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Abstract. Structure-from-Motion can achieve accurate reconstructions
of urban scenes. However, reconstructing the inside and the outside of a
building into a single model is very challenging due to the lack of visual
overlap and the change of lighting conditions between the two scenes.
We propose a solution to align disconnected indoor and outdoor models
of the same building into a single 3D model. Our approach leverages
semantic information, specifically window detections, in multiple scenes
to obtain candidate matches from which an alignment hypothesis can
be computed. To determine the best alignment, we propose a novel cost
function that takes both the number of window matches and the inter-
section of the aligned models into account. We evaluate our solution on
multiple challenging datasets.

1 Introduction

Recent progress in the area of 3D reconstruction enables the generation of large-
scale [12] and detailed outdoor models [25], as well as accurate indoor recon-
structions [9] and their floor-plans [2,19]. The resulting 3D models are useful for
a wide range of applications, from virtual tourism [16,27], visualization of apart-
ments for real estate [19], cultural heritage [7, 23,29], and image-based localiza-
tion [18,30], to real-time camera pose tracking on mobile devices for Augmented
Reality [22], and autonomous navigation [20]. Ideally, a single joint reconstruc-
tion of the interior and exterior is desirable as it would, for example, enable a user
to seamlessly enter buildings in a virtual city model rather than only exploring
the outside. Similarly, a combined model would allow autonomous robots to eas-
ily transition between the indoor and outdoor world. However, state-of-the-art
approaches often fail to reconstruct both parts into a single 3D model.

Obtaining a joint indoor-outdoor model is hard for multiple reasons: on the
one hand, the indoor and outdoor parts of a scene typically exhibit a weak
connection through a limited number of visual observations such as doorways or
windows. As a result, great care must be taken when capturing data to ensure
enough visual overlap for feature matching and to prevent the models from being
disconnected [28]. This problem is often aggravated by the fact that there can
be a strong change in illumination in transition areas. In practice, Structure-
from-Motion (SfM) models disconnect quite often, even when an experienced
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Fig. 1. The proposed method aligns disconnected Structure-from-Motion reconstruc-
tions of the inside and outside to produce a single 3D model of a building. Our approach
also handles incomplete reconstructions and multiple indoor models (c.f . right model)

user carefully takes images of a single outdoor scene [4]. It is, thus, very hard
to connect indoor and outdoor scenes through feature matches reliably for most
practical applications. On the other hand, even if we capture enough imagery
to visually connect indoors and outdoors, e.g . by recording a video sequence,
the connections are usually rather weak. Consequently, it is hard to prevent
drift between the two models. Additionally, indoor reconstructions are often
incomplete and disconnected, e.g . when some rooms are not accessible. This
makes the alignment problem even harder, since several indoor models have to
be aligned to one or more outdoor models for which the relative scale is also
unknown. For the case of incomplete models, the solution might be ambiguous
even for humans without prior knowledge of the building.

In this paper, we propose an alignment algorithm that exploits scene se-
mantics to establish correspondences between indoor and outdoor models. More
precisely, we exploit the fact that the windows of a building can be seen both
from the inside and the outside. Towards this goal, we apply semantic classifiers
to detect windows in the indoor and outdoor scenes. A single match between an
indoor and outdoor window determines an alignment hypothesis (scale, rotation,
translation) between the two models. All hypotheses are inspected and grossly
wrong alignments are detected and discarded using a measure of intersection of
the two models. Plausible alignments are then further refined using additional
window matches. Our approach is robust to noisy window detections and is able
to align disconnected indoor and outdoor models (c.f . Fig. 1). Furthermore, our
method can handle both multiple and/or incomplete indoor or outdoor models.

Concretely, we make the following contributions: we present a novel approach
for aligning indoor and outdoor reconstructions of a building by detecting and
aligning windows in both models. We propose a novel quality metric for the
resulting alignment based on detecting intersections between the two models. We
exploit multi-view redundancy to ensure robustness to noisy window detections.
As a result, our proposed algorithm is able to tackle the challenging problem of
joining indoor and outdoor models of a building into a single reconstruction. In
addition, our method works purely on sparse point clouds and does not require
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any dense geometry. We demonstrate the practical applicability of our approach
on multiple challenging datasets.

