e(2)

t . . . e(K)
t


J×K

. (12)

Keeping the jth row fixed in E, mixture weights are computed by
using softmax normalization across experts. Thus, for the kth expert
and the jth component, the mixture weight α(k)

t (j) is computed using,

α(k)
t (j) =

exp(e(k)
t (j))∑K

k′=1 exp(e(k′)
t (j))

, j = 1, · · · , J, (13)

where
∑K

k=1 α
(k)
t (j) = 1,∀ j ∈ {1, · · · , J}. Now the projected features

g(k)
t are linearly combined component-wise with the weight vector
α(k)

t as,

st =

K∑
k=1

α(k)
t � g(k)

t , (14)

from which label posteriors are calculated using Eq.(5).

2.3. Hidden Linear Interpolation Mixture Model (HLIMM)
A simple way of combining the hidden outputs from the experts is
to learn a distinct weight vector wk for each expert. Then the learned
vector can be used in component-wise linear combination of the hid-
den outputs. This is given by,

st =

K∑
k=1

wk � h(k)
t . (15)

Then st can be used to compute label posteriors using Eq.(5). There
are some key differences between RADMM and HLIMM. First,
there is no mixer LSTM in HLIMM. Second, the linear combination
step in Eq.(4) and Eq. (15) differs in the way the weights are com-
puted. While the weights in the former are constrained to probability
values, they remain unconstrained in the latter. As will be shown
later, HLIMM performed reasonably well despite its simplicity.
However, one problem with the trained weights in HLIMM is that
they do not change with the change in input test data. Thus, these

Fig. 1. An example of a Hybrid Attention Mixture Model (HAMM) with 4 experts (K = 4).

weights do not generalize well for new scenarios. A better way is to
generate these weights on-the-fly based on the input test data.

2.4. Hybrid Attention Mixture Model (HAMM)
We present a brief outline of finding mixture weights using an at-
tention model [22–26] illustrated in Fig. 1. Details are described
in [25]. The main components are: (a) the generation of context vec-
tors as row convolution (RC) features, and (b) the computation of
the weights of the hidden features using an attention mechanism.

First, the context vector st can be computed as an RC feature
by convolving the hidden feature h(k)

t with learnable weight matri-
ces Wk. The generation of the RC features and linearly combining
them is similar to Eq. (8) and Eq. (10) respectively. However, the
difference lies in the way mixture weights αt(k), k = 1, · · · ,K are
determined. Thus st is given by,

st =

K∑
k=1

Wkh(k)
t = γ

K∑
k=1

α(k)
t g(k)

t . (16)

where the second step holds when αt(k) = 1
K and γ = K. This is the

case for uniform weighting of experts. The term γ is an additional
scaling factor that benefits training. For non-uniform weighting, an
Attend(.) network is used to learn the mixture weights (attention
weights) using,

α(k)
t = Attend(zt−1,αt−1, g(k)

t), (17)

where zt−1 and αt−1 are the logits vector (see Eq. (5)) and mixture
weight vector from the previous time step. The Attend(.) function
consists of two parts - a scoring function Score(.) followed by nor-
malization. The Score(.) function is a single layer DNN given by,

e(k)
t = Score(zt−1,αt−1, g(k)

t), (18)

=

vT tanh(V′ft + W′gt + b′), (location)
vT tanh(U′zt−1 + W′gt + V′ft + b′) (hybrid)

(19)

where ft = F∗αt−1 and ∗ is the convolution operation. The first equa-
tion of Eq. (19) represents location (αt−1) information whereas the
second equation represents hybrid attention (HA) since it encodes
both content (zt−1) and location information. Selecting either loca-
tion or hybrid is left to the user. Mixture weights are generated after
normalizing the scores using,

α(k)
t =

exp(e(k)
t)∑K

k′=1 exp(e(k′)
t)

, k = 1, · · · ,K (20)

The performance of the attention model in Eq. (17) can be improved
further by providing content information that is more reliable than
zt−1. This is possible by introducing another recurrent network that
utilizes content from several time steps in the past instead of only
one step (refer LM block in Fig. 1). This network, in essence, learns
a pseudo language model (LM) and can be represented as,

zLM
t−1 = H(ut−1, zLM

t−2), ut−1 =

[
zt−1

st−1

]
, (21)

αt = Attend(zLM
t−1 ,αt−1, g), (22)

whereH(.) is a LSTM unit. Additional gains can be achieved using
component-wise attention which is similar to the ideas in Sec. 2.2.3.

3. EXPERIMENTS
We experimented using transcribed data collected from a wide va-
riety of acoustic conditions on Microsoft devices. These include
speech collected from Cortana, conversations, meetings etc. We cat-
egorized the test data into two groups - seen and unseen. For the
seen group (S1-S4), the acoustic conditions during training and test-
ing were identical. For the unseen group (U1-U4), there was a mis-
match in the acoustic conditions between training and testing.

