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Abstract

In this paper we consider the problem of relative pose
estimation from two images with per-pixel polarimetric in-
formation. Using these additional measurements we derive
a simple minimal solver for the essential matrix which only
requires two point correspondences. The polarization con-
straints allow us to pointwise recover the 3D surface nor-
mal up to a two-fold ambiguity for the diffuse reflection.
Since this ambiguity exists per point, there is a combina-
torial explosion of possibilities. However, since our solver
only requires two point correspondences, we only need to
consider 16 configurations when solving for the relative
pose. Once the relative orientation is recovered, we show
that it is trivial to resolve the ambiguity for the remaining
points. For robustness, we also propose a joint optimization
between the relative pose and the refractive index to handle
the refractive distortion. In experiments, on both synthetic
and real data, we demonstrate that by leveraging the ad-
ditional information available from polarization cameras,
we can improve over classical methods which only rely on
the 2D-point locations to estimate the geometry. Finally, we
demonstrate the practical applicability of our approach by
integrating it into a state-of-the-art global Structure-from-
Motion pipeline.

1. Introduction

Estimating the relative pose between two images is a
classical problem in computer vision. The epipolar geom-
etry is completely described by the essential matrix, which
can be minimally estimated from five 2D-point correspon-
dences [21, 25, 10]. Once the essential matrix is recovered,
it can be decomposed into the relative rotation and transla-
tion [11]. In this paper we propose to exploit the additional
geometric information available in polarimetric images for
essential matrix estimation.

Different from normal color images, polarimetric images
directly encode information of the surface normals for a
wide range of materials. In the computer vision literature
there have been several papers which show that the encoded
normal information can be useful in geometric estimation
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Figure 1. Polarization cameras allow us to recover the 3D surface
normals from the 2D images. Using this additional geometric in-
formation we show that it is possible to estimate the relative pose
using only two 2D point correspondences.

problems. Kadambi et al. [13] use the surface normal infor-
mation from polarization images for depth image enhance-
ment. Cui et al. [5] exploit the partial normal information,
i.e. phase angles, to propagate depth information along iso-
depth contours for multi-view stereo. Yang et al. [31] fur-
ther extend this idea for dense SLAM system. Chen et al.
[4] study the usage of phase angles for three-view geome-
try. Different from these papers, we will try to exploit po-
larimetric information for relative pose estimation between
two views.

There are mainly two challenges for using polarimetric
information in relative pose estimation. First, extracting
the surface normals from the polarization images requires
knowledge of the refractive index, also known as refractive
distortion [13]. The refractive index depends on the ma-
terial and is in general unknown, but typically lies in the
interval [1.3, 1.6] [1]. To further complicate the problem,
this refractive index can vary pointwise in the scene due to
the inhomogeneous texture and other material properties.

Secondly, as was described in [13, 5], there is an un-
avoidable π-ambiguity for each azimuth angle. This az-
imuthal ambiguity will lead to two possible polarization
normals for each point. Additionally, this ambiguity is in-
dependent between the two images, even for corresponding
points in the two views. This leads to a combinatorial explo-



sion of choices, since for each point correspondence we will
have four possible configuration of normals. Thus given n
pairs of corresponding point, there will be 4n possibilities.
If the reflection is specular dominated, there will be addi-
tional ambiguities in the zenith angle.

In this paper, we will only consider the case for diffuse
reflection due to the fact that in practice most points which
we are able to match between different viewpoints are dif-
fuse reflection dominated. The key insight in our work is
that once the relative rotation is known, resolving the am-
biguity is trivial. Conversely, if the true azimuth angles are
known, the resulting surface normals greatly simplify the
problem of estimating the relative rotation. To address this
typical chicken-and-egg problem, we show that it is possi-
ble to side-step the combinatorial problem by proposing a
method for estimating the relative rotation (and translation)
from only two point correspondences. For these two cor-
respondences we only have 16 possible choices of normals
for diffuse reflection, making it tractable to evaluate each
of them. Once the relative rotation is recovered, we can re-
solve the azimuthal ambiguity for the remaining point cor-
respondences.