2 Related Work

There is a clear trend of using higher level (semantic) information for both
sparse and dense 3D reconstruction: Ceylan et al . [3] and Cohen et al . [6] ac-
tively detect and exploit symmetries and repetitions to improve the quality of
SfM reconstructions. Häne et al . [11] and Savinov et al . [24] combine semantic
image classification and dense 3D reconstruction, showing that jointly optimiz-
ing over the labels and the shape of the 3D model improves the results for both.
All these methods use a higher level understanding of the scene to optimize the
reconstruction results. In contrast, we use semantic information to enable recon-
struction in the first place by aligning indoor and outdoor models that cannot
be related by low-level feature matches alone.

Indoor reconstruction approaches usually exploit Manhattan world assump-
tions to obtain clean, dense 3D models from streams of photos [9, 29]. Given a
set of panoramas as input, Cabral and Furukawa [2] determine for each pixel
whether it belongs to the floor, wall, or ceiling. Given these structural classifica-
tions, they estimate a piecewise planar floor plan and create a compact, textured
mesh from the generated plan. While the previous approaches operate on densely
sampled images, Liu et al . [19] estimate the layout of each room from a sparse set
of photos. Prior knowledge of the floor plan and semantic classification is then
used to align the individual rooms. Recently, Ikehata et al . [13] showed that
parsing the structure of the scene can significantly aid the indoor reconstruction
process. They reason about the semantic relation between different scene parts
and the structure of the rooms and use this knowledge during reconstruction.

Martin et al . [21] and Cohen et al . [4] consider the problem of aligning visu-
ally disconnected 3D models without using traditional feature matches. Martin
et al . determine the room layout of individual 3D models by solving a jigsaw
puzzle problem, utilizing annotated floor plans and the temporal flow of crowds
between rooms. Cohen et al . reason about the spatial arrangement of individ-
ual sub-models to obtain a closed model of the outside of a single building.
Their method is based on determining potential connection points between the
models and detecting free-space violations using semantic information. The two
approaches solely focus on indoor [21] and outdoor reconstructions [4], respec-
tively. In contrast, our approach addresses the problem of linking previously
disconnected indoor and outdoor models. In addition, we also show that indoor
models can help to connect partial outdoor models and vice-versa.

Strecha et al . [28] reconstruct both the outside and the inside of a historic
castle. In contrast to our method, which does not constrain the capture setup,
Strecha et al . heavily constrain the capture to be able to reconstruct the whole
scene as a single model. In particular, they very carefully take images with high
visual overlap between indoors and outdoors to prevent the reconstruction from
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Fig. 2. Given SfM reconstructions of indoors and outdoors together with their input
images, we leverage per-pixel semantic classification to detect windows in 3D. These
windows are then used to compute a registration between both scenes that maximizes
the number of aligned windows while avoiding that the models intersect each other

disconnecting into multiple sub-models. Often, this is impractical or even impos-
sible. Hence, our approach is specifically designed to handle separate models.

Simultaneously to our work, Koch et al . [14] also developed a method to
tackle the problem of indoor-outdoor model alignment using 3D line matching.
3D lines are detected using the original images and the reconstructed (separate)
models. The models are then aligned using the transformation that matches
the highest number of line segments. The method assumes that the 3D line seg-
ments found are mostly located on windows and doors, indirectly matching these
structures between both models without explicitly using semantics, as opposed
to our method. In addition, they also need to know the scale of both models in
advance and they only deal with one indoor and one outdoor model. Our method
overcomes these limitations. Both works are complementary, since our method’s
results could be used as input for [14] which would act as a refinement step.

3 Method Overview

Given separate indoor and outdoor models, we propose to align the inside and
outside of a building through semantic information. Specifically, as windows
are visible both from inside and outside, we use window detections to generate
correspondences between the two models, which are then used to compute the
alignment between the models. This approach naturally extends to room-to-
room registrations by detecting and aligning doors. However, similarly to [19],
we found that door detection performs poorly. In this paper, we thus focus on
indoor-to-outdoor alignments via window detections.

