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Abstract—The acoustic-to-word model based on the Connec- Here, | is a sequence of phonemes anlasg =
tionist Temporal Classification (CTC) criterion is a natural end- (@, ®py, O} is the set of parameters to be estimated
to-end (E2E) system directly targeting word as output unit. Two during training. The first termP(x|l; ©aw) in Eq. (3) is

issues exist in the system: first, the current output of the CTC S .

model relies on the current input and does not account for the |!ke|lh09d of the features given the phoneme sequence
context weighted inputs. This is the hard alignment issue. Second, @nd is obtained from an acoustic model (AM). The second
the word-based CTC model sifers from the out-of-vocabulary term P(lly; ®py) is the likelihood of the phoneme sequence
(OQV) issue. This means it can model only frequently occurring given the word sequence and is obtained from a lexicon or
words while tagging the remaining words as OOV. Hence, such pronunciation model (PM). The third terf(y; ©uy) is the

a model is limited in its capacity in recognizing only a fixed . - : .
set of frequent words. In this study, we propose addressing tise PTOT probability of the word sequence and is obtained from a

problems using a combination of attention mechanism and mixed- language model (LM).
units. In particular, we introduce Attention CTC, Self-Attention In theory, all{®am, Opnm, Oy} should be estimated jointly.

CTC, Hybrid CTC, and Mixed-unit CTC. _ However, in practice, they are estimated separately andehen
First, we blend attention modeling capabilities directly into training an ASR system becomes a complex disjoint learning

the CTC network using Attention CTC and Self-Attention CTC. . - -
Second. to alleviate ?he OOV issue, we present Hybrid CTC problem. Moreover, decoding at test time involves a complex

which uses a word and letter CTC with shared hidden layers. The 9raph search procedure which is intensive both in time and
Hybrid CTC consults the letter CTC when the word CTC emits memory. This makes traditional ASR systems often cumber-

an OOV. Then, we propose a much better solution by training some for deployment in real-world devices.
a Mixed-unit CTC which decomposes all the OOV words into In contrast, an end-to-end (E2E) ASR system [1]-[10]

sequences of frequent words and multi-letter units. Evaluated . - . .
on a 3400 hours Microsoft Cortana voice assistant task, our circumvents the disjoint learning problem by directly &an

final acoustic-to-word solution using attention and mixed-units ducing a sequence of featuresto a sequence of words
achieves a relative reduction in word error rate (WER) over the Y. Some widely used contemporary neural network based
vanilla word CTC by 12.09%. Such an E2E model without using E2E approaches for sequence-to-sequence transduction are
any language model (LM) or complex decoder also outperforms 4y Connectionist Temporal Classification (CTC) [11], [12]
ﬁ&r?r:gogglcgggﬁeg;?%e&dfer};t(isg ) phoneme CTC with strong (b) Recurrent Neural Network (RNN) Encoder-Decoder (ED)
[13]-[16], and (c) RNN Transducer (RNN-T) [17]. These
Index Terms—CTC, OOV, acoustic-to-word, attention, end-to-  approaches have been successfully applied to large sc&e AS
end system, speech recognition [2]-[6], [9], [18]-[24]. In this study, we confine ourselvés
the CTC approach.
CTC, first introduced in [11], [12], involves training a skac
of underlying RNNs and minimizing the sequence level cross-
N automatic speech recognition (ASR), we are given entropy (CE) loss—log P(y|x). In contrast, RNN training
sequence of acoustic feature vectarsThe objective is minimizes the frame level CE loss. Moreover, CTC networks
to decode a sequence of worgsfrom x with minimum offer the versatility to model output units of fiirent sizes
probability of error. With the 0-1 loss function, the optimasuch as monophones, characters, words, or other sub-word
solution uses the Bayesian Maximum Aposteriori (MAP) rul@nits. Owing to this simplicity in the training structure can
§ = arg max P(yIx: ©asg) ) versatility of output units, CTC is regarded as one of thetmos
y ' ’ popular E2E methods [1]-[3], [19], [25]-[32].
In ASR, the number of output labels ynis usually smaller
@ . ) :
than the number of input speech framesxirHowever, since
& CTC network is essentially an RNN, it is forced to predict
a label for every frame irx. Since some frames may not
always be associated with a label (a) CTC introduces a dpecia
y ~ argmax P(x|l; ®am)P(ly; ®pm)P(Y; ©m).  (3)  blank label as an additional output label which acts as a
v filler and, (b) it allows for repetition of labels (for both
. , _ . blank or non-blank). As a result, CTC frame level outputs are
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|. INTRODUCTION

= arg max P(Xly; ®am)P(Y; OLm).
y

However, to reduce complexity, practical ASR systems oft
use the sub-optimal solution



posteriors because of their high confidences. Thus, an e&®ning regime included initializing the word CTC with a
way to convert intermediate frame level outputs to final ASRell-trained phoneme CTC, curriculum learning [38], Nes-
outputs using CTC involves a simple two-step procedure. terov momentum-based stochastic gradient descent, dropou
the first step, generate a sequence of labels correspormlingnid low rank matrix factorization [39]. To address the hot-
the highest posteriors and merge consecutive duplicatdslabwords issue, [37] also proposed a spell and recognize (SAR)
In the second step, remove the blank labels and concatermatedel which has a combination of words and characters as
the remaining non-blank labels into words. This is knownoutput targets. The SAR model is used to learn to first spell
as greedy decoding. It is a very attractive feature for E2& word as a sequence of characters and then recognize it
modeling as there is neither any LM nor any complex decodig a whole word. However, whenever an OQV is detected,
involved. This makes it easy for deployment in real-worlthe decoder consults the letter sequence from the speller.
devices. The E2E ASR developed in this study uses greetiyus, the displayed hypothesis to the end-user containdswor
decoding. (for non-O0Vs) and characters (for OOVs). Spelling out the
As the goal of ASR is to generate a word sequenaharacters for OOVs is more meaningful to the users than
from speech acoustics, the word is the most natural outmiply displaying “OOV”. However, it was reported that the
unit compared to other output units such as monophonesowerall recognition accuracy of the SAR model improved
characters. A big challenge in the word-based CTC modehly marginally over a word-only CTC. In [40], the authors
a.k.a. acoustic-to-word (A2W) CTC or word CTC, is the OO\proposed training two CTC models separately - an acoustics-
issue [33]-[36]. In [19], [26], [30], only the most frequentto-phoneme model from acoustic data and a phoneme-to-word
words in the training set were used as output targets whereasdel using text data respectively. Then, the two modelgwer
the remaining words were lumped together as OOVs. Thgsintly optimized resulting in an A2W model.
OOVs can neither be modeled nor recognized correctly. Forjy this study, we propose four solutions to improve the

