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ABSTRACT

Traditional LSTM model and its variants normally work in a frame-
by-frame and layer-by-layer fashion, which deals with the temporal
modeling and target classification problems at the same time. In this
paper, we extend our recently proposed layer trajectory LSTM (ltL-
STM) and present a generalized framework, which is equipped with
a depth processing block that scans the hidden states of each time-
LSTM layer, and uses the summarized layer trajectory information
for final senone classification. We explore different modeling units
used in the depth processing block to have a good tradeoff between
accuracy and runtime cost. Furthermore, we integrate an attention
module into this framework to explore wide context information,
which is especially beneficial for uni-directional LSTMs. Trained
with 30 thousand hours of EN-US Microsoft internal data and cross
entropy criterion, the proposed generalized ltLSTM performed sig-
nificantly better than the standard multi-layer time-LSTM, with up
to 12.8% relative word error rate (WER) reduction across differ-
ent tasks. With attention modeling, the relative WER reduction can
be up to 17.9%. We observed similar gain when the models were
trained with sequence discriminative training criterion.

Index Terms— LSTM, depth processing block, attention

1. INTRODUCTION

There has been a significant progress in automatic speech recogni-
tion (ASR) since the transition from the deep feedforward neural
networks (DNNs) [1, 2, 3, 4, 5] to recurrent neural networks (RNNs)
with long short-term memory (LSTM) units [6]. LSTMs alleviate
the gradient vanishing or exploding issues in standard RNNs by us-
ing input, output and forget gates, thus improve the capacity of the
network to capture long temporal context information in audio se-
quences. These LSTM-RNNs [7, 8, 9, 10, 11, 12] and their vari-
ants such as convolutional LSTM DNN (CLDNN) [13] and two-
dimensional LSTM-RNNs [14, 15, 16, 17] have been shown to out-
perform DNNs on a variety of ASR tasks [18].

It is a standard practice to stack multiple LSTM layers to ob-
tain greater modeling power [8], especially when a large amount of
training data is available. However, deeper LSTMs are not guaran-
teed to achieve higher accuracy due to the training difficulty [19, 20].
This issue can be partially solved by adding skip connections like in
residual LSTMs [21, 22] or gating functions between layers such as
highway LSTMs [19]. However, the gain in terms of recognition ac-
curacy is very limited as shown in [23, 24]. Grid LSTM [25] is a
more general LSTM architecture, which arranges the LSTM mem-
ory cells into a multidimensional grid along both time and depth
axes. It was extended in [20, 26] as prioritized grid LSTM which
was shown to outperform highway LSTM on several ASR tasks.

All the aforementioned models work in a layer-by-layer and
step-by-step fashion. The output of a LSTM unit (either the stan-

dard time LSTM or grid LSTM) is used as the input to the LSTM of
the next layer at the same time step. The output of the final LSTM
layer is used for senone (tied triphone states) classification. How-
ever, this design may not be optimal for the LSTM outputs to serve
the purposes of both recurrence modeling along time axis and senone
classification along the depth axis.

In [24], we proposed a layer trajectory LSTM (ltLSTM) which
is equipped with a depth-LSTM that scans the hidden states of
time-LSTMs for senone classification. This architecture decouples
the tasks of time recurrence modeling and senone classification
for LSTMs. Furthermore, the depth-LSTM creates auxiliary con-
nections for gradient flow, thereby making it easier to train deeper
LSTMs. Although we obtained significant gain in terms of accuracy
over standard time-LSTM, the computational cost is much higher,
making it challenging to deploy this type of models for online speech
service that has strict computational cost requirements. In addition,
the models in our previous work were trained with cross-entropy
criterion, which raises the question if the gain can still hold after
sequence discriminative training [9, 27, 28, 29].