In the following, we provide an overview of our algorithm, as illustrated in
Fig. 2, before presenting algorithmic details in the next sections. As input, our
method uses sparse SfM models of the indoor and outdoor scenes, as well as the
images used to generate them.
Window detection. First, we apply a per-pixel classifier to detect windows
in all input images. For each image, we employ a façade parsing approach on
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the rectified images, similar to Cohen et al . [5], to obtain the 2D rectangles that
most likely correspond to the actual windows seen in the photos. Next, we use the
known camera poses and the sparse 3D scene points to estimate the 3D planes
containing the windows. Leveraging the SfM points, we estimate 3D window
positions for each image individually. We then detect overlapping 3D windows
and compute consensus window positions. Using all images in the reconstruction
also allows us to handle occlusions more robustly, e.g ., due to vegetation in front
of a façade. Sec. 4 describes this process in more detail.

Model alignment. Given 3D window detections for the indoor and outdoor
models, we next register the disjoint models based on window correspondences.
Computing the alignment boils down to finding a similarity transformation be-
tween the models, which can be computed from three point correspondences in
the general case and from two point matches if the gravity direction is known.
One potential approach would be to simply obtain point correspondences by
aligning the centers of gravity of the windows and apply RANSAC [8] to es-
timate the transformation. However, the appearance of a window can change
dramatically when viewed from the inside and the outside, e.g ., due to illumi-
nation changes or by actually looking through the window. As such, we need
to consider each pair of indoor and outdoor windows, which means RANSAC-
based approaches quickly become infeasible. Consider a simple case, where 20
windows are detected for the outdoor model and 3 windows are detected for a
partial indoor reconstruction of a corner room. There are 1140 (resp. 190) po-
tential combinations to draw 3-(resp. 2)-tuples of window matches. Out of all
these configurations, exactly one is correct, leading to inlier ratios below 1%.

In order to avoid the combinatorial growth in complexity, we exploit the
width and height of the 3D window detections to estimate a similarity trans-
formation from a single window correspondence. Using a single match allows
us to exhaustively generate the set of all possible alignment configurations. In
the previous example, there are 60 potential combinations, out of which 3 are
correct. The obtained alignments are then ranked based on the fact that the in-
door models must not intersect with the outdoor model by enforcing free-space
constraints. Alignments that violate this constraint are discarded. Otherwise, we
determine the window support of the transformation, i.e., the number of cor-
rectly aligned indoor-outdoor window detections, and refine the best alignment
in an iterative procedure. Sec. 5 provides details on the alignment process.

Handling ambiguities due to symmetries. Given a reconstruction of a
single floor in a multi-story building, it can be impossible to determine to which
floor the model belongs if the windows are symmetric between floors1. We thus
determine the number of floors and estimate the best alignment per floor, en-
abling a user to choose a transformation and hence resolve the ambiguity.
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Fig. 3. The proposed 3D window detection pipeline

4 Window Detection

In this section, we describe our window extraction approach (c.f . Fig. 3). Our
approach leverages a pre-trained per-pixel classifier to detect windows in all of
the images used to reconstruct the indoor and outdoor models. The labels for
image i are fed into a façade parsing algorithm to obtain a set W2D(i) of 2D
window detections, where each window w ∈ W2D(i) is defined by its four corners.
For each 2D window, we obtain a corresponding 3D window by projecting it onto
a 3D plane estimated using the sparse SfM points. As shown in Fig. 3, these
individual window projections are not necessarily consistent between images.
We thus use all individual window projections to compute a consensus set W3D

of 3D windows that is consistent across all images of a model. This window
detection pipeline is applied separately on each indoor and outdoor model.
Image classification. We use the supervised learning method of Ladický et
al . [17] to obtain a pixel-wise semantic classification of the images used for re-
construction. Since we found that a classifier trained on indoor images performs
poorly on photos taken on the outside and vice-versa, we train two separate
classifiers. For training the indoor classifier, we use the annotated datasets pro-
vided by [19]. To train the outdoor classifier, we use the eTrims dataset [15]. The
classification scores can then be used in a façade parsing algorithm to obtain the
best scoring set of windows per image.
Natural frame estimation. To simplify the subsequent steps of our proce-
dure, we align each 3D model into a canonical coordinate system. We choose
the coordinate system that is aligned to the façade directions of the building. To
achieve this, we determine the main axes of each model by estimating the van-
ishing points in each input image. The vanishing points then vote for the three
coordinate directions. Next, we align the coordinate system of each 3D model
with the x-y-z-axes, such that the vertical axis is aligned with z and walls are
mostly aligned with the x or y direction under a Manhattan world assumption.
Image rectification and façade parsing. Following most works on indoor
reconstruction [9,13,29], we use the Manhattan world assumption. This assump-
tion is not strictly necessary, but simplifies and robustifies further processing and
allows us to restrict our search for window planes to those parallel to the x-z
and y-z planes. We therefore rectify all images w.r.t. x- and y-aligned planes to
synthesize fronto-parallel images of the walls (c.f . step 3 in Fig. 3). The façade