example, consider an utterance containing the sequenge "h?bcognition accuracy of the all-neural word CTC using only

you been to newyorkabc” in which “newyorkabc” is an O0V3400 hours of training data while also alleviating the OOV
(infrequent) word. For an OOV-based model, a likely outpytg e

for this utterance would be “have you been to OOV". Despite
it being the expected output from the OOV-based model, theFirst, in Section 1ll, we proposéttention CTC[41] to
presence of the OOV tag in the sentence degrades the end-usaddress the inherent hard alignment problem in CTC. Since
experience. Another disadvantage of OOV modeling is that th CTC relies on the hidden feature vector at the current time
data related to those infrequent words are wasted, reguttin  to make predictions, it does not directly attend to feature
reduced modeling power. To underscore this issue, [26]@chi  vectors of the neighboring frames. This is the hard aligrtmen
a word CTC with up to 25 thousand (k) word targets. However,problem which makes CTC’s output independent assump-
the ASR accuracy of the word CTC was far below the accuracytion worse. Our proposed solution generates new hidden
of a context dependent (CD) phoneme CTC model with LM, features that carry attention weighted context infornratio
partially due to the high OOV rate when using only around We achieved this by blending some concepts from RNN-
3k hours of training data. ED into CTC modeling.

The accuracy gap between a word CTC and CD phonemé&econd, in Section 1V, we investigate another attention
CTC can be attributed to multiple reasons. First, training amechanism calle@elf-Attention[42] in CTC networks.
word CTC requires orders of magnitude of more training Third, we proposédybrid CTC[31] which is a single CTC
data than a CD phoneme CTC because words which qualifyiconsisting of a word CTC and a letter CTC trained jointly
as non-O0Vs (frequent words) requireffszient number of  using multi-task learning (MTL) [43], [44]. We train the
training examples. Words which do not meet thigtisiency =~ word CTC first and then add a letter CTC as an auxiliary
requirement are simply tagged as OOVs. Hence, such wordgsk by sharing the hidden layers of the word CTC. During
can neither be modeled as valid words during training norrecognition, the word and letter CTCs generate sequences of
recognized during evaluation. Second, even in the presenceords and letters respectively. However, the letter CTC is
of large training data, it is dlicult to capture the entire consulted for the letter sequence only when the word CTC
vocabulary of a language. For example, a word CTC cannoemits an OOV token. This makes the Hybrid CTC capable
handle unfamiliar nouns or emerging hot-words (e.g. selfie,of recognizing OOVs and thereby reducing errors introduced
meme, unfriend) which gradually become popular after anby OOVs.
acoustic model has been built. « Finally, we further improve the word CTC and reduce OOV

Several studies in the past have attempted to address theserors by introducingMixed-unit CTC[45]. Here, during
issues. In [19], it was shown that by using 100k words astraining, the OOV word is decomposed into a sequence of
output targets and by training the model with 125k hours offrequent words and letters (which we refer to rasxed-
data, a word CTC was able to outperform a CD phonemeunits). During testing, we perform greedy decoding for the
CTC. However, easy accessibility to such large databasewhole E2E system in a single step without the need of
is rare. Usually, at most a few thousand hours of data areusing the two-stage process (OOV-detection and thendetter
available. In [37], the authors were able to train a word CTC sequence-consulting) as in Hybrid CTC. We will later show
model with only 2k hours of data achieving ASR accuracy that a CTC with mixed-units outperformed a CTC with
comparable to that of a CD phoneme CTC. Their proposedwordpieces which have become popular in recent RNN-ED



frameworks [9]. During decoding, it is very simple to generate the decoded
Our final proposed word CTC achieved a relative WEREAUENce using greedy decoding: simply concatenate the la-

reduction (WERR) of about 12.09% over the vanilla Worgels_corresponding to the highest posteriors and merge the
CTC [11]. Furthermore, the same word CTC outperformed tifplicate labels; then remove the blank labels. Thus, tisere

traditional CD phoneme CTC with a strong LM and decoddl€ither & language model nor any complex graph search in
by 6.79% relative. greedy decoding.

The remainder of the article is organized as follows. In
Section Il we give a brief overview of CTC and RNN-ED.
In Sections Ill, 1V, V, VI, we explain the proposed Attention
CTC, Self-Attention CTC, Hybrid CTC, and Mixed-unit CTC
respectively. In Section VII, we provide experimental ewal

tions of our proposed algorithms. Finally, we summarize our o
study and draw conclusions in Section VIII. The terms letter AN RNN-ED [13]-{16] uses two distinct networks - an RNN

and character have been interchangeably used in this studgncoder network that transformsnto h and an RNN decoder
network that transformé into y. Using these, an RNN-ED

modelsp(y|x) as

U

o P = | | Pulyru-1, &), (6)

An E2E ASR system models the posterior distribution u=1
p(ylx) by transducing an input sequence of acoustic featUffere ¢, is the context vector at time and is a function
vectorsx to an output sequence of tokeygphonemes, char- ot x There are two key dierences between CTC and RNN-
acters, words etc.). More specifically, for an input seqessfc £p  First, p(y|x) in Eq. (6) is generated using a product of
feature vectorsc= (xy,--- ,xr) of lengthT with x; € R™, an  orgered conditionals. Thus, RNN-ED is not impeded by the
E2E ASR system transduces the input sequence to an infgpgitional independence constraint of Eq. (5). Secong Th
mediate sequence of hidden feature vectors (hy,---,hi)  gecoder outpuyy, at time u is dependent ore, which is a
of lengthL with h; € R". The sequencé undergoes anotheryeighted sum of all its inputs (soft alignment), it =
transduction resulting in an output sequegaghose posterior 1 ... T |n contrast, CTC generateg using onlyh; (hard
probability isp(y|x). Herey = (y1,- - ,Yu) is of lengthU with alignment).
Vu € L, L being the label set. Usually < T andL =T in E2E

ASR systems. Thus, an E2E neural network, parameterized b he de'codefr qetvyork of RNN-ED has three components: a
W, learns a many-to-one functionfl, : x - p(ylx) where multinomial distribution generator Eq. (7), an RNN decoder

B(ylx) closely resembles the trugfy|x). Eqg. (8), and an attention network Eq. (9)-(14) [15], [16] as