We trained 4 experts (hence, K = 4), one per condition, using
30,000 hours (h) of data (cumulative) across S1-S4. Each expert
is a 6-layer uni-directional LSTMs [27–30] trained with frame-wise
cross-entropy criterion. The LSTMs were equipped with 1024 mem-
ory cells in each layer and the cell outputs were linearly projected to
512 dimensions. Then, keeping the parameters of the expert LSTMs
constant, we trained the UAMs using only 300 h of data (1% of ex-
pert data) in S1-S4. For component-wise weighting in Sec. 2.2.3, we
used J = 64. The input feature is 80-dimension log Mel filter bank.
We applied frame skipping [31] to reduce the run-time cost. The
language model is a 5-gram trained using 100 million (M) ngrams.

Word error rates (WERs) of the 4 expert models tested in S1-S4
and U1-U4 are presented in Table 1. For the seen cases S1-S4, the
best model was the one whenever there was a match between the
training and test conditions. This is expected and is clear from the
diagonal pattern highlighted in bold. For the unseen cases U1-U4,
the WERs are relatively worse due to the mismatch between training

Table 1. WERs of expert models in various seen and unseen test con-
ditions. Expert models Sn, n = 1, · · · , 4 are named after the acoustic
conditions they were trained in. The best expert model (Smin) is in
the last column. WERs in bold in each row is the lowest WER in
that row.

Test Word Expert Models
Cond. ↓ Count S1 S2 S3 S4 Smin

S1 34150 11.45 12.91 16.71 18.71 11.45
S2 32134 13.04 6.97 23.83 23.14 6.97
S3 46471 19.73 50.12 14.10 15.7 14.10
S4 21690 30.87 51.66 21.51 20.69 20.69
U1 22618 16.39 17.36 22.64 23.39 16.39
U2 29480 37.90 19.70 33.60 25.84 19.7
U3 28553 14.91 32.37 14.54 14.47 14.47
U4 14715 13.69 18.60 15.55 19.99 13.69

and test conditions. However, we can infer that the best performing
model is the one whose train condition was closest to the test con-
dition. For e.g., expert model (S1) was trained in a condition that is
acoustically closer to the conditions in U1 and U4. Finally, in the last
column, we list the WER of the best expert model (Smin). Given a
test condition, Smin is an oracle that picks the best performing expert
among the ensemble of experts.

In Table 2, we present the weighted average WER for various
UAMs tested separately under three conditions - seen (S1-S4), un-
seen (U1-U4), and combined (S1-S4, U1-U4). For example, in the
first column, we computed the weighted average WER of a UAM by
computing the WER in each condition S1 through S4, then weight-
ing each WER by the word count factor (in Table 1), and finally
summing the weighted WERs.

In the first column (S1-S4), RADMM:H outperformed the
baseline. This proves that making the mixer LSTM state-aware
benefits UAM. A sharp drop in WER when using HLIMM in-
dicates that directly learning the vector weights without using a
mixer LSTM is also an effective way to model UAMs. We also
experimented with learning scalar weights. However, it did not con-
sistently improve over the baseline model. Adding row convolution
(RADMM:RC) and component-wise weighting (RADMM:COM)
further lowered the WER. RADMM:COM and HLIMM are similar
from the perspective that they both use vector weights. However,
RADMM:COM outperforming HLIMM is perhaps due to two rea-
sons. First, RADMM:COM generates mixture weights that change
with the change in input test data. However, as mentioned in
Sec. 2.3, the weights in HLIMM remain constant once training is
complete. Second, the mixer LSTM is better at capturing long-term
state information than HLIMM. Finally, the most advanced models
are the HAMM models outperforming both RADMM and HLIMM
models. Within HAMM, HA slightly outperformed LA since both
location and content information were included in learning the atten-
tion weights. Comparing HAMM:HA with Smin models, it is clear
that HAMM:HA model has achieved an oracle-like performance.
Likewise, in the second column (U1-U4), most notable is the perfor-
mance of HAMM models since they easily outperform RADMM,
HLIMM, and Smin models. In the third column (combined) again,
the best performing models are HAMM based models.

In Table 3, we outline further gains achieved by HAMM:HA
model when additional data were added during training. We ob-
served gains when training using three times (3x) larger data. We
also obtained gains when training with additional 10 hours new do-
main data (car) to teach the training how to handle unseen data. This
also proves the following. To train experts, we require large amounts
of transcribed data in a wide variety of conditions which may not
be always feasible. However, in the absence of experts, the UAMs

Table 2. Weighted average WERs of various UAMs tested under
seen conditions S1-S4, unseen (U1-U4), and combined conditions
(S1-S4, U1-U4). The UAMs were trained with 300 hours of training
data. Lowest WER in each condition is highlighted in bold.