In this paper, we extend our previous work on ltLSTM in several
directions. First, we propose the generalized ltLSTM architecture
(gltLSTM) by introducing the concept of depth processing block.
We investigate low cost depth processing units for gltLSTMs that
balance the accuracy with computational cost. To this end, we
present gated feedforward units as well as max-pooling feedforward
units designed for the depth processing block with low compu-
tational cost. Second, we incorporate the attention scheme into
the gltLSTM architecture, inspired by our previous study on at-
tention model [30] for connectionist temporal classification (CTC)
model[31]. The motivation is to explore the wide context informa-
tion and relax the hard alignment issue of hybrid models. Third, we
look at singular value decomposition (SVD) compression to further
reduce the computational cost and memory footprint following [32].
Finally, we evaluate the model with sequence discriminative train-
ing by the maximum mutual information (MMI) criterion with
F-smoothing [29], and show that the accuracy improvements are
from strong baseline systems. Our experiments were performed us-
ing around 30 thousand hours of anonymized EN-US data, which is
a collection of Microsoft Cortana and Conversation data with mixed
close-talk and far-field audios. Our results show that the gltLSTM
can significantly outperform the standard multi-layer LSTM and
residual LSTM with marginal increase in computational cost. The
attention mechanism can achieve further reduction in terms of error
rate for the gltLSTM model.

The rest of the paper is organized as follows. In Section 2,
we briefly overview the standard multi-layer LSTM and Residual
LSTM. In Section 3, we describe the proposed gltLSTM and its three
implementations with LSTM, gated DNN, and maxout units serving
in the layer process block respectively. We evaluate the proposed
models in Section 4, and conclude our study in Section 5.



Fig. 1. Flowchart of multi-layer time-LSTM (T-LSTM). The output
of a T-LSTM is used as the input of the T-LSTM at the same time
step in the next layer and the recurrent input of the T-LSTM at the
next time step in the same layer.

2. LSTM

In this section, we review the standard multi-layer LSTM and resid-
ual LSTM (ResLSTM) that will be used to compared our ltLSTM
models in the experimental section.

2.1. LSTM

We refer to the standard LSTM as time-LSTM since it does temporal
modeling via time recurrence by taking the output of previous time
step as the input of the current time step. To increase the modeling
power, multiple layers of LSTM units are stacked together to form
a multi-layer LSTM which is shown in Figure 1. At time step t, the
computation of the l-th layer LSTM units can be described as:

ilt = σ(Wl
ixxlt + Wl

ihhlt−1 + pli � clt−1 + bli) (1)

flt = σ(Wl
fxxlt + Wl

fhhlt−1 + plf � clt−1 + blf ) (2)

clt = flt � clt−1 + ilt � φ(Wl
cxxlt + Wl

chhlt−1 + blc) (3)

olt = σ(Wl
oxxlt + Wl

ohhlt−1 + plo � clt + blo) (4)

hlt = olt � φ(clt) (5)

where xlt is the input vector for the l-th layer with

xlt =

{
hl−1
t , if l > 1

st, if l = 1
(6)

st is the speech spectrum input at time step t. l = 1...L, where L
is the total number of hidden layers. The vectors ilt, olt, flt, clt are
the activation of the input, output, forget gates, and memory cells,
respectively. hlt is the output of the time-LSTM. Wl

.x and Wl
.h are

the weight matrices for the inputs xlt and the recurrent inputs hlt−1,
respectively. bl. are bias vectors. pli, plo, plf are parameter vectors
associated with peephole connections. The functions σ and φ are the
logistic sigmoid and hyperbolic tangent nonlinearity, respectively.
The operation � represents element-wise multiplication of vectors.

2.2. Residual LSTM

Similar to Residual convolutional neural network (CNN) [33] which
recently achieves great success in the image classification task, resid-

ual LSTM (ResLSTM) is very straightforward with the direct short-
cut path across layers by changing Eq. (6) to Eq. (7) so that gradient
vanishing issue can be alleviated.

xlt =

{
xl−1
t + hl−1

t , if l > 1

st, if l = 1
(7)

Although ResLSTM can partially solve the gradient vanishing issue,
it still has the same challenges as the standard time-LSTM – the out-
put vector works for two very different purposes: temporal modeling
and senone classification.