B. RNN Encoder-Decoder (RNN-ED)

Il. Exp-To-EnDp SPEECH RECOGNITION

follows:
A. Connectionist Temporal Classification (CTC) P(Yuly1u-1, Cu) = Generatef, 1, Su, Cu). (7)
A CTC network uses a recurrent neural network (RNN) and Su = Recurrentg, s, y“’l’TC”)’ (8)
the CTC error criterion [11], [12] which directly optimizéise _ _
prediction of a transcription sequence. As the length of the Cu = Annotate,, h) = Za“’th" ©)

t=1

output labels is shorter than the length of the input speech s = Attend@, 1, o 1,h), t=1---,T. (10)

frames, a CTC path is introduced to make their lengths equal
by adding the blank symbap as an additional label andHere, h;,c, € R", and oy = [ay1---ay7] is @ probability
allowing repetition of labels. Thus, the new label set beesmdistribution. Hence,a,; € U with U = [0,1] such that
L"=Lu¢. LetK = |L’| be the cardinality of the label s&t. ¥ a,; = 1. Also, for simplicity assums, € R". Generatej is
Denoten = (my,--- ,m7) as the CTC path (or alignment)a feedforward network with a softmax operation generatirg t
with ; € L/, y as the target label sequence (transcription) wardered conditionab(yyly1u-1,Cu) - Recurrent(.) is an RNN
want to recognize, an8-1(y) as the preimage of mapping decoder operating on the output time axis indexedutsnd
all possible CTC pathsr that result iny. Then, the CTC has hidden statg,. Annotate(.) computes the context veatgr
loss function is defined as the negative log of sum of tHalso called the soft alignment) using the attention prdiab
probabilities of all possible CTC pathsthat result iny. This vector «, and the hidden sequende Attend(.) computes

is given by the attention weighta,; using a single layer feedforward
network (Score(.) function) followed by softmax normatina
Lete==Inp(yk)==-In > p(wx). @ ac follows:
weB1(y)
With the conditional independence assumptian i 7./x), et = Score-1, -1, hy), t=1,--- T, (11)
p(w|x) can be further decomposed into a product of posteriors oy = explur) t=1-.. T (12)
of each frame as T Y expur)’ 7
T
_ Here,e,; € R and Scoref can either be a content-based or
p(P) = l_[ Pllx). ) hybrid-based function. The latter encodes both contgnt)(

t=1
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CTC
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Fig. 1. An example of an Attention CTC network with an attentisindow of sizeC = 3.

and location {,_;) information. Score} is computed using makes it possible for CTC to be trained using soft alignments
instead of hard. (b) Second, to improve attention modeling,
T
= thanh Usy-1 + Why + D), (content) _ (13) Wwe incorporate apseudo language modgSection [lI-C)
vitanh Us,-1 + Whe + Vfy +b), (hybrid) during CTC training. (c) Finally, we improve our attention
where, f,=F * ay1. (14) modeling further by introducingomponent attentio(Section
. ] . . [lI-D) where context vectors are produced as a result of
The operation: denotes convolution. Thus, in the hybrid case,nnying attention on hidden features across both time and
the dependence ow-; is throughfy. Attention parameters ieir individual components. We explain each of these ideas
U,W.V, F.b,v are learned while training RNN-ED. separately with illustrations in the following subsectgoiwe
will use the indiceg andu to denote the time step for input
lll. Arrention CTC h and outputc respectively of the attention block to maintain
In this section, we outline various steps required to modaptational consistency with RNN-ED.
attention directly within CTC. In the past, several attesnpfA. Time Convolution (TC) Features
have been_ made to apply attention on E2E models. For EXaMEirst, we construct TC features from the hidden outputs
ple, attention-based RNN-ED [15], [16] network was used {0 o he |ast LSTM layer. This is illustrated in Fig. 2.
predict word outputs in [46]. Other studies have investdat o sider a subsequence lofrather than the entire sequence.
using CTC as an auxiliary task to improve attention—bas%e refer to this subsequencéiy(s,--- ,hy,--- , hysr), as the
. T > > > +7/
RNN'EP using an MTL framework. For examplg, CcTC WaSttention window Each h; € R". The attention window is
used elthe_r at the top layer [47], [48] or_at an intermedia ntered around the current tinnewith = being the length
layer [49] in the MTL framework. Extensions of CTC suchy¢ yhe attention window on either side of Thus, the total
as RNN-T [17], [20] and RNN aligner [7] either change the,, o4 of the attention window i€ = 2r + 1. Now consider
objective function or the training process to relax the feanb time convolution kernelsW/,__.--- ,W/,--- ,W/,..) where
u-7° > VWV s YWyt

independence assumptlpn of CTC. Hoyvever, none of thewet € R™" and W/, # W, for t; # t,. Then the context vector
approaches used attention directly within the CTC network. o computed using time convolution as
The proposed Attention CTC model isfigirent from all these ! ’

u+t

approaches since we use attention mechanism to improve the _ W h

hidden layer representations with more context infornmatio Cu _tZ u-tit

without changing the CTC objective function and the tragnin I,L;T

process. Our primary motivation in this work is to address a Z O

the hard alignment problem of CTC, as outlined earlier in Pyt

Section I, by modeling attention directly within the CTC U+t

framework. =y Z @yt (15)
An example of the proposed Attention CTC network is t=u-7

shown in Figure 1. We propose the following key ideas tblere, g, ¢, € R" represents théiltered signal at timet. The
blend attention into CTC. (a) First, we derive context vextolast step Eqg. (15) holds whem,; = é andy = C. Since
using time convolution featuregSection 11I-A) and apply Eq. (15) is similar to Eq. (9) in structure, represents a special
attention weights on these context vectors (Section lIITB)s case context vector with uniform attention weighigs = é



t € [u-7, u+7]. Moreover,c, is a result of convolving features
h with W’ in time. Thus W’ andc, representime convolution
kernelandtime convolution featureespectively.

Fig. 3. Content and hybrid attention.

7IM ZLM

u—2 PLM u—1
Z'u,l:
Cy-1

Fig. 4. Pseudo language model.

Fig. 2. Time convolution with an attention window of sige= 3 (i.e., 7 = 1).

B. Content Attention (CA) and Hybrid Attention (HA) C. Pseudo Language Model (PLM)
To incorporate non-uniform attention in Eq. (15), we need . .
to compute a non-uniformly distributeds, where oy = The performance of the attention model can be improved

(@ur,-+ ,u - ,ausr) USING an attention network similar tofurther by providing more reliable content information rfro

Eq. (10). However, since there is no explicit decoder likhe past. This is possible by introducing another recurrent

z, instead ofs,. The termz, € RX is the logit to the softmax from several time steps in the past instead of just one. This

and is given by netwqu', in essence, vvpuld learn an LM-like model implicitl
This is illustrated in Fig. 4. To build the PLM network, we
Zy = WsotCu + Dsoft, follow an architecture similar to RNN-LM [50]. As illustradl
p(mylx) = Softmaxg,), (16) inthe PLM block of Fig. 1, the input to the PLM network is