While the refractive index is typically unknown in prac-
tice, we show in experiments that the performance of our
approach only deteriorates slightly when using incorrect
refractive indices. This is consistent with the observation
made in [13]. However, to achieve high-accuracy pose es-
timates we propose to perform joint optimization over both
the relative pose and the pointwise refractive indices.

In experiments we show that by using the additional ge-
ometric information available in polarization cameras, we
can achieve more accurate and more robust estimates of
the epipolar geometry compared to the state-of-the-art ap-
proach using the 5-point essential matrix solver when the
polarimetric measurements are sufficiently good. We eval-
uate our approach on synthetic data as well as real polariza-
tion images. Finally, we show the practical applicability of
our approach by integrating it into a state-of-the-art global
Structure-from-Motion pipeline [6].

2. Related Work
Relative pose estimation. The standard approach for per-
forming robust estimation of epipolar geometry is using a
hypothesize-and-test framework, such as RANSAC [8], to-
gether with minimal solvers. For essential matrix estima-
tion, the minimal problem requires five 2D-point correspon-
dences. One of the first minimal solvers was presented in
[21] by Nistér. Since then there have been many follow-up
works, e.g., [25, 10], improving on the original solver.

There are also some methods which try to use ad-
ditional geometric information besides the epipolar con-
straints given by 2D-point correspondences. In [23, 26],
the authors propose solvers which estimate the relative pose

from three 2D-point correspondences under the assumption
of known gravity direction. Their problem formulation is
similar to ours in the sense that they also derive additional
geometric constraints from knowing the relative orientation
of 3D vectors (gravity direction vs. surface normals). How-
ever, since they only measure a single 3D vector, this only
yields two constraints on the rotation, making the solver re-
quire three 2D-point correspondences in total.

The ‘quiver’-based motion estimation [12, 15] is also
similar to our problem, where n-quiver means a 3D point
and n directions from this point. Different from these meth-
ods for absolute pose estimation, we utilize the ambiguous
surface normal information recovered from polarization im-
ages for relative pose estimation.

For relative pose estimation there are also optimal meth-
ods which are guaranteed to find the solution with the max-
imum number of inliers, see e.g. [30, 9, 3]. However, these
methods are very computationally expensive which limits
their usage in practical applications.
Polarimetric 3D modeling. As the polarimetric informa-
tion encodes 3D surface normal, it has been exploited in
several 3D algorithms. Early methods [18, 1, 20] use ge-
ometric priors, e.g., the surface normals on the boundary
and convexity of the objects, to guide the shape estimation.
Later the polarimetric information is combined with shape-
from-shading [17, 24] to solve the ambiguity in the sur-
face normal estimation and recover 3D shapes. Some recent
works try to utilize polarimetric information in other tasks,
e.g., the multiple-view stereo [5], depth enhancement [13],
and dense SLAM reconstruction [31]. Most of the meth-
ods assume the incident illumination is unpolarized, while
the linearly polarized incident light is studied for surface
reflectance and normal estimation in [22, 2].

Very recently, Chen et al. [4] study the connection be-
tween polarization and three-view geometry. The authors
consider a weaker geometric constraint by only considering
from the polarization phase information. In contrast to [4],
we try to exploit the full geometric information available
from the polarization cameras and study the relative pose
estimation for two views. Note that the phase-angle con-
straint used in [4] is not applicable in the two-view setting
we consider.

3. Preliminaries
As it is shown in [5], if we capture an image through a

linear polarizer at a polarization angle φpol under unpolar-
ized illumination, the measured radiance at a single image
point is

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2(φpol−φ)),

(1)
where Imax and Imin is the maximum and minimum mea-
sured radiance, and φ is the phase angle. Normally we can



solve for these three unknowns with at least three polariza-
tion images with different polarization angles.