1 Again, detecting doors could resolve these ambiguities for the ground floor, but it
would still remain for other floors.
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parsing algorithm presented in Cohen et al . [5] is then used to extract the set
W2D(i) of 2D windows for image i by obtaining the four corner vertices of the
rectangles corresponding to window detections in the rectified image. For out-
door models, this method also provides the number of floors detected per image.
As discussed in Sec. 3, knowing the number of floors for a building enables our
alignment approach to generate multiple plausible hypotheses if the indoor model
only covers a single floor. Additionally, assuming that all windows on the same
floor have the same height, façade parsing can better handle incomplete window
labellings (e.g., due to occlusion). It requires < 1 second per image and provides
better results compared to directly extracting windows from the semantic labels.
Individual window projection. LetW2D(i) = {wi

1, . . . , w
i
n} be the set of 2D

windows detected in the previous step for image i, and let P i = {pi0, . . . , pim}
be the set of 3D SfM points that are visible in image i. We extract the subset
P ′i ⊂ P i of points whose projections in the image fall inside any of the detected
2D windows wi

j , j = 1, . . . , n. We then use P ′i to estimate the window plane π
as the best fitting plane parallel to either the x-z or y-z plane. The normal of
the plane π is chosen to agree with the direction to which image i was rectified
for the window extraction. All windows wi

j are then projected onto π to obtain

a set of 3D windows W3D(i) = {W i
j}j=1,...,n for image i.

Window grouping and consensus. Given the sets of 3D windows W3D(i)
detected for each individual image i, we next group the overlapping 3D windows
from all images into clusters C. All 3D windows from the same cluster are then
used to estimate a single 3D consensus window (c.f . the last two stages in Fig. 3).

First, we cluster all 3D windows that overlap and are on the same plane (up to
a threshold computed as 20% of the average window length). To decide whether
two windows Wi and Wj overlap, we intersect their areas in the common plane.
We use an agglomerative clustering approach, i.e., we initialize the clustering
procedure by creating a separate cluster C for each window W i

j in each image
and then iteratively merge clusters. Two clusters Cs and Ct, s 6= t, are merged
if there exist two overlapping windows W i

j ∈ Cs and W k
l ∈ Ct, i 6= k. Once

all overlapping clusters are merged, we compute a consensus window W (C) for
each cluster C: first, we determine the bounding box B containing all windows
in the cluster, i.e., W i

j ⊆ B for all W i
j ∈ C. Next, for each image i observing a

window W i
j ∈ C, we project its per-pixel classifier scores onto B to accumulate

the scores. We then compute W (C) as the rectangle inside the bounding box that
maximizes the sum of window scores minus wall scores in B. The computation of
such a rectangle is known as the maximum sum rectangular sub-matrix problem
and can be optimally computed using a 2D version of Kadane’s algorithm [1].
The output is the set of consensus windowsW3D = {W (C)} for each sub-model.

5 Model Alignment

The goal of the alignment procedure is to transform the initially disjoint indoor
and outdoor models into a common reference frame. Since traditional feature cor-
respondences are not available, we instead employ window-to-window matches



8 A. Cohen, J. Schönberger, P. Speciale, T. Sattler, JM. Frahm, M. Pollefeys

to facilitate the alignment. We utilize the fact that a single window correspon-
dence defines a similarity transformation that registers one indoor against one
outdoor model. This allows us to exhaustively evaluate all potential matches
rather than having to rely on appearance to establish correspondences. This is
important since the appearance of a window can change quite drastically be-
tween indoors and outdoors2 or might even be completely different, e.g ., due
to closed shutters or partial occlusion. A natural way to define the best align-
ment is to find the transformation that explains the largest number of window
correspondences. However, the transformation maximizing the number of inlier
matches is not necessarily plausible. For example, it does not guarantee that an
indoor model does not protrude from the outside of the building. In this section,
we introduce and discuss a quality metric that takes both the number of inliers
and the intersection between the models into account.