Kn K computed by stacking the previous outpylt; with the context
whereWsor € R™, bsorr € R”. The termp(mulX) = [P(mu = \ectorc, ; and feeding it to a recurrent functioh(). The
1) plry = 2X) - - plru = KIX)]" is the vector of probabilities output of H(.) is ZM which, instead ofz,_1, is fed to the
of labels in the alignment at time Thus, Eq. (16) is similar to Attend(.) block in qu (17). This is represented as

the Generate(.) function in Eq. (7) but lacks the dependency

Yu-1 ands,. Consequently, the Attend(.) function in Eq. (10) v _ Hxe1,22M),  Xe1 = Zy1 (20)
becomes u-t R [T

= LM = - e
tut = Attend@y 1 au1.G). t=U—7 U+t (17) aye = Attendz;"), -1, 0), t=u-7,---,u+T. (21)

We model#(.) using a single layer long short-term memory

whereh; in Eq. (10) is replaced witly;. The Attend(.) function . . .
I L o . LSTM) unit [51] with n memory cells and input and output
is illustrated in Fig. 3 and is simply a single layer neuragimensions set t& + n (since x,; € RK™) and n (since

network with a softmax. A scoring function Score(.), simila_ . . M
to Eq. (11), computes the layer activations. However, hege tfu-1 € R) respectively. Notice that,”) encodes the content

Score(.) function uses the filtered sigmplinstead of the raw of a pseudo LM rather than a true LM since CTC outputs

signalh; in Eq. (11). Thus, the new Score(.) function becomée¥ © interspersed W'th. blank symbols by design. Além IS
a real-valued vector instead of a one-hot vector. Hence, the

eut = Scorey-1, ay-1,0), t=u-7,---,U+7 (18) PLM is not a true LM.

_ |vTtanhUz, 1 + Wg; + b), (content) (19)
~ |vTtanhUz,_1 + Wg; + Vf, + b) (hybrid)

with f, a function ofa,_; through Eg. (14). The content and

location information are encoded iy ; anday,_; respectively. In the previous sectionsy,; is a scalar term weighting
Thus, the hybrid function in Eq. (19) includes both conterd a the contribution of the entiren-dimensional vectorg; to
location information. Scores from Eq. (18) can be normalizegenerate the outpyi(r:[x). This means alh components (or
using the softmax operation (as in Eq. (12)) to generate nadimensions) of the vectay; are weighted by the same scalar
uniform a; for t € [u—7, u+7]. Now, oy, can be plugged into ;. In this section, we consider weighting each component
Eq. (15), along withg to generate the context vectqr. This (dimension) ofg, using a separate weight. Therefore, we need
completes the attention network. We found that excludirg tlan n-dimensional weight vectas,; € U" instead of the scalar
scale factory in Eq. (15), even for non-uniform attention, wasy,; € U. The vectora,; can be generated as follows. First,
detrimental to the final performance. Therefore, we comtincompute am-dimensional score,; for eacht. This is easily

to usey = C. achieved using the Score(.) function in Eq. (19) but without

D. Component Attention (COMA)



taking the inner product witlv. For example, in the case ofis that the attention weights are computed using additive
hybrid, the scoring function becomes operations in Attention CTC whereas multiplicative opierad
(inner products) are used in SA-CTC. Moreover, matrix-wect
multiplications used in Attention CTC are computationally

Now, we haveC column vectorsdy, .- - , €.u.-] Where each slower than performing inner products in SA-CTC.

vector is of dimensiom. Stacking them column-wise, we have We highlight only the most important steps in the formula-
ann x C scoring matrixg tion of SA-CTC. First the hidden features are converted into
| | | input projections using the projection matiiX, as

eyt = tanhUz1 + Wt + Vi +b), t=u-7,--- ,u+7. (22)

E=lCur G oo GU»|U+T : (23) by=Wphy, t=U-7,-- . U+T (26)
, 4 e where u denotes the current time step. The inputs to the
Let ey(j) € (-1,1) be the|™ component of the vectogut.  attention block of SA-CTC consists of three kinds of vectors
To computeay,(j) from ey(j), we normalizeey(j) acrosst  _ yevs values, and a query. These are derived using
(columns) keeping (row) fixed. Thus(j) is computed as

. —Qb, t=u, 27

o) = explui(i)) —1on (4 Et - Ebt - u (28)

" tU,';L_T exp(eu,t,(j))’ , ,N. t = Vbt, : =Uu-r1,--- ,U+T, 229;
Vi=Vb, t=u-7--,U+1,

Since exp) and tanh{ are both one-to-one functions, their
composition is also one-to-one. Thus, there is a one-to-opgere Q,K,V are the query, key, and value matrices re-
correspondence between the inpm(j) and outputey:(j) spectively. Here, the dimensions af, ki, v; are d,d,dy
through the composite function. Consequendly;(j) can be respectively. Note that while there is a single query vector
interpreted as the amount of contributionggfj) in computing corresponding to the current time stepthere are multiple
cu(j)- Now, from Eq. (24), we know the values of the vectorgey and value vectors corresponding to the context window
ayy, te [u-7, u+7]. Hence, under the COMA formulation, [u - r,u + 7].
the context vectoc, can be computed fromy,; andg: using  Following this, scores are evaluated between the query and
Ut the keys by taking their dot products and scaling them with
¢y = Annotatefy,g,y) =y Z ayt O, (25) ﬁ This is given by
t=u-1
-
whereo is the Hadamard product. One attractive feature of the €ut = Gu kt,
COMA formulation is that it does not introduce any additibna Vi
training parameters. The scores reflect the correlation between the current supdit
Finally, we highlight the dierences between the attentionhe neighboring inputs. These scores are then converted int
mechanism in this work and in [5]. First, we apply attentioprobabilities (attention weights) using the softmax ofiera
across time (past, present, future) on the time convolutidinear combination of the value vectors using these atianti
features extracted from the final layer of the recurrent nefreights generates a context vectgras follows:
work (encoder). Moreover, we attend only to a small context

t=u—-1,--- ,U+T. (30)

window. In contrast, [5] attends to the entire output segeen aut = wex&’ =u-71,---,U+T (32)
of the encoder in addition to the state of the decoder. Tleere i tzut“—f expur)

no time convolution applied on the encoder sequence either. - Z oY (32)
Second, to improve attention modeling, we make use of the ! T i

logit from the previous timez,_; (or z}¥)) as an additional . . .
input to our attention block. The attention mechanism in [5 This is followed by a residual connection [52] and layer nor-

does not make use of logit due to the presence of an expli tahzatlon, L.e., LayerNorna(, + b,). The output of this is fed

decoder. Finally, our COMA formulation yields additionaf® ahsingle Iaé/erf feeqd-forlward network V;hIiCh s fOIIOWﬁEd l_Dy
gains without introducing any additional training paraenst another round of residual connection and layer normaompati

There is no such formulation in [5]. Thls is the uni-head att<_ant|on archnectyre of SA-CTC since
it computes a scalar weigl; for the entire value vectov;.
IV. SeLF-ATTENTION CTC This can be easily extended to multi-head attention wivere