3. GENERALIZED LAYER TRAJECTORY LSTM

In this section, we formulate our proposed generalized layer trajec-
tory LSTM (gltLSTM) by using a depth processing block for target
classification. Then, we present three realizations of gltLSTM with
different units in the depth processing block.

3.1. Generalized layer trajectory LSTM

We proposed ltLSTM in [24] with the motivation of decoupling time
recurrence modeling and senone classification by separated LSTM
units, i.e., time-LSTM and depth-LSTM. In this paper, we extend
this framework by introducing the concept of depth processing
block, and propose the generalized ltLSTM architecture (gltLSTM),
as shown in Figure 2. In gltLSTM, the time-LSTM is used for
the purpose of temporal modeling via time recurrence, while the
depth processing block scans the outputs from multiple time-LSTM
layers and uses the summarized layer trajectory information for
final senone classification. The idea is that the lower layer hidden
states from time-LSTM may also carry valuable information for
classification, and it may not be optimal to use the hidden state of
the last time-LSTM for classification as in the conventional practice.
Furthermore, the depth processing block also creates auxiliary con-
nections for time-LSTM, which may facilitate the gradient flow to
deal with training problem of deep LSTMs.

More precisely, the time-LSTM in gltLSTM is standard as Eqs.
(1) – (5), while in the depth processing block, there is no time re-
currence. The l-th layer output of the depth processing block can be
expressed as

glt = F (gl−1
t , hlt|θl) (8)

where hlt is the hidden state from the l-th layer of time-LSTM at the
time step t, calculated from Eq. (5); gl−1

t denotes the output of the
previous layer in the depth processing block, and we set g0

t = st.
F (·|θl) denotes the function to process the l-th layer in the depth
processing block which is parameterized by θl. In gltLSTM, it is
flexible to choose different functions for F (·|θl), which may be im-
plemented by different neural network modules. In this study, we
explore three realizations of F (·|θl) with LSTM, gated DNN, and
maxout units, respectively.

It is worth noting that the output from the depth processing block
is not fed into the time-LSTM, which is the key difference from grid
LSTM [25] or variants such as prioritized grid LSTM [20]. The
benefit is that the depth processing block is not involved in time
recurrence modeling, which may be more adaptable, and easier to
integrate different kinds of features into the network. In addition,
this architecture makes it straightforward to parallelize the computa-
tion in time-LSTM and depth processing block, because the forward-
propagation of the time-LSTM at next time step is independent from
the computation of the depth processing block at current time step.
Thus, the forward-propagation of time-LSTM and depth processing



Fig. 2. Flowchart of generalized layer trajectory LSTM (gltLSTM).
depth processing block is used to scan the outputs of time-LSTM (T-
LSTM) across all layers at the current time step to get summarized
layer trajectory information for senone classification. There is no
time recurrence for depth processing blocks. Time recurrence only
exists between T-LSTMs at different time steps.

block can be computed by two separate threads in parallel. As long
as the computation cost of the depth processing block is not higher
than that of time-LSTM, the network inference time can be the same
as the standard time-LSTM [24].

3.2. Depth processing block by LSTM

As mentioned before, the depth processing block has the flexibility
to be implemented by various kinds of neural network units. One
realization is to use LSTM units as in our previous work [24], which
is referred to ltLSTM-L in this paper. In this model, the lth layer of
the depth processing block can be expressed as:

jlt = σ(Uljhhlt + Uljggl−1
t + qlj �ml−1

t + dlj) (9)

elt = σ(Ulehhlt + Uleggl−1
t + qle �ml−1

t + dle) (10)

ml
t = elt �ml−1

t + jlt � φ(U
l
shhlt + Ulsggl−1

t + dls) (11)

vlt = σ(Ulvhhlt + Ulvggl−1
t + qlv �ml

t + dlv) (12)

glt = vlt � φ(ml
t) (13)

The vectors jlt, vlt, elt, ml
t are the activation of the input, output,

forget gates, and memory cell of the depth-LSTM, respectively. glt
is the output of the depth-LSTM. The matrices Ul.h and Ul.g terms are
the weight matrices for the inputs hlt and the recurrent inputs gl−1

t ,
respectively. The dl. are bias vectors. The qlj , qlv , qle are parameter
vectors associated with peephole connections.