The input to our alignment procedure are setsMin andMout of axis-aligned
indoor and outdoor models, respectively, as well as the consensus windows W3D

detected in the previous step. The output is a set of ranked configurations of
aligned models Ks = {(Ci, ei) | ei < ei+1}, where the energy ei measures the
cost of a configuration Ci and a lower energy denotes a better configuration. A
configuration Ci relates two or more models through a set of window-to-window
correspondences Ci = {(Wa(mj),Wb(mk)) , ... | j 6= k }. A single correspondence
(Wa(mj),Wb(mk)) relates model mj to mk and defines a 3D similarity trans-
formation Tjk. The alignment procedure repeatedly searches for unique optimal
configurations by minimizing the objective function

minimize
C

e = EW (C,W3D) + EI(C,Min,Mout)

subject to EI(C,Min,Mout) < λ
. (1)

The term EW measures the cost of the window alignment between the models,
i.e., how well the estimated transformations align the windows. Likewise, the
term EI measures the cost of the model alignment in terms of the intersection of
the models and λ defines the maximum intersection allowed. We solve this con-
strained optimization problem through exhaustive search in the space of possible
configurations. For N windows in each of the M models, the number of possible
configurations is O(NM ). As the number of windows and models is typically rel-
atively small, exhaustive search is feasible. A window-to-window correspondence
(Wa(mj),Wb(mk)) relates the 3D consensus window Wa detected in an indoor
model mj to the 3D consensus window Wb in an outdoor model mk. The cor-
respondence also defines a relative 3D similarity Tjk transforming coordinates
in model mj into the coordinate frame of model mk. Section 5.1 describes the
process of establishing these correspondences and then chaining them to form a
configuration C. Section 5.2 defines the terms of EW and EI used to rank the
set of configurations K.

2 We noticed that the indoor classifier sometimes splits a window into multiple parts
while the outdoor classifier usually detects the whole window. This is due to the
indoor images typically being taken closer to the windows, such that the frames
appear larger, as well as the stronger contrast against the outdoor illumination.
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Fig. 4. (Left) Window term example. The alignment on the left has a lower cost than
the one on the right. (Right) Intersection term example. Both alignments have the
same EW . The solution on the left is chosen since EI is lower

5.1 Correspondence Search

For correspondence search, we exhaustively explore all possible configurations Ci.
We only consider window-to-window matches between indoor and outdoor mod-
els. We start by generating all unique pairwise window combinations between
every unique pair of indoor and outdoor models. This initial set of combinations
determines alignments between pairs of models. To handle the case of multiple
indoor and outdoor models, we then generate all unique combinations of the ini-
tial set of combinations and repeat this process until all possible configurations
are explored. The resulting set K contains the entire space of configurations
aligning the models through chains of correspondences. Each correspondence
in a configuration defines a relative 3D similarity that can be used to align
the corresponding models into a common reference frame. For each correspon-
dence (Wa(mj),Wb(mk)), we estimate its associated similarity transformation
Tjk from the four corresponding 3D window corners in Wa(mj) and Wb(mk).
To handle noisy window detections more robustly, we exploit the fact that the
windows are already axis-aligned, i.e., the rotations around the x- and y-axes
are already fixed. Hence, we first estimate a 2D similarity transformation in
the x-y plane and then independently infer the z-translation. This comes with
two main benefits: first, the 2D window locations are usually less accurate than
their estimated vertical plane. As a result, we obtain more robust orientation
alignment around the z-axis. Second, a single window correspondence provides
us with redundant observations for both the scale and z-translation estimation.
To estimate the scale, we can use either the vertical or horizontal length of
the window frames. For the z-translation, either the top or bottom side of the
window frame. Generating these multiple possible alignments per window cor-
respondence enables us to handle partial occlusions of windows more robustly,
e.g ., caused by furniture or curtains. Chaining similarities using the recurrence
relation Tjkl = Tkl · Tjk enables us to transform any model’s mj coordinate
system into any other model’s mk coordinate system, if they are within the
same configuration C. For each configuration, we align their contained models
and windows into a single reference frame.