In this section, we investigate another attention-basésdfragmented Into smaller sub-vectors and each sub-vector

paradigm known as Self-Attention (SA) [42] in the contex e|ghte(_j using a distinct scalar weight. For more details on
of CTC training. There are some keyflégrences in the way A architecture, readers may refer [42].

the attention weights are computed between SA-CTC and

Attention CTC (Section Ill). In Attention CTC, the attentio V. Hysrio CTC

weights are computed using the hidden features and thetoutpun this and the next section, our primary motivation is to
prediction from the previous time step,(;). This is evident mitigate the OQV issue of the A2W model as mentioned in
from the scoring function in Eq. (18). In contrast, in SA-CTCSection |.

the weights are computed from the hidden features only. ItFirst, we describe the Hybrid CTC network. The Hybrid
does not use any past output predictions. Anoth&eince CTC network uses a word CTC as the primary task and a



letter CTC as the auxiliary task in an MTL framework. The | Hybrid decision arga
output units of the word CTC correspond to frequently used S AR
words and an OOV token. Infrequent words in the training

set are lumped together and tagged as OOV. Given an input
sequence of features, the word and letter CTCs emit a word 4 A
and letter sequence respectively. If the word sequenceaicent | 1
a list of frequent words, then the letter sequence from therle 7 e A A

character sequence

CTC is completely ignored. However, if the word sequence e, I
contains the OOV token, the letter CTC is consulted at the ™ )/ |o[  Lsru[ > S| st | s e
segment that generated the OOV token. In the consultation ’

LSTM layer for
word output

process, the letter sequence from the letter CTC is merged
to form a word. Finally, this newly constructed word from
the letter CTC is used to replace the OOV token. Since the
word CTC and letter CTC are time synchronized through the
shared hidden layers of the MTL network, it is possible to find
a correspondence between the outputs of the two CTCs. An
illustration of this method is shown in Fig. 5. Here, the word '
CTC generates the sequengeldy artist OOV. The word L"’T ”””” T ”””””””””””””
sequence generated after merging the letters from the lette
CTC s "play artist ratatat. Since the segment Comamm_gFig. 5. An example of how the Hybrid CTC solves the OOV issuehef t
“ratatat’ from the letter CTC has the most time overlap withyorg cTC. The words “play”, “artist’, “O0V" are obtained o the word
the segment containingdOV” from the word CTC, the OOV CTC. The words “play”, “artist”, “ratatat” are obtained frothe letter CTC.
token is replaced wihratatat. Thus, the fnl output of the L1, i 1o ot o e CTC e iy 31t i e ot
Hybrid CTC is ‘play artist ratatat. letter CTC.
The detailed steps for building the Hybrid CTC model are
described as follows:
. Build an LSTM-CTC model ofL layers with its out- Ma&Y be replaced by more precise words generated by the letter
put units mapped to frequently occurring words in th&TC- ) )
training corpus. Map all the remaining infrequent words Gram CTC [29] and multi-phone CTC [53] are multi-letter
(occurring less tham times) as the OOV token. Thus,CT_CS based on letters and phonemes respectively. They allow
the output units in this LSTM-CTC model correspond tyariable number of letters (or grams) and phonemes to be
(a) the frequent words, (b) the OOV token, and (c) bIanQUtp_Ut at each time step. The size of th_e units in gram CT(_:_and
and silence (two additional tokens). multi-phone CTC are learned automatically with the modified
. Freeze the bottorh — 1 hidden layers of the Word_CTC,forward—backward algorithm accounting for all decomposi-

add one LSTM hidden layer and one softmax layer §°ns. However, in the test phase, their decoding procedure
build a new LSTM-CTC model with letters as its outputS more complex than the simple greedy decoding procedure
units. used in single-letter CTC models. To reduce the decoding
. During testing, generate the word output sequence usif@mPlexity, the authors in [54] proposed phone synchronous
greedy decoding. If the output word sequence contaiﬁ§09d'n9- In contrast, v_veﬁier a facile implementation of our
an OOV token, replace the OOV token with the wordnulti-letter CTC. We simply decompose every word (which

generated from the letter CTC that has the largest tinfefludes both frequent and OOV words) into a sequence of
overlap with the OOV token. one or more letter units. Examples are shown in the first

three rows of Table | where each word, frequent or OOV, is
decomposed into single-letter or double-letter or trigliter
VI. Mixep-unir CTC units. The advantages of doing this are three-fold. First, o

In this section, we briefly explain multi-letter CTC anddecomposition is straightforward. Second, it does not ghan
compare the past implementation of multi-letter CTC witthe CTC forward-backward algorithm. Finally, during thstte
ours. Based on this foundation, we then explain our proposeldase, our method is able to retain the same greedy decoding
Mixed-unit CTC. procedure used in single-letter CTC models.

Although single-letter units in CTCs perform well, they are In Hybrid CTC, the shared-hidden-layer constraint is used
prone to high degree of variability across training exampléo aid the time synchronization of word outputs between the
due to their short temporal context. As we will see lataword and letter CTCs. However, the blank symbol dominates
in Table 1V, multi-letter units tend to perform better thamost of the frames. The unit boundaries from CTC is also
single-letter units since they have low degree of varigblly notorious for being arbitrary. Therefore, time synchratiian
capturing context information and therebffes more stability may not be very reliable with the two CTCs running in parallel
during training. Improving letter CTCs can help improve thé direct solution is to forgo the MTL framework and train a
accuracy of word CTCs. For example, a stronger letter CTsihgle CTC model comprising of a mixture of frequent words
can lower the WER of the Hybrid CTC since the OOV tokeand letters. The letters arise as a result of decomposing the

}Shared

}Hidden
| Layers
|




TABLE |
EXAMPLES OF HOW WORDS ARE DECOMPOSED INTO DIFFERENT OUTPUT UNITS.

“NEWYORK” IS A FREQUENT WORD WHILE

“NEWYORKABC” 18 AN OOV (INFREQUENT

WORD).
Decomposition Type newyork newyorkabc
All words — single-letter newyork newyorkabc
All words — double-letter ne wy or k ne wy or ka bc
All words — triple-letter new yor k new yor kab ¢
All words — word newyork oov
OOVs only — single-letter newyork newyorkabc
OOVs only — word+single-letter newyork newyork a b ¢
OOQOVs only — word+triple-letter newyork newyork abc

Play

Mixed-unit sequence

artist | rat at at

f

| LSTM I—’l LSTM |'>
L) T

| LSTM |—P| LSTM |->
L) L)

| LSTM H LSTM |->
T T

Fig. 6. An example of how a single CTC trained with a mixture ofrd&
and letters solves the OOV issue. The final output of this CI @Iy, artist,

rat at at”.

infrequent words in the training set into letters before CT
training begins. The working of this CTC is illustrated in
Fig. 6. If the word is a frequent word, then we just keep it in
the output token list. If it is an OOV, then we decompose ﬁ]
into a letter sequence. As shown in the fifth row of Table I, t
OO0V “newyorkabc” is decomposed into “‘newyorkabc
for single letter decompositions. However, the word “nerig/o

J
- —] — — —

he

separator (like the space symbol) and is essential for findin
word boundaries of the mixed-units. During training, sitioe
OQVs are decomposed into mixed units, there is no “O0OV”
output node in the Mixed-unit CTC model. Consequently,
during testing, the model emits mixed units instead of “O0V”
while still emitting frequent words.