3.1. Azimuth Angle Estimation

The azimuth angle ϕ of surface normal is usually defined
as the angle between the projected surface normal direction
and x-axis direction in the 2D image. As shown in previous
work [13, 5], we can compute the azimuth angle ϕ as φ or
φ+π for the diffuse reflection. The π−ambiguity is caused
by the factor of 2 within the cosine in Equation 1. For the
specular reflection, the azimuth angle is computed as ϕ± π

2 .
So we can see that no matter for diffuse or specular reflec-
tion, there are two candidate values for the azimuth angles
which will lead to the ambiguity in the surface normal esti-
mation.

3.2. Zenith Angle Estimation

The zenith angle θ of surface normal is defined as the
angle between the surface normal and the negative viewing
direction. It is related to the degree of the polarization ρ,
which is defined as

ρ =
Imax − Imin
Imax + Imin

. (2)

As it is shown in [13, 27], for the diffuse reflection, the
zenith angle θ relates to the degree of the polarization ρ as
the following,

ρ =
(n− 1

n )2 sin2 θ

2 + 2n2 − (n+ 1
n ) sin2 θ + 4 cos θ

√
n2 − sin2 θ

,

(3)
where n is the refractive index. We can compute a single
zenith angle once ρ and n are given. Normally the refractive
index n for dielectric objects is between 1.3 to 1.6 [1].

For the sepcular reflection, the relationship between θ
and ρ is as the following [27],

ρ =
2 sin θ tan θ

√
n2 − sin2 θ

n2 − 2 sin2 θ + tan2 θ
. (4)

There are usually two real solutions for θ given ρwhich lead
to additional ambiguities in the specular case.

3.3. Surface normal estimation

Suppose zenith angle θ and azimuth angel ϕ are known,
we can compute the surface normal in the local coordinate
system of the cameras as [13, 16]:vxvy

vz

 =

 cosϕ sin θ
− sinϕ sin θ
− cos θ

 . (5)

From previous sections, we know that there is only a π am-
biguity in the azimuth angle for the diffuse reflection. As

a result, there are 2 possible surface normals for the diffuse
dominant point. In the contrast, for the specular reflection,
there are both ambiguities in the azimuth angle and zenith
angle. So there are 4 possible surface normals for the spec-
ular dominant point. To use the normals for relative pose
estimation we must take these ambiguities into account.

4. Polarimetric Relative Pose Estimation
We now present our method for relative pose estima-

tion exploiting polarimetric information. In Section 4.1 we
present a new minimal solver for estimating the relative
pose from only two-point correspondences. Next we show
how we can resolve the π-ambiguity for the phase angle
in Section 4.2. Finally, in Section 4.3 we propose a local
refinement scheme for optimizing over the relative pose as
well as the pointwise refractive indices. In this section, we
only consider the case for the diffuse reflection.

4.1. Relative Pose from Two Point Correspondences

In this section we show how to recover the relative pose
from two point correspondences by utilizing the additional
geometric constraints from the polarization camera.

For each point correspondence, (x, x′), we can also com-
pute the 3D surface normals, (v, v′) in the two views, as-
suming that the refractive index n is known and the azimuth
angle ambiguity is resolved. Since the normals are recov-
ered in the local camera coordinate systems, we get the fol-
lowing constraint on the relative rotation R ∈ SO(3),

Rvi = v′i, i = 1, 2 (6)

Due to noise there will in general not be any exact solu-
tion to Equation 6 (even for the case of only two pairs of
normals). Instead we consider the following optimization
problem,

min
R∈SO(3)

‖Rv1 − v′1‖2 + ‖Rv2 − v′2‖2, (7)

which seeks to optimally align the two normal pairs. This
optimization problem has a closed form solution given in
terms of the singular value decomposition (see [7]),

UΣV> = v′1v
>
1 + v′2v

>
2 , (8)

then R = U diag
(
1, 1,det(UV>)

)
V>. Once the rotation is

recovered, it is trivial to estimate the translation from two
points [14]. Rewriting the epipolar constraints as

x′i · (t× Rxi) = t · (Rxi × x′i) = 0, i = 1, 2 (9)

it becomes clear that the translation can be found as

t = (Rx1 × x′1)× (Rx2 × x′2) . (10)



This gives us a single essential matrix assuming the az-
imuth angle ambiguity is resolved. However, in practice it
is typically not the case. Nevertheless, since we only re-
quire two point correspondences to estimate the essential
matrix, we only need to consider 42 = 16 possible choices.
Thus we can estimate an essential matrix for each choice
and check which has the largest consensus set among the
rest of the points. Another strategy is to only do hypothesis
validation for the solution which gets the smallest alignment
error in Equation 7.