UAM Test Condition
S1-S4 U1-U4 Combined

RADMM:R (Baseline) 16.24 19.72 17.68
RADMM:H 16.07 18.91 17.25
HLIMM 13.76 16.37 14.84
RADMM:RC 13.08 16.19 14.37
RADMM:COM 12.92 16.40 14.36
HAMM:LA 12.92 15.80 14.11
HAMM:HA 12.81 15.82 14.06
Smin (Oracle) 12.79 16.42 14.30

Table 3. Weighted average WERs of HAMM based UAMs when
training with additional data. Lowest WER in each condition is high-
lighted in bold.

UAM Data Test Condition
S1-S4 U1-U4 Combined

HAMM:HA+3x 900 h 12.68 15.71 13.94
HAMM:HA+Car 310 h 12.75 15.52 13.90

Table 4. Summary of weighted average WER of UAMs: Baseline
(RADMM:R) vs best proposed (HAMM:HA).

Test Cond. RADMM:R HAMM:HA Abs. WER ↓ Rel. WER ↓
S1-S4 16.24 12.81 3.43 21.12
U1-U4 19.72 15.82 3.90 19.78
Combined 17.68 14.06 3.62 20.48

can be effective even if small amounts of data can be added during
training from a wide variety of new acoustic conditions. The UAMs
are able to learn these new conditions by finding an interpolation
between the acoustic conditions prevalent in experts. Finally, in Ta-
ble 4, we summarize the performance of the baseline (RADMM:R)
and the best proposed model (HAMM:HA) from Table 2. On an
average, we observed around 20% relative improvement in WER of
HAMM:HA model over RADMM:R model consistently in each test
condition. Moreover, our best proposed model outperformed the or-
acle model.

4. CONCLUSIONS AND FUTURE WORKS
We proposed several UAMs using mixture of experts. First, we
improved the baseline RADMM model by using a combination of
hidden features, row convolution, and vector weights. Second, we
introduced a simple UAM which finds mixture weights without us-
ing any mixer LSTM. Finally, we use an attention model that uses
location and content information to find mixture weights. We evalu-
ated the baseline and proposed methods on speech collected from a
wide variety of acoustic conditions on Microsoft devices. Compar-
ing the baseline RADMM and the best proposed HAMM models,
we reported relative reduction in WER of about 21.12%, 19,78%,
and 20.48% for seen, unseen, and combined conditions respectively.
Moreover, the HAMM models were able to beat an oracle model
which picks the best expert for a given test condition.

Because the model size of UAMs is several times larger than
that of individual models, we are investigating to use teacher-student
learning [32] which is proven successful in our large scale tasks [33]
to generate a student model with similar size as individual experts
while maintaining the power of UAMs. We are also replacing the
expert LSTM models with recently proposed layer trajectory LSTM
models [34, 35] to make individual experts stronger, resulting even
better UAMs.

5. REFERENCES

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., “Deep Neural Networks for Acoustic Modeling in
Speech Recognition: The Shared Views of Four Research
Groups,” IEEE Sig. Process. Magazine., vol. 29, no. 6, pp.
82–97, 2012.

[2] D. Yu and J. Li, “Recent Progresses in Deep Learning Based
Acoustic Models,” IEEE/CAA J. of Autom. Sinica., vol. 4, no.
3, pp. 399–412, July 2017.

[3] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-
Dependent Pre-Trained Deep Neural Networks for Large-
Vocabulary Speech Recognition,” IEEE Trans. Audio, Speech,
Lang. Process., vol. 20, no. 1, pp. 30–42, Jan 2012.

[4] O. Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional Neural Networks for Speech Recogni-
tion,” IEEE Trans. Audio, Speech, Lang. Process., vol. 22, no.
10, pp. 1533–1545, Oct 2014.

[5] S. Hochreiter and J. Schmidhuber, “Long Short-term Mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov
1997.

[6] O. Vinyals, S. V. Ravuri, and D. Povey, “Revisiting Recurrent
Neural Networks for Robust ASR,” in ICASSP, 2012.

[7] D. Yu, M. L. Seltzer, J. Li, J-T. Huang, and F. Seide, “Fea-
ture Learning in Deep Neural Networks - Studies on Speech
Recognition Tasks,” in Int. Conf. Learn. Rep., 2013.

[8] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton,
“Adaptive Mixture of Local Experts,” Neural Computation,
vol. 3, no. 1, pp. 79–87, 1991.

[9] J. Tani and S. Nolfi, “Learning to Perceive the World as Ar-
ticulated: An Approach for Hierarchical Learning in Sensory-
Motor Systems,” Neural Networks, vol. 12, no. 7, pp. 1131–
1141, 1999.