Comparing Eqs. (1) – (5) with Eqs. (9) – (13), we can see
the biggest difference is the recurrence now happens across the lay-
ers (weights are not shared) with gl−1

t in depth-LSTM, compared to
the time recurrence with hlt−1 in time-LSTM. Depth-LSTM uses the
output of time-LSTM at current layer, hlt, as the input, compared to

the xlt in time-LSTM. The total computational cost of the ltLSTM-L
is almost doubled compared to that of the time-LSTM. However, the
computation of time-LSTM and depth-LSTM can be done in two
parallel threads because the inference of time-LSTM does not de-
pend on the inference of depth-LSTM, the computational time of
gltLSTM with depth-LSTM units is the same as that of time-LSTM
from the inference latency perspective.

3.3. Depth processing block by gated DNN

Using LSTM units for the depth processing block can significantly
increase the computational cost. The number of model parameters
will almost be doubled if we use the same number of hidden states
for both depth- and time-LSTMs. In order to deploy the model for
runtime-cost constrained applications, we can cut down the compu-
tational cost by using cheaper units for the depth processing block.
One approach we have explored is to use the gated feedforward units,
which can be written as:

glt = φ
(
σ(Ol

hhlt)� Ulhhlt + σ(Ol
ggl−1
t )� Ulggl−1

t

)
. (14)

Again, glt and hlt are hidden states of the l-th layer of the depth pro-
cessing block and time-LSTM at the time step t respectively. σ is
the Sigmoid function that computes the soft gates for hlt and gl−1

t .
φ denotes the hyperbolic tangent nonlinearity. O and U are weight
matrices. The Sigmoid gate functions control the contributions from
each time-LSTM and depth processing block layer during forward
and backward computation. Without the gate functions, we observed
that the model training can diverge easily – an phenomenon of gra-
dient explosion. The two gate functions can mitigate the problem
well in our experiments. Comparing to the depth-LSTM unit, this
function has much lower computational cost. We refer to this model
as ltLSTM-G in the experimental section.

3.4. Depth processing block by maxout DNN

In Eq (14), we use Sigmoid functions parameterized by two weight
matrices at each layer to compute the soft gates. To further reduce
the computational cost, we can use maxout units [34, 35, 36], which
are hard [0, 1] gates without trainable model parameters. This can
be represented as:

glt = φ
(
max(Ulhhlt,U

l
ggl−1
t )

)
, (15)

where we use element-wise max operation after linear transforma-
tions of hlt and gl−1

t . From our experiments, the max operation is
helpful to mitigate the gradient explosion problem. This model is
referred to as ltLSTM-M in the experiment.

3.5. Attention module

Similar to the conventional LSTM acoustic model, gltLSTM uses
the single gLt at the time step t for frame-by-frame classification. As
mentioned before, the target of time step tmay not be accurate due to
the alignment error. Furthermore, the wide context information may
be valuable for frame-level classification, which is evidenced by the
strong gain by bi-directional LSTM over its unidirectional counter-
part. We propose to explore the wide context information from the
neighboring frames at each time step by attention mechanism for
gltLSTM. Figure 3 shows an example of applying attention mech-
anism into gltLSTM with LSTM based depth processing unit. To



Fig. 3. Flowchart of attention-based gltLSTM with depth-LSTM units. T-LSTM and D-LSTM denote time-LSTM and depth-LSTM, respec-
tively. Attention is applied to the output of the top layer depth-LSTM.