4.2. Resolving the Azimuth Angle Ambiguity

For each 2D point there is a two-fold ambiguity in the
azimuth angle. Furthermore, this ambiguity is independent
between the images, meaning that if we have n point corre-
spondences between the images, we have 4n possible com-
binations of angle assignments.

However, if we know the relative rotation (even only ap-
proximately), we can easily recover the correct azimuth an-
gles (ϕ,ϕ′) by considering the alignment error,

‖Rv(ϕ)− v′(ϕ′)‖2. (11)

For each correspondence we only need to check four cases

(φ, φ′), (φ+π, φ′), (φ, φ′+π) and (φ+π, φ′+π), (12)

and select the one which minimizes the alignment residual.
Note that this can be done inO(n) time. This assignment is
robust to small errors in the rotation since we are only using
it to select the best from these four choices.

4.3. Polarimetric Two-View Local Refinement

In this section we propose a local refinement scheme for
optimizing jointly over the relative pose and the refractive
indices. Using Levenberg-Marquardt [19] we minimize

min
R∈SO(3),t∈S2,{ni}

f(R, t, {ni}), (13)

where f(R, t, {ni}) =

fsamp(R, t) + fnorm(R, {ni}) + fprior({ni}). (14)

The loss function consists of three terms which tie together
the classical geometric constraints obtained from the 2D
point correspondences with the polarimetric normal infor-
mation. The first term, fsamp(R, t) is the standard squared
Sampson loss [11], which tries to enforce the epipolar con-
straints for the 2D point correspondences. The second term

fnorm(R, {ni}) = γnormal

m∑
i=1

‖Rvi(ni)−v′i(ni)‖2, (15)

incorporates the normal information. Note that the nor-
mals vi(ni) depend on the refractive indices ni as shown

in Equation 5. The parameter γnormal is set to 10−3 and
10−4 for our synthetic and real experiments respectively.

Finally, to make the optimization more robust to poor ini-
tialization we add a term which penalizes refractive indices
which deviate far from the expected values (most dielectric
materials have n ∈ [1.3, 1.6]),

fprior({ni}) = γprior

m∑
i=1

(
ni − n0i

)2
, (16)

where γprior is the weighting parameter which is set to
10−5 and 10−4 for our synthetic and real experiments re-
spectively. We set n0i to be 1.5 in our experiments.

4.3.1 Implementation Details

For stopping criterion we use ‖∇f‖∞ < 10−8 as well as
a threshold on the maximum number of iterations (set to
100 in our experiment). To make the cost robust to outlier
measurements we use the truncated `2 loss,

%(x) =

{
x2 if x < ε,

ε2 otherwise.
(17)

Additionally, in the optimization we consider points where
the refractive index n /∈ [1, 2] as outliers. For the rotation
we use the local angle-axis parameterization,

R(r) = R0 exp([r]x), (18)

where R0 is the rotation from the previous iteration. Simi-
larly, to avoid the scale-freedom in the translation, in each
iteration we parameterize the translation locally using the
tangent space of the unit sphere,

t(x, y) = t0 + b1x+ b2y, (19)

where b1 and b2 are two unit vectors orthogonal to t0.
If we use independent refractive indices ni for each point

there will be 3+2+Np unknowns in our optimization prob-
lem, whereNp is the number of 2D correspondences. In the
case where the refractive index is constant over all points,
we would only have 6 unknowns.