VII. EXPERIMENTS

In this section, we compare the performance of the proposed
CTCs with the baseline CTC. We evaluated the proposed
methods using Microsoft's Cortana voice assistant taslke Th
training and test sets consist of approximately 3400 hours (
3.3 million utterances) and 6 hours (6600 utterances) of
audio spoken in American English respectively.

All CTC models were trained using either unidirectional
LSTMs (ULSTM) or bidirectional LSTMs (BLSTM). The UL-
STM is a 5-layer LSTM with 1024 memory cells in each layer.
Similarly, the BLSTM is a 6-layer LSTM with 512 memory
cells in each direction (therefore resulting in 1024 output
dimensions when combining outputs from both directions).
The cell outputs are linearly projected to 512 dimensions.
The base feature vector is a 80-dimensional vector contgini
log filterbank energies computed every 10 ms. Eight frames
of base features were stacked togethar= 80 x 8 = 640)
as the input to the unidirectional CTC, while three frames
were stacked togethem(= 80x 3 = 240) as the input to the
bidirectional CTC. The skip rate for both unidirectionaldan
bidirectional CTCs was three frames as in [26]. The dimansio
n of vectorshy, g, ¢, was set to 512. For decoding, the greedy
decoding procedure (no complex beam search decoder or
external LM) was used. This makes our E2E ASR systems
purely all-neural.

We focus on letter CTC first and then move on to word CTC.
This is because improvements in the letter CTC increase the

ccuracy of the word CTC especially when encountering an
OV word during test time. Thus, we evaluated the perfor-
mance of Attention CTC (Section IIl), SA-CTC (Section V),
nd multi-letter CTC using letter units. Then, we evaluated
e performance of our proposed Hybrid CTC (Section V)
,and Mixed-unit CTC (Section VI) using both word and letter
units.

is not decomposed any further because it is a frequent word. _ .
Therefore, the output units of the CTC are both words (fdx. Experiments With Letter-Based CTCs

frequent words) and letters

(for OOVs).

We experimented with élierent sizes of letter units. The

However, we note that artificially decomposing OOVs intgizes are represented by the cardinaktyof the label set
sequences of single-letters only may confuse CTC trainiidefined in Section II-A). For single-letter unit& was set
because the network output modeling units are frequentsvortd 30. This corresponds to 26 English letters [a-z], ', *, Bda
and letters. To solve such a potential issue, we decompasélank symbol. For double and triple-letter uniks,was set
the OOVs into a combination of frequent words and letterto 763 and 8939 respectively covering all double-letter and
We refer to this combination asiixed units For example, triple-letter occurrences in the training set.
in the last two rows of Table I, the OOV “newyorkabc” is 1) Attention CTC (Section lll):In the first set of exper-
decomposed into “newyork a b ¢” if we use words and singléments, we evaluated Vanilla CTC [11] and the proposed
letter units or “newyork abc” if we use words and triple-¢gtt Attention CTC models trained using our 5-layer ULSTM with
units. In addition, for mixed units, we use “$” to separatsingle-letter units. We experimented with= 4 (length of
each word in the sentence. For example, the sentence “hawme-sided attention window, defined in Section IlI-A) con-
you been to newyorkabc” is decomposed into “$ have $ yaidering the training fciency with this setting. The results
$ been $ to $ newyork abc $". The “$” symbol acts as a womte tabulated in the second column of Table Il. The top row



TABLE Il TABLE Il

WERS oF LETTER-BASED VANILLA CTC [11] anp ArtENTION CTCFOR T = 4 WERS oF LETTER-BASED VANILLA CTC [11] anp SA-CTC (1, 4, 84EADS) FOR
TRAINED WITH 5-LAYER ULSTM OR 6-LAYER BLTSM AND SINGLE-LETTER OUTPUT 7 = 4 TRAINED WITH ULSTM/BLSTM AND SINGLE-LETTER UNITS. RELATIVE WER
UNITS. RELATIVE WER REDUCTION AND THE NUMBER OF MODEL PARAMETERS ARE IN REDUCTION AND THE NUMBER OF MODEL PARAMETERS ARE IN PARENTHESES. M =

PARENTHESES. TC = TiMe ConvoLuTioN, CA = CoNTENT ATTENTION, HA = MILLION.

Hysrip ArtentioN, PLM = Pseupo LaNnGuaGe MobeL, COMA = CoMPONENT
ATTENTION, M = MILLION. E2E Model WER (%)
ULSTM BLSTM
E2E Model WER (%) Vanilla CTC 24.03 (0.00, 24.12 M) 17.84 (0.00, 35.13 M)
ULSTM BLSTM SA-CTC (1 head) | 20.06 (16.52, 30.70 M) 15.69 (12.05, 41.91 M)

Vanilla CTC 24.03 (0.00, 24.12 M)  17.84 (0.00, 35.13 M) SA-CTC (4 heads) 18.90 (21.35, 30.71 M) 14.98 (16.03, 41.92 M)

Attention CTC SA-CTC (8 heads) 18.85 (21.56, 30.72 M) 14.88 (16.59, 41.93 M)

+TC (Sec IlI-A) 21.89 (08.91, 26.48 M 17.67 (0.95, 37.49 M)

)
+CA (Sec 1lI-B) 20.45 (14.90, 26.74 M)  16.13 (09.59, 37.75 M)
+HA (Sec III-B) 20.27 (15.65, 27.00 M)  16.01 (10.26, 38.01 M) TABLE IV
+PLM (Sec I1I-C) 19.78 (17.69, 29.62 M)  15.34 (14.01, 40.63 M) WERS oF LETTER-BASED CTC MODELS, TRAINED USING 6-LAYER BLSTMSs, witH
+COMA (Sec III-D) | 18.57 (22.72, 29.62 M)  14.47 (18.89, 40.63 M) MULTI-LETTER OUTPUT UNITS. THREE STRUCTURES ARE EVALUATED: VANILLA CTC

[11], Artention CTC, aND ATTENTION CTC SHARING 5 HIDDEN LAYERS WITH WORD
CTC. ONE-SIDED ATTENTION WINDOW SIZE (T) SET TO 4.