incorporate the information from contextual frames, we first trans-
form gLδ in a context window for each δ ∈ [t− τ, t+ τ ] as

rδ = W′t−δgLδ (16)

Here, rδ represents the transformed signal at time δ and W′[−τ, τ ] are
trainable parameters. We can average rδ in the context window into
the context vector zt for final senone classification.

zt =
t+τ∑
δ=t−τ

rLδ (17)

= γ

t+τ∑
δ=t−τ

αt,δrLδ . (18)

zt represents a special case context vector with uniform attention
weights αt,δ = 1

γ
, where γ = 2τ + 1. However, higher accuracy

may be achieved with the non-uniform attention as in the attention-
based encoder-decoder network [30]. We first define the energy sig-
nal for attention as

et,δ = tanh(Wrδ + Vft−1 + b) (19)

where ft−1 = F ∗ αt−1. W, V, and F are trainable matrices, b is a
bias vector, and the operation ∗ denotes convolution. αt denotes the
combination coefficients for filtered vectors rδ and its components
will be defined in Eq. (20).

Instead of content-based attention, we only use location-based
attention with αt−1 in which the location information is encoded.

The reason is that we do not have the decoder state as query as in the
attention-based encoder-decoder framework [30]. While logits may
be used to replace the decoder states as queries for the content-based
attention as in [31], we do not follow this approach due to the high
computational overhead. For the benefit of accuracy [31], Eq. (19)
generates an energy vector for every δ, different from the standard
attention mechanism which produces a scalar value by multiplying
it with a vector.

Now, we have column energy vectors [et,t−τ , · · · , et,t+τ ] where
each et,δ ∈ (−1, 1)n (n is the vector dimension). Let et,δ,j ∈
(−1, 1) be the jth component of the vector et,δ . To compute αt,δ,j
from et,δ,j , we normalize et,δ,j across δ keeping j fixed. Thus, αt,δ,j
is computed as

αt,δ,j =
exp(et,δ,j)∑t+τ

δ′=t−τ exp(et,δ′,j)
, j = 1, · · · , n. (20)

Here, αt,δ,j can be interpreted as the amount of contribution from
rδ(j) in computing zt(j). Now, the context vector zt can be com-
puted using

zt = γ

t+τ∑
δ=t−τ

αt,δ � rδ, (21)

where � is the Hadamard product. Hence, our proposed method is
a dimension-wise location-based attention. In Eq. (21) αt,δ is a
vector, different from the scalar αt,δ in Eq. (18).



Table 1. WERs of LSTM, ResLSTM, and gltLSTM cross entropy
models on Cortana, Conversation, and DMA test sets. All test sets
are mixed with close-talk and far-field utterances.

Cortana Conversation DMA
4-layer LSTM 10.37 19.41 20.66
6-layer LSTM 9.85 19.20 20.19
10-layer LSTM 10.58 19.92 21.62
6-layer ResLSTM 9.99 18.85 19.49
10-layer ResLSTM 9.68 18.15 18.62
12-layer ResLSTM 9.59 18.19 18.78
6-layer ltLSTM-L 9.28 17.47 17.61
6-layer ltLSTM-G 9.63 17.87 18.63
6-layer ltLSTM-M 9.77 18.26 18.90
6-layer ltLSTM-L attention 8.96 17.22 16.57
6-layer ltLSTM-G attention 9.25 17.68 17.76

4. EXPERIMENTS

In this section, we report experimental results comparing the stan-
dard multi-layer LSTM and ResLSTM to our proposed gltLSTM
models. In our experiments, they are all uni-directional, and were
trained with 30 thousand hours of anonymized and transcribed Mi-
crosoft production data, including Cortana and Conversation data,
recorded in both close-talk and far-field conditions. All LSTM mod-
els use 1024 hidden units and the output of each LSTM layer is re-
duced to 512 using a linear projection layer. The softmax layer has
9404 nodes to model the senone labels. The target senone label is
delayed by 5 frames as in [8]. The input feature is 80-dimension log
Mel filter bank. We applied frame skipping [12] to reduce the run-
time cost. The language model is a 5-gram with around 100 million
(M) ngrams.