At this point, each Tjk is determined from a single window correspondence.
However, a correct transformation chain is expected to put all corresponding
windows in a configuration close to each other in 3D space. Hence, we look for
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these additional window correspondences in a densification step through mu-
tual nearest neighbor search in 3D space. For two windows (Wa(mj),Wb(mk))
to be mutual nearest neighbors, their centroids must be mutually closest in 3D
space and the distance must be smaller than a fraction α = 0.25 of their aver-
age window frame lengths. In addition, we enforce consistent orientation with
a maximum angular distance of β = 20◦ degrees. This densification procedure
usually extends configurations by additional window correspondences. We then
refine the initial alignments between models by estimating the similarity trans-
formations from all window correspondences. The densification might lead to
duplicate configurations in K containing the exact same correspondences. We
prune these duplicates to reduce the computational cost in the following steps.

We apply the proposed correspondence search in an iterative manner, i.e., we
repeatedly densify the correspondences, prune duplicates, re-estimate similarities
using the densified correspondences, and align the models using the refined sim-
ilarities. This iterative refinement strategy terminates if the densification finds
no additional correspondences.

5.2 Configuration evaluation

Given the set of unordered configurations, the next step is to determine whether
they are plausible and to rank the plausible ones based on their quality. As
defined in Eq. (1), we propose the energy EW +EI to jointly model the quality of
the window alignments EW (window term) and the amount of model intersection
EI (intersection term). In the following, we define and discuss both terms.
Window term. Intuitively, a good alignment explains as many window align-
ments as possible, similar to inlier counting in RANSAC. Given a configuration
Ci and the set of 3D consensus windows W3D, we define the window term as

EW (Ci,W3D) = |W3D| − 2 · |Ci| . (2)

Thus, the window term counts the number windows that do not have a corre-
spondence. A configuration with a higher number of explained window corre-
spondences thus results in lower energy (c.f . Fig. 4(left)).
Intersection term. The window term reflects positive evidence for the qual-
ity of an alignment. However, it is not sufficient on its own, as illustrated
in Fig. 4(right). The two configurations explain the same number of window
matches, but the one to the right is clearly implausible as the indoor model in-
tersects the outer hull of the building. We thus use a second term that determines
the amount of intersection by measuring the amount of free-space violations be-
tween the aligned models. Intuitively, none of the 3D points in one reconstruction
should be positioned in between a 3D point from another model and the cam-
eras observing this second point. We thus create a 3D voxel grid for each model
spanning the entire reconstruction including cameras and points, using a reso-
lution of 2003 voxels. A voxel is marked as free space if it is intersected by a
viewing ray from one of the cameras to a sparse 3D point. The intersection ratio
γjk between two aligned models mj and mk is then defined as the fraction of
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Theatre University Hall Chapel House-1 House-2

Fig. 5. Datasets used for experimental evaluation. We report the number of cameras
and sparse points in each model. Dense point clouds are shown for visualization only

the sparse 3D points in model mj that lie within a free-space voxel of mk. The
voxel grids can be efficiently pre-computed before the alignment procedure in
the respective coordinate frames of the original models. Then, the intersection
is computed by transforming the sparse points into the respective coordinate
frame of the voxel grid of the other model. The energy term is defined as the
maximum intersection of any combination of models in the configuration Ci

EI(Ci) = min{1− ε,max{γjk ∀ mj ∈ Ci,mk ∈ C}}. (3)

Here ε > 0 is a small constant chosen to ensure that EI ∈ [0, 1). Ideally, no 3D
point in a model should violate the free-space of another model. However, this is
rarely the case in practice due to noise and outliers in the reconstruction. Thus,
we allow a certain amount of intersection by setting λ = 0.05, i.e., less than
5% of all points in a model are allowed to violate the free-space constraint. All
configurations containing two models with an intersection ratio of λ or more are
discarded (c.f . Eq. 1) during correspondence search.
Discussion. By definition EI(Ci) ∈ [0, 1). Consequently, a configuration Ci
with one more window correspondence than another configuration Cj will al-
ways have a lower energy. This implies that the intersection term only acts as
negative evidence towards implausible configurations and it does not fully assess
the quality of a configuration: scaling an indoor model such that it completely
fits into the hull of a building results in no free-space violation. However, this
configuration is only correct if the indoor model actually fills the whole space. If,
on the other hand, the indoor model only contains part of the indoor scene, e.g .
a single room, there is a high chance that this configuration will not have any
window match, resulting in a high energy which denotes a bad configuration.