presents the WER for Vanilla CTC. All subsequent rows under E2E Model | Total WER (%)

“Attention CTC” present the WER for the proposed Attention Units | Vanilla  Attention Attention+
CTC models when attention modeling capabilities were grad- 5 layers sharing
ually added in a stage-wise fashion. The best proposed modegingle-letter | - 30 | 17.84  14.47 16.74

is in the last row. It includes component attention (COMA) double-letter| 763 | 1537 12.16 14.00
along with all the other enhancements above it (i.e., TC,tr”Ole'Ietter 8939 | 13.28 11.36 12.81

HA, PLM). It may be recalled, from Eq. (19), that hybrid

agen:!on (_::IhA ) tI)S ‘i comblnaélon gf lbOt? cofntent gr\l/d k.)llcé?tc'o 1.56% and 16.59% using ULSTM and BLSTM respectively.
gyegzlt)?r;% fela?i?/eprs\?gs"fiur:zo tf?ato?hre)erggirr:ge arearr]r:arginglomparing the best models from Attention CTC and SA-CTC,
when going from CA to HA. Our conjecture is that th we find that Attention CTC performed slightly better than SA-

0, - 0 -
benefits of adding location information in HA could become%IgT% Zﬁggig{&%&;ﬁf&g? and 2.3% (18.89-16.59) for

more pronounced with smaller frame sizes and larger atienti 3) Multi-letter CTC: In the next set of experiments, we
yvmdows. .However, smaller frame sizes lead t.o an e.)(pone.n.té%/aluated the performance of various CTC models trained us-
ncrease n the' r?“mber of CTC paths resulting in |nstab|l|%g our 6-layer BLSTM with multi-letter units as outputs. We
du’illngtCTC trale?'d Attention CTC dels trained _tevaluated three kinds of CTC models: Vanilla CTC, Attention

ext we evaluate ention models trained wi %TC, and Attention CTC sharing 5 hidden layers with a word

our 6-layer BLSTM. The results are tabulated in the thir TC. In the third CTC model, we applied attention only to
column of Table Il. Similar to the unidirectional case, th‘fhe letter CTC '

best proposed model outperformed Vanilla CTC by 18.89A:AS shown in the third column of Table IV, the WER of

relative. This shows that the proposed Attention CTC moqe\ll?;milla CTC drops significantly when the output units become

continue to perform well even with stronger baselines “kﬁirger (and hence more stable). The letter CTC using triple-
BLSTMs. etter units achieved 13.28% WER which is a relative WERR

As an additional experiment, we compared RNN-T mode . : :
. i . 25.56% compared to the letter CTC using single-lettetsuni
trained with 5-layer ULSTM or 6-layer BLSTM transcription As shown in the fourth column of Table IV, Attention

networks along with 1-layer ULSTM prediction network anctTC improves hugely over the Vanilla CTC. It achieves about

30 letters as output units. The transcription networks ha!%_ 9%. 20.88% and 14.46% relative WERR over Vanilla
the same structure as our baseline CTC models. We obser us,ing singlé-letter double-letter, and triple-lettenits

21.07% and 16.96% WER for ULSTM and BLSTM transcrip- :
. . . . . respectively.
tion networks respectively. While this outperforms the tiase In the last column of Table IV, the shared Attention CTC

CTCf.erzo;t{atci.s reggl)_réed in q Tlat:Ie t“, It C.OU_llfj QOtI?UtperforrBerformed better than the Vanilla CTC but worse than its non-
our inal Attention model (last row in Table 1I). sharing counterpart. This indicates one shortcoming of the

2) Self-Attention CTC (Section IV)n the next set of ex- shared Attention CTC — it sacrifices the accuracy of therette

periments, we evaluated the perfqrmance ‘?f SAfCTC m_Od%SfC because of the shared-hidden-layer constraint with the
using our ULSTM and BLSTM with attention window SIZ&,, ord CTC

T = 4. We used 1024-dimensional vectors for both/gegry

and value vectors. Thusgly = 1024 d, = 1024. This is in ) .

accordance with the number of memory cells used in AtteR- Experiments With Word-Based CTCs

tion CTC. We experimented with other dimensions but they In this section, we evaluate the performance of the Hybrid
performed worse. Furthermore, we experimented with bo@irC (Section V) and the Mixed-unit CTC (Section VI) using
single and multi-head attention (4 and 8 heads). The resuftsth words and letters as targets. We refer to these CTCs as
are tabulated in Table Ill. SA-CTC with 8 heads performed theord CTCs since a majority of the output nodes in these CTCs
best for each case. The relative WERR over Vanilla CTC adirectly correspond to words. We are primarily interested i
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TABLE V TABLE VI

WERS oF worD-BASED VaANILLA CTC [11] anp HyBrRiD CTC MODELS TRAINED Summary oF WERSs oF CD pronNeME CTC, VaniiLa CTC [11], aNp MiIxep-uUNIT
wiTH 6-LAYER BLSTMSs. Hysrip CTC uses A worDp CTC anp AN ArtentioN CTC CTC + ArtenTioN. ALL CTC MODELS WERE TRAINED WITH 6-LAYER BLSTMs.
OUTPUTTING MULTI-LETTER UNITS. ATTENTION MODELS ARE BASED ON SECTION |lI. ATTENTION MODELS ARE BASED ON SgCTION |I1.
E2E Model WER (%) Model LM WER(%)
Vanilla CTC 9.84 1. Conventional: CD phoneme CTC v 9.28
Hybrid CTC: word+ double-letter Attention CTG  9.66 2. E2E: Vanilla CTC a 9.84
Hybrid CTC: word+ triple-letter Attention CTC 9.66 3. E2E: Mixed-unit+ Attention CTC 0 8.65
#3 vs #1  #3 vs #2
TABLE VI Relative WERR 6.79% 12.09%

WERSs or worp-BaseD CTCs WITH DIFFERENT KINDS OF OUTPUT UNITS. ALL CTC
MODELS WERE TRAINED WITH 6-LAYER BLSTMS. ATTENTION MODELS ARE BASED ON