4.1. Results by cross entropy training

We evaluate all cross entropy (CE) trained models with Microsoft
Cortana and Conversation test sets. Both sets contain mixed close-
talk and far-field utterances, with 439k and 111k words, respectively.
The Cortana test set has shorter utterances related to voice search
and commands, while the Conversation test set has longer utterances
from conversations. We also evaluate the models on the third test
set named as DMA with 29k words, which is not in Cortana or Con-
versation domain. The DMA domain was unseen during the model
training, and is served to evaluate the generalization capacity of the
model. As shown in Table 1, the 4-layer LSTM model obtained
10.37%, 19.41%, and 20.66% WER on these 3 test sets, respec-
tively. By increasing the number of layers from 4 to 6, the multi-
layer LSTM was improved across all tasks. However, when increas-
ing the number of layers to 10, we observed considerable accuracy
degradation, which is consistent with the observations in literature
[19, 20].

The 6-layer ResLSTM is close to the 6-layer LSTM in terms
of WERs, with some improvements on Conversation and DMA test
sets, but slight degradation on the Cortana test set. However, in
contrast to the behavior of the 10-layer versus 6-layer LSTM mod-
els, we observed consistent improvements by increasing to 10 layers
for ResLSTM model, which achieved 9.68%, 18.15%, and 18.62%
WERs on Cortana, Conversation, and DMA test sets, respectively.
This clearly demonstrates the effectiveness of skipping connections
for reducing the gradient vanishing issue. However, further increas-
ing to 12 layers doesn’t improve the overall accuracy of ResLSTM.

Table 2. WERs of LSTM and gltLSTM sequence-trained models on
Cortana, Conversation, and DMA test sets.

Cortana Conversation DMA
6-layer SE-SVD-LSTM 7.93 19.17 17.45
6-layer SE-SVD-ltLSTM-L 7.29 17.24 15.80
6-layer SE-SVD-ltLSTM-G 7.48 17.77 15.52

We then evaluated the gltLSTM model with different depth pro-
cessing units as described above. As shown by Table 1, with 6 hid-
den layers, the gltLSTM models consistently outperform the vanilla
LSTM and ResLSTM across all the three evaluation sets. Among
these three models, the 6-layer ltLSTM-L performed the best, ob-
taining 9.28%, 17.47% ad 17.61% WERs on Cortana, Conversation,
and DMA test sets, respectively. This represents 5.8%, 9.0%, and
12.8% relative WER reduction from the 6-layer LSTM on those
three test sets. The 6-layer ltLSTM-G is slightly left behind com-
pared to ltLSTM-L in terms of accuracy, while the 6-layer ltLSTM-
M is even worse. However, they all outperform the baseline 6-layer
LSTM model.

Finally, on top of the 6-layer ltLSTM-L and ltLSTM-G models,
we applied the attention mechanism described in Section 3.5, where
we set τ to be 4. Larger τ may be beneficial to accuracy, but it will
also introduce larger latency, so we did not tune this hyperparameter.
As shown in the last two rows of Table 1, attention module can fur-
ther reduce the WERs of both ltLSTM-L and ltLSTM-G models. In
particular, ltLSTM-L with attention can achieve 8.96%, 17.22%, and
16.57% WER on Cortana, Conversation, and DMA test sets, respec-
tively, improving the WER reductions to relative 9.1%, 10.3%, and
17.9% compared to the 6-layer LSTM baseline system on the evalu-
ation datasets. It is interesting that the largest relative improvement
is on the DMA test set which is unseen during model training.