[10] M. I. Jordan and R. A. Jacobs, “Hierarchical Mixture Of Ex-
perts and the EM Algorithm,” Neural Computation, vol. 6, no.
2, pp. 181–214, 1994.

[11] D. Eigen, M. A. Ranzato, and I. Sutskever, “Learning Factored
Representations in a Deep Mixture of Experts,” in Proc. ICLR,
2014.

[12] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An Overview
of Noise-Robust Automatic Speech Recognition,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 22, no. 4, pp. 745–777,
Apr. 2014.

[13] S. H. Mallidi, T. Ogawa, K. Veselý, P. S. Nidadavolu, and
H. Hermansky, “Autoencoder Based Multi-stream Combina-
tion for Noise Robust Speech Recognition,” in Proc. Inter-
speech, 2015.

[14] J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, Robust Auto-
matic Speech Recognition: A Bridge to Practical Applications,
Academic Press, 2015.

[15] S. E. Chazan, G. Goldberger, and S. Gannot, “Deep Recur-
rent Mixture of Experts for Speech Enhancement,” in Proc.
WASPAA, 2017.

[16] Y-B. Kim, K. Stratos, and D. Kim, “Domain Attention With
an Ensemble of Experts,” in Proc. ACL, 2017.

[17] M. J. F. Gales, “Cluster Adaptive Training of Hidden Markov
Models,” IEEE Trans. Speech, Audio, Process., vol. 8, no. 4,
pp. 417–428, July 2000.

[18] Kai Yu and M. J. F. Gales, “Discriminative Cluster Adaptive
Training,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14,
no. 5, pp. 1694–1703, Sept 2006.

[19] Tian Tan, Yanmin Qian, Maofan Yin, Yimeng Zhuang, and Kai
Yu, “Cluster adaptive training for deep neural network,” in
Acoustics, Speech and Signal Processing (ICASSP), IEEE In-
ternational Conference on. IEEE, 2015, pp. 4325–4329.

[20] Chunyang Wu and Mark JF Gales, “Multi-basis adaptive neu-
ral network for rapid adaptation in speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), IEEE In-
ternational Conference on. IEEE, 2015, pp. 4315–4319.

[21] K. Irie, S. Kumar, M. Nirschl, and H. Liao, “RADMM: Re-
current Adaptive Mixture Model with Applications to Domain
Robust Language Modeling,” in Proc. ICASSP, 2018.

[22] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Trans-
lation by Jointly Learning to Align and Translate,” in ICLR,
2015.

[23] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-Based Models for Speech Recognition,” in
Conf. on Neural Information Processing Systems, 2015.

[24] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brake, and Y. Ben-
gio, “End-to-End Attention-Based Large Vocabulary Speech
Recognition,” CoRR, vol. abs/1508.04395, 2015.

[25] A. Das, J. Li, R. Zhao, and Y. Gong, “Advancing Connectionist
Temporal Classification With Attention Modeling,” in Proc.
ICASSP, 2018.

[26] J. Li, G. Ye, A. Das, R. Zhao, and Y. Gong, “Advancing
Acoustic-to-Word CTC Model,” in Proc. ICASSP, 2018.

[27] H. Sak, A. Senior, and F. Beaufays, “Long Short-term Mem-
ory Recurrent Neural Network Architectures for Large Scale
Acoustic Modeling,” in Proc. Interspeech, 2014, pp. 338–342.

[28] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Proc. ICASSP, 2013,
pp. 6645–6649.

[29] Y. Miao and F. Metze, “On speaker adaptation of long short-
term memory recurrent neural networks.,” in Proc. Inter-
speech, 2015, pp. 1101–1105.

[30] Xiangang Li and Xihong Wu, “Constructing long short-term
memory based deep recurrent neural networks for large vocab-
ulary speech recognition,” in Proc. ICASSP, 2015, pp. 4520–
4524.

[31] Y. Miao, J. Li, Y. Wang, S. Zhang, and Y. Gong, “Simplifying
Long Short-term Memory Acoustic Models for Fast Training
AND Decoding,” in Proc. ICASSP, 2016.

[32] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong, “Learn-
ing small-size DNN with output-distribution-based criteria.,”
in Proc. Interspeech, 2014, pp. 1910–1914.

[33] J. Li, R. Zhao, Z. Chen, et al., “Developing far-field speaker
system via teacher-student learning,” in Proc. ICASSP, 2018.

[34] Jinyu Li, Changliang Liu, and Yifan Gong, “Layer trajectory
LSTM,” in Proc. Interspeech, 2018.

[35] Jinyu Li, Liang Lu, Changliang Liu, and Yifan Gong, “Im-
proving layer trajectory LSTM with future context frames,” in
Proc. ICASSP, 2019.