As is the case for standard Bundle Adjustment [28], we
can employ the Shur complement trick to greatly reduce the
computational cost of the iterations. In our case the linear
update equations in LM are given by[

JTRtJRt + λI JTRtJn
JTn JRt JTn Jn + λI

] [
∆Rt

∆n

]
=

[
−JTRtε
−JTn ε

]
, (20)

where ε ∈ RNres is the vector of residuals, JRt ∈
RNres×5, Jn ∈ RNres×Np are the Jacobians w.r.t. the
rotation/translation and the refractive indices respectively.
Eliminating ∆n from the second row we get

∆n = −
(
JTn Jn + λI

)−1 (
JTn ε+ JTn JRt∆Rt

)
. (21)
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Figure 2. Illustration of the geometric configuration for our syn-
thetic experiment.

Note that H =
(
JTn Jn + λI

)
is a diagonal matrix since

there are no direct interactions between the different refrac-
tive indices. So while H ∈ RNp×Np will be a large matrix
if we have a lot of point correspondences, computing the
inverse is extremely cheap (in regular bundle adjustment H
will be block-diagonal with 3 × 3-blocks). Completing the
Shur complement, inserting (21) into (20), we get(

JTRtJRt + λI− JTRtJnH
−1JTn JRt

)
∆Rt

= −(JTRt − JTRtJnH
−1JTn )ε, (22)

which then reduces the problem to solving a 5 × 5 linear
system, regardless of the number of points Np.

After each iteration in Levenberg-Marquardt we update
the angle ambiguity using the current rotation estimate as
described in Section 4.2. Note that this only affects the
fnorm term, and will always lead to an equal or lower func-
tion value for f .

5. Experiment
5.1. Evaluation on Synthetic Data

We first quantitatively evaluate our method with two syn-
thetic images with known ground truth poses. The test ge-
ometry is shown in Figure 2. The camera coordinate of the
first camera is set to be the same as the world coordinate.
The second camera is placed at a random location around
the first camera, and the baseline length between the two
cameras are set to 1 unit. The maximum angle along x, y
and z axes are set to be 30◦, 40◦ and 5◦ respectively. We
randomly generate the scene points within the viewing vol-
ume of the first camera with a depth range from 1.5 to 2.5
unit. The synthetic image resolution is 352 × 288 pixels
and the field of view is set to be 45◦. We get image coor-
dinates of each 3D point through projection. Moreover, we
also randomly generate a normal vector facing towards the
first camera for each point. From the normal vectors, we
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Figure 3. Angular rotation error distribution for the test on the syn-
thetic data. The error is measured in degrees.
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Figure 4. Angular translation error distribution for the test on the
synthetic data. The error is measured in degrees.

can compute the phase angle and degree of polarization for
each point in two cameras. We randomly select a refractive
index between 1.3 and 1.7.

We assume that all points are diffuse-dominant and that
they share the same refractive index which is unknown be-
forehand. We use 1.5 as our initial guess for the refractive
index. Moreover, we add zero mean Gaussian noise to im-
age coordinates and phase angles. The standard deviation
for image coordinates is set to be 2 pixels, and the standard
deviation of phase angles is set to be 3◦. For degrees of
polarization, we add multiplicative noise with the standard
deviation to be 5%.

We evaluate the accuracy of the estimated poses by com-
puting the angular error to the ground truth for both the ro-
tation and translation. We conduct 1000 random trials for
the test.
Comparison with 5-point algorithm [21]. We first com-
pare our algorithm with the efficient 5-point algorithm [21].
The performance of both methods are shown in Figure 3
and Figure 4. The mean errors are shown in Table 1. We
report the errors after the initial RANSAC, after optimiza-
tion on the Sampson error, and finally with our optimiza-



5-point 2-point

Initial Sampson Initial Sampson Optimized

Rerr 6.10 4.95 2.30 3.59 1.80
terr 9.30 7.37 3.25 4.08 2.52

Table 1. Comparison with 5-point algorithm on the synthetic data. The error is measured in degrees.
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Figure 5. Performance with different levels of noise in image coordinates.

tion scheme from Section 4.3 which also promotes geomet-
ric consistency of the normals. We can see that our algo-
rithm consistently outperforms the 5-point algorithm in this
experiment setup, with and without the non-linear refine-
ment. We can also see that only optimizing the Sampson
error becomes worse compared to using the proposed opti-
mization. While the geometric information from polariza-
tion only gives constraints for the relative orientation, we
can see that it also benefits the relative translation estima-
tion.