SecTioN 111

ing their output units to mixed-letter units or wordpieces
EZE, Model WER (%) [55], [56]. Wordpieces are commonly occurring sub-word
Va_1n|lla S . 9.84 units that can be merged to form whole words. Similar to
Mixed (OOV — single-letter) 20.10 mixed-units, wordpiecesfter the flexibility to generate open-
Mixed (OOV — word + single-letter) 10.17 . .
WPM 973 vocabulary words. Previous studies [20], [57] have exmlore
Mixed (OOV — word + double-letter) 9.58 using wordpieces. To build a wordpiece model (WPM), each
Mixed (OOV — word + triple-letter) 9.32 word in a training corpus is first segmented into a sequence of
Mixed (OOV — word + triple-letter) + Attention 8.65 individual characters and an end-of-word symbol. Follayvin

this, the most frequently occurring character pair is merge
to form a new symbol or wordpiece. This process is iterated

recognizing the OOVs as accurately as possible while alaatil a predefined number of wordpieces are generated. The
boosting the accuracy of recognizing non-OOVs. All attemti outcome of this is that the corpus is now redefined using those
models in this section are based on Attention CTC (Sectiovordpieces which result in minimal number of whole word
) instead of SA-CTC (Section V) owing to the superiorsegmentations. However, our approach of building mixeitsun
results of the former (Section VII-A2). is different from building wordpieces since we decompmsiy

Our Vanilla CTC [11] is a 6-layer BLSTM with approx- OOVs while still retaining the high frequency words as whole
imately 27k output nodes consisting of frequent words amdord units.
the OOV token. We defined frequent words as those whichResults are tabulated in Table VI. As before, the Vanilla
occurred at least 10 times in the training corpus. All th€TC achieved a WER of 9.84%. In the next experiment, we
remaining words were tagged as OOV. This is the mappimgcomposed only the OOVs in the training set into single-
scheme described in the fourth row of Table I. Thus, withia thetters. Thus, the output nodes consist of both singletietind
family of word CTCs, the Vanilla CTC is a CTC with 6-layer27k frequent words. There indeed is no such clear boundary of
BLSTM whose output units model words and the OOV tokemlecomposition with 2 distinct sets of basic units. As mamdib
The Vanilla CTC achieved 9.84% WER (Table V) amongn Section VI, having a mixture of word and single-letters
which the OOVs contributed to 1.87% WER. confuses CTC training as the network does not know why the

1) Hybrid CTC (Section V):Our Hybrid CTC model has frequent words cannot be decomposed into letters. Thexefor
both word and letter CTCs operating in parallel in an MTlthis model achieved 20.10% WER which is far worse than
framework. They share 5 hidden BLSTM layers. An additionalanilla CTC. Analyzing the posterior spikes of this modeg w
LSTM layer was added for each task (word and letter CT@pserved that the word spikes and letter spikes are intesege
and fine tuned. Thus, the underlying structure of Hybrid CT@ith each other which proves our hypothesis.
is still a 6-layer BLSTM which has the same number of hidden However, when we decomposed OOVs into mixed-units
layers as that of the Vanilla CTC. Results are tabulated (frequent word+ single-letters), the WER dropped sharply
Table V. Both hybrid models achieved 9.66% WER whicko 10.17% but still a litle worse than the Vanilla CTC.
is a marginal improvement over the Vanilla CTC. Severdlhis is again because of the mixture of words with single-
factors contribute to such a small improvement. First, thetters. Next, we decomposed the OOVs into a combination of
shared-hidden-layer constraint degrades the perfornafribe frequent words and double-letters. The WER dropped further
letter CTC, potentially fiecting the final hybrid system per-to 9.58%. When triple-letters and frequent words were used
formance. Second, although the shared-hidden-layerreomist (totally 33k outputs), the WER dropped even more to 9.32%.
helps to synchronize the word outputs from the word andrlett€his is a 5.28% relative WERR over Vanilla CTC. Then
CTC, we still observed that the time synchronization cah fave applied attention on this model. To save computational
at times. In such cases, the OOV token was replaced with dssts, because of large number of output units, we excluded
neighboring word because of word segment misalignmentie PLM network in Eq. (20). This model achieved a WER
Because of these factors, the triple-letter CTC did not ower of 8.65%, which is about 12.09% relative WERR over the
over the double-letter CTC. Vanilla CTC. This is our final word CTC model (mixed-units

2) Mixed-unit CTC (Section VI)In the next set of exper- with triple-letters+ attention). As an additional experiment,
iments, we compared the performance of CTCs by charngstead of mixed-units, we used wordpieces as targets. This



model achieved a WER of 9.73% which is a little better than
that achieved with Vanilla CTC but worse than the results
obtained with mixed-unit CTC. This indicates that building?1i
A2W models using mixed-units or WPMs is a better choice
than simply using words and OQV (as in Vanilla CTC).

Finally, we compared our final word CTC model with a
traditional CD phoneme CTC in Table VII. We trained a CD
phoneme 6-layer BLSTM with the CTC criterion, modeling
around 9000 tied CD phonemes. It has the same structure
as other CTC models except that it usesteitent output 2]
units (phonemes instead of mixed-units or words). This CI5
phoneme CTC model achieved 9.28% WER when decoding
with a well-trained 5-gram LM with totally around 100 millio
(M) N-grams. Despite a strong CD phoneme CTC model and
LM, the mixed-unit+ Attention CTC model (without any LM
or complex decoder) was still able to outperform it by about*!
6.79% relative.

Note that the proposed model not only reduces the WER 5!
the word CTC but also improves the end-user experience. The
proposed model provides more meaningful outputs withoyg;
outputting any OOV token which can be distracting to users.
Moreover, we observed that even when the proposed model
failed to recognize the OOVs accurately, it still came ouhwi [7)
words which were a close match with the ground truth words.
For example, the proposed method recognizes “text fabise” 6118]
“text fabian” and “call zubiate” as “call zubiat”. Howevehe
Vanilla CTC recognized these words as “text OOV” and “call
OOV” respectively.

(1]

El

VIII. CoNcLUSIONS [10]

We proposed improving letter and word CTC models usir[gl]
Attention CTC, Self-Attention CTC, Hybrid CTC, and Mixed-
unit CTC. In attention-based CTCs, we generated new hidden
features that carry attention weighted context inform"atiq12
which are more useful than hidden features without context i
formation. To solve the OOV issue in word CTC, we presented
Hybrid CTC which uses a word and letter CTC as prima
and auxiliary tasks in an MTL framework. Finally, to boost
the performance of Hybrid CTC, we introduced Mixed-unit
CTC whose output units contain both words and multi-letters ,
While the frequent words are treated as whole word units,
the OOVs are decomposed into a sequence of frequent woldds
and multi-letters. We evaluated all these methods on a 3400
hours Microsoft Cortana voice assistant task. The proposgs
word-based Mixed-unit CTC model with triple letters when
combined with attention improved over the word-based Vanil
CTC model by 12.09% relative. Such an acoustic-to-word
CTC model is a pure end-to-end model without using any L8]
and complex decoder. It also outperformed a traditional CD
phoneme CTC model equipped with strong LM and complgxg)
decoder by 6.79% relative.

[20]
IX. Cobe
The CNTK script for Attention CTC described in Section 111211

is available online at: http&github.conimicrosoff CNTK/treg
vadimmgCTC/ExamplegSpeecAttentionCTC.
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