6 Experimental Evaluation

In this section, we evaluate the accuracy and robustness of our proposed align-
ment approach. We provide both qualitative and quantitative results by showing
different visualizations and comparing our estimated alignments with ground
truth. In addition, we present and discuss failure cases of our approach. In the
following, we first introduce the datasets.
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Hall House-1 House-2

Fig. 6. Window detections obtained as described in Sec. 4

Theatre-Split Hall Chapel House-1 House-2

Fig. 7. Alignments between indoor and outdoor models computed by our approach

Datasets. We collected a diverse set of six datasets (Fig. 5), spanning the
possible input scenarios of our approach: (1) single indoor and single outdoor
model (Theatre, House-1, Chapel), (2) multiple indoor models and single outdoor
model (University, House-2 ), and (3) single indoor and multiple outdoor models
(Theatre-Split). All buildings have multiple floors and we use a state-of-the-art
SfM pipeline [25, 26] to reconstruct the models from photos taken with a single
calibrated camera. Each of the datasets presents different challenges for our
algorithm that we evaluate in the following sections.

Qualitative Evaluation. Figs. 1 and 7 show the best alignments produced
by our proposed algorithm. We show dense models computed from the SfM
output using PMVS [10] for better visualization, with the aligned models colored
in red and blue. Despite the noisy window detections, we obtain the correct
alignments for most datasets. These results demonstrate that our approach is
able to estimate alignments that are accurate enough to pass visual inspection.
There are, however, problems with the house datasets. In House-2, the indoor
model is slightly too small. The noisy location of the detected windows also
affects the alignment of the ground floor in House-1, where the bow-window
area slightly intersects the outside of the house. This is related to the fact that
the appearance of the datasets differs considerably from the training data for
the outdoor model, and also the fact that a bow-window does not fall under the
Manhattan-world assumption. Note that our approach correctly aligns the small,
disconnected rooms in University, while a pure room layout-based alignment
would fail.

Quantitative Evaluation. To quantitatively evaluate the alignment accuracy,
we generate ground truth as follows: we manually label window corners in in-
door and outdoor images for the Theatre, University, House-2 and Hall datasets.
The technique described in Sec. 4 is then used to obtain the 3D coordinates for
each window. Next, we manually select correspondences between indoor and
outdoor windows to estimate a ground truth similarity transformation using
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least-squares. The absolute scale of the reconstruction is determined by mea-
surement of the real-world window sizes. Using this ground truth alignment, we
determine the quality of our alignments by calculating the positional error of the
aligned sparse 3D points produced by our method. With a mean error of ≈ 0.05m
(Theatre), ≈ 0.42m (University), ≈ 0.19m (Hall) and ≈ 0.54m (House-2, which
results in an inaccurate alignment), the indoor and outdoor models are accu-
rately aligned to a degree that is already difficult to notice by visual inspection.
Note that the sizes of University, Hall and House-2 are 36 × 25m, 40 × 16m
and 9 × 9.5m, resulting in an error of less than 1% of the dataset’s size for the
success cases, and only 5% for the failure case.

In addition, we also removed images from the outdoor reconstruction for The-
atre. As a result, SfM splits this model into back and front façade models. We call
this dataset Theatre-Split. Fig. 7 shows that our approach successfully connects
the outdoor models through the indoors. We manually labelled corresponding
cameras, and obtain an average camera pose error of ≈ 0.16m with a median of
≈ 0.05m. Beyond the quantitative evaluation, the Theatre-Split dataset is a very
interesting scenario, demonstrating additional applications of our method. For
example, it is often impossible to create full models for individual houses in a
connected building block or occlusions prevent feature matches around the cor-
ners of buildings [4]. Our approach enables the creation of full building models
even in these cases.

Windows Evaluation. Fig. 6 shows the 3D window detections obtained with
the approach described in Sec. 4 for a selection of datasets. Many window detec-
tions are noisy, especially indoors, where many windows are either missing (inside
of Hall) or their shape, size, or location is inaccurate (House-1 and House-2 ).
In addition, there are a few false-detections due to noisy SfM points. Despite
the large number of windows detected in some cases, our approach generates the
ranked alignments for all datasets in under one minute. This can be attributed
to our proposed combinatorial correspondence search scheme (Sec. 5.1). In our
experiments, we were able to detect, on average, 73.9% of all indoor and 66% of
all outdoor windows. Even for detection rates as low as 45%, our approach still
works.