We also test the robustness of the different methods un-
der varying levels of noise in the point correspondences.
Figure 5 shows the average angular errors as we vary the
standard deviation of the noise level from 0 to 10 px. From
the figure, we can see that with reasonable measurements
of polarization information, our 2-point algorithm is more
robust against noise in the image coordinates.

Finally, we compare the average numbers of RANSAC
iterations and runtimes of different methods. When the
desired probability is set to 0.99, the average numbers of
RANSAC iterations for 5-point algorithm and ours are 17.8
and 7.8 respectively. The mean runtimes without optimiza-
tion of 5-pt algorithm and ours are 7.1 ms and 14.3 ms
on a standard desktop PC in unoptimized MATLAB code.
We believe our method could be improved significantly by
using a closed form solution for the two-vector alignment
problem instead of explicitly computing the SVD.
Robustness against noise in different polarization mea-
surements. Since our 2-point algorithm relies on extra po-
larization measurements, we also test the robustness of our
algorithm under different noise levels of the polarization
measurements. We first test the robustness of our algorithm

against noise in the phase angle. We change the standard
deviation of noise for the phase angle from 0 to 15 degrees,
and the performance is shown in Figure 6. We can see that
our algorithm performs robustly with noise in the phase an-
gle measurement. Even with a standard deviation of 15◦,
the errors in the relative pose estimation is still rather small,
with a mean error of 4.13◦ and 5.08◦ in rotation and trans-
lation after optimization.

Next we test the robustness against noise in the measure-
ment of degree of polarization. We change the standard de-
viation from 0% to 15%, and the performance is shown in
Figure 7. We can see that our algorithm is also quite robust
against the noise in the degree of polarization.

Performance with different initial refractive indices.
Since the refractive index is generally unknown, it is partic-
ularly important that the method could gracefully handle in-
correct refractive indices. We also studied the performance
of our algorithm with different initial refractive index. In or-
der to have a clear understanding of the impact of the initial
refractive index, we assume all the other measurements are
noiseless, and set the ground-truth refractive index to be 1.5.
Then we change the initial guess of refractive index from
1.3 to 1.7 with a step size of 0.02. The results are shown
in Figure 8. From Figure 8, we can see that with a correct
guess of refractive index, the errors in both initial transla-
tion estimation and initial rotation estimation are close to
zero. When the initial guess of refractive index is biased
from the ground truth, the initial pose estimation from the
2-point algorithm becomes worse, but still maintains rela-
tive small errors and these errors could be handled with our
polarimetric two-view optimization. From this experiment,
we can see that the incorrect guess of the refractive index
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Figure 6. Performance with different levels of noise in phase angles.
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Figure 7. Performance with different levels of noise in degree of polarization.

only influences the initial pose estimation to some extent,
and this could be solved by the later joint optimization in
the proposed method. Our observation is similar to that in
[13]. In [13], the authors shows that the difference between
the ground-truth refractive index and hard-coded refractive
index exhibits a certain distortion in the surface normal es-
timation. We also compute the mean error for the estimated
refractive index, and it is 8.27% after the optimization with
an initial error of 9.09%.
Performance with non-uniform refractive index. Next
we consider the especially challenging case when all the
points have their own refractive index. In this case, there
are more parameters to be optimized in our joint optimiza-
tion. With the same setup as the initial synthetic experiment
for all the other measurements, we generate different re-
fractive indices for each point in the interval [1.4,1.6]. The
average angular errors for rotation and translation are 3.66◦

and 4.91◦. Although it is worse than the case with uniform
refractive index, the performance is still better than the 5-
point algorithm.