4.2. Results by sequence discriminative training

We then compare the models after sequence discriminative training
(SE). For the sake of runtime deployment [37], we first performed
SVD compression [32] to all the weight matrices before sequence
training using the MMI criterion with F-smoothing [29]. In table 2,
we show the WERs of the 6-layer LSTM, ltLSTM-L, and ltLSTM-G
models, and demonstrate that the gains from the CE training stages
are still held after SE training. The 6-layer SE-SVD-ltLSTM-L im-
proves the baseline 6-layer SE-SVD-LSTM with respectively 8.1%,
10.1%, and 9.5% relative WER reduction on Cortana, Conversation,
and DMA test sets, while the 6-layer SE-SVD-ltLSTM-G obtained
respectively 5.6%, 7.3%, and 11.1% relative improvement. Note
that, the gap between ltLSTM-G and ltLSTM-L systems becomes
smaller after SE training, which is encouraging as the former is much
smaller and is more suitable for runtime deployment. In the future,
we shall also study SE training of these two models with attention
module.

4.3. Runtime comparison

In Table 3, we examine the total computational costs of all models.
Both 6-layer LSTM and ResLSTM have 26M operations for hidden
time-LSTM evaluation and 5M operations for softmax evaluation
per frame, resulting in totally 31M operations per frame.

The 6-layer ltLSTM-L almost doubles the total computational
cost of the 6-layer LSTM, with 57M operations per frame in to-
tal, which is the same as the computational cost of the 12-layer
ResLSTM. The 6-layer ltLSTM-G significantly reduces the total



Table 3. Total computational costs of LSTM, ResLSTM, and gltL-
STM models in terms of million (M) operations per frame.

Total (M)
4-layer LSTM 22
6-layer LSTM 31
10-layer LSTM 49
6-layer ResLSTM 31
10-layer ResLSTM 49
12-layer ResLSTM 57
6-layer ltLSTM-L 57
6-layer ltLSTM-G 37
6-layer ltLSTM-M 33
6-layer ltLSTM-L attention 59
6-layer ltLSTM-G attention 39
6-layer SVD-LSTM 16
6-layer SVD-ltLSTM-L 29
6-layer SVD-ltLSTM-G 19

computational cost from the 6-layer ltLSTM-L, resulting in totally
37M operations per frame. The 6-layer ltLSTM-M has even smaller
overall computational cost. Furthermore. the attention module only
slightly increases the computational cost from their counterparts,
while SVD compression significantly reduces the model size and
computation. Finally, given the complexity of LSTM models, we
didn’t reduce the model size heavily as what we have done for DNNs
[32]. The SVD version models half the computational cost of their
full-size counterparts.

5. CONCLUSIONS

In this paper, we extended our previous work on ltLSTM and pre-
sented a generalized framework – gltLSTM, which scans the hid-
den states of the multi-layer time-LSTM with a depth process block
for final senone classification. The depth processing block has the
flexibility to be implemented by different kinds of neural network
components, and we have shown three examples using LSTM, gated
DNN, and maxout units, which have different computation and accu-
racy tradeoffs. We further investigated the dimension-wise location-
based attention modeling to explore the contextual information for
gltLSTM models.

From our experiments with around 30k hours of Microsoft in-
ternal speech training data, the 6-layer CE-trained gltLSTM signifi-
cantly outperformed the baseline CE-trained LSTM and ResLSTM,
with relative 5.8%, 9.0%, and 12.8% WER reductions from the 6-
layer LSTM on Cortana, Conversation, and DMA sets, respectively.
The attention modeling further pushed the relative WER reductions
to 9.1%, 10.3%, and 17.9% on these three evaluation sets. We ob-
served similar gain when the models were trained with sequence
(SE) discriminative training criterion. The SE-trained 6-layer SVD
ltLSTM-G obtained very similar WER as the SE-trained 6-layer
SVD ltLSTM-L, but with much smaller computational cost. This
makes it very desirable for product deployment.
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