6.1 Discussion

Even though our approach is robust to noisy and missing window detections, it
fails if there are no common windows between two models or if the detected num-
ber of windows is very small and their shape is too inaccurate. Possible reasons
for missing or corrupt window detections include occlusion, incorrect labeling
by our semantic classifier, a lack of 3D points preventing the estimation of the
3D window locations, etc. This results in different windows sizes for indoor and
outdoor models, which in turn leads to wrong scale estimates. This is especially
problematic if the number of common windows is small. House-2 depicts one such
case, in which we are not able to infer the correct scale of the interior model. If
there are enough common windows, our approach is rather robust against such
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cases, since it is likely that at least one of the window matches leads to a cor-
rect scale estimate. In addition, our proposed similarity estimation can handle
partial occlusions. Further robustness could be gained by considering indoor-
indoor and outdoor-outdoor alignments, e.g ., using techniques similar to [4,21].
Another potential failure may arise in the presence of many noisy points in the
reconstructions. A correct alignment could potentially violate the intersection
constraint.

Similar to most vision-based reconstruction systems, our approach is vulner-
able to multiple symmetry effects. First, along the vertical direction, where a
room placement would be plausible on multiple floors. We obtain valid room
placements on all three floors for the University and on two floors for the Hall
dataset. With prior knowledge, a human could manually select the correct floor
from the set of top-ranked configurations. Second, rotational symmetry, as de-
picted by the Chapel dataset. Even though the alignment shown in Fig. 7 looks
visually plausible, it is actually off by a 180◦ rotation around the z-axis. Our
approach finds the rotated alignment as the best solution due to window oc-
clusions on one side of the outdoor model. Given an alignment computed with
the proposed method, we could use an approach similar to [6] to detect sym-
metry planes for either the inside or outside model. The symmetry planes can
then be used to hypothesize additional rotationally symmetric alignments, while
the intersection constraint would rule out any invalid configurations. Last, if
the task is to align a small room to a building with many rooms and windows,
our approach will generate many plausible room placements. Choosing the best
alignment is impossible without prior knowledge of the building layout.

7 Conclusion

We are among the first to tackle the problem of indoor-outdoor alignment. Our
insight is to use semantic features (windows) to bridge the appearance gap in the
alignment. This insight is potentially more broadly applicable, e.g., aerial-ground
image alignment. We qualitatively and quantitatively showed the efficacy of our
method on six challenging datasets. Our method handles disjoint reconstructions
that might have been acquired at different times, thus giving more flexibility to
the data acquisition stage for 3D reconstruction. Our results provide a valuable
baseline for this difficult and important problem. In the future, we would like to
explore other semantic cues such as doors, elevators, or staircases, in order to
disambiguate across floors and symmetric configurations.
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17. Ladický, L., Russell, C., Kohli, P., Torr, P.: Associative Hierarchical Random
Fields. PAMI 36(6), 1056–1077 (2014)

18. Li, Y., Snavely, N., Huttenlocher, D.P., Fua, P.: Worldwide Pose Estimation Using
3D Point Clouds. In: ECCV (2012)

19. Liu, C., Schwing, A.G., Kundu, K., Urtasun, R., Fidler, S.: Rent3D: Floor-Plan
Priors for Monocular Layout Estimation. In: CVPR (2015)

20. Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., Siegwart, R.: Get Out
of My Lab: Large-scale, Real-Time Visual-Inertial Localization. In: RSS (2015)

21. Martin-Brualla, R., He, Y., Russell, B.C., Seitz, S.M.: The 3D Jigsaw Puzzle:
Mapping Large Indoor Spaces. In: ECCV (2014)



16 A. Cohen, J. Schönberger, P. Speciale, T. Sattler, JM. Frahm, M. Pollefeys

22. Middelberg, S., Sattler, T., Untzelmann, O., Kobbelt, L.: Scalable 6-DOF Local-
ization on Mobile Devices. In: ECCV (2014)

23. Russell, B.C., Martin-Brualla, R., Butler, D.J., Seitz, S.M., Zettlemoyer, L.: 3D
Wikipedia: Using online text to automatically label and navigate reconstructed
geometry. In: SIGGRAPH Asia (2013)
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