5.2. Evaluation on Real Data

We further evaluate our method with real polarization
datasets from [5], which were captured by a Cannon EOS
7D camera with a 50mm lens and a Hoya linear polarizer

in the front of the camera lens. VASE has 36 images, BAL-
LOON has 24 images, and TALLVASE has 36 images. These
three datasets are dielectric and relatively larger compared
to the other datasets in [5]. For each viewpoint, there are
seven images captured with the polarization angle spaced
30◦ degrees apart, from which we can compute the phase
angle and degree of polarization.

The datasets also provide global camera poses recov-
ered by the incremental structure-from-motion method from
[29]. Since these have been optimized in bundle adjustment
with constraints from multiple views, we take the relative
poses from this reconstruction as the ground truth for our
experiment. Moreover, for a reasonable comparison, we
only consider image pairs with sufficiently large shared field
of view. In total we have 146 pairs of images for the VASE
dataset, 57 pairs for BALLOON, and 124 pairs for TALL-
VASE. In Figure 9 we show some example images from the
three datasets.

The results of the proposed method and the 5-point al-
gorithm are shown in Table 2. From the table, we can see
that our method outperforms the 5-point algorithm in terms
of both translation and rotation angular errors. Especially
for the TALLVASE dataset, our method reduces the rota-
tion error by 44.39%, and the translation error by 24.94%.
We believe this is mainly because the dataset has significant
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Figure 8. Performance with different initial guess of the refractive index.
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Figure 9. Sample images and dense reconstruction results of the
real datasets.

5-point 2-point

Rerr terr Rerr terr

VASE 14.70 21.95 14.44 21.23
BALLOON 7.44 7.51 6.87 6.85
TALLVASE 22.91 17.36 12.74 13.03

Table 2. Accuracy comparison on the real datasets.

repetitive features and higher outlier ratios which favors the
smaller sample size of our solver compared to the 5-point
algorithm.

In order to further test the computed relative poses, we
feed the computed relative poses into a global structure-
from-motion pipeline [6]. We measure the error of the re-
covered global poses compared to the given global poses.

The mean angular error for the global rotation is 0.97◦,
0.81◦ and 2.57◦ for VASE, BALLOON and TALLVASE re-
spectively. The mean error for the global camera position is
0.010, 0.009 and 0.028 if we set the maximum distance of
two cameras to be 1. We can see that both global rotation
and camera position errors are quite small, which validates
the effectiveness of the proposed 2-point algorithm for the
relative pose estimation.

We also conduct the dense reconstruction by integrating
both the geometric and polarimetric information as [5]. The
global poses recovered from [6] initialized with the epipolar
geometries estimated using the proposed approach are used.
The final reconstructed dense models are shown in Figure 9,
and we can see that the dense 3D models can be accurately
recovered.

6. Conclusion

In this paper, we propose a minimal solver for the rela-
tive pose estimation from polarimetric images. By exploit-
ing the encoded surface normal information in the polar-
ization images, we can recover the relative pose given two
point correspondences. With the requirement of only two
point correspondences, our algorithm could easily solve the
ambiguity in the surface normal estimation. Moreover, in
order to handle the refractive distortion, we also propose
a joint optimization framework between the relative pose
and the refractive index. We validate our algorithm with
both synthetic and real datasets. Experiments show that
our algorithm is very robust and performs better than the
5-point algorithm when the polarimetric measurements are
sufficiently good. We only studied the case for the diffuse
reflection in this paper; however our algorithm can be easily
adapted for the specular reflection, and we will study this in
the future.
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[19] Jorge J Moré. The levenberg-marquardt algorithm: imple-
mentation and theory. Numerical analysis, pages 105–116,
1978.

[20] Olivier Morel, Fabrice Meriaudeau, Christophe Stolz, and
Patrick Gorria. Polarization imaging applied to 3d recon-
struction of specular metallic surfaces. In Proc. of Ma-
chine Vision Applications in Industrial Inspection XIII, vol-
ume 5679, pages 178–186, 2005.

[21] David Nistér. An efficient solution to the five-point relative
pose problem. IEEE Trans. Pattern Analysis and Machine
Intelligence (PAMI), 26(6):0756–777, 2004.
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