
A Vote-and-Verify Strategy for Fast Spatial
Verification in Image Retrieval

Johannes L. Schönberger1?, True Price2?, Torsten Sattler1?,
Jan-Michael Frahm2, Marc Pollefeys1,3

1 ETH Zürich, 2 UNC Chapel Hill, 3 Microsoft

Abstract. Spatial verification is a crucial part of every image retrieval
system, as it accounts for the fact that geometric feature configurations
are typically ignored by the Bag-of-Words representation. Since spatial
verification quickly becomes the bottleneck of the retrieval process, run-
time efficiency is extremely important. At the same time, spatial veri-
fication should be able to reliably distinguish between related and un-
related images. While methods based on RANSAC’s hypothesize-and-
verify framework achieve high accuracy, they are not particularly ef-
ficient. Conversely, verification approaches based on Hough voting are
extremely efficient but not as accurate. In this paper, we develop a
novel spatial verification approach that uses an efficient voting scheme to
identify promising transformation hypotheses that are subsequently ver-
ified and refined. Through comprehensive experiments, we show that our
method is able to achieve a verification accuracy similar to state-of-the-
art hypothesize-and-verify approaches while providing faster runtimes
than state-of-the-art voting-based methods.

1 Introduction

Image retrieval, i.e., finding relevant database images for a given query pic-
ture, is a fundamental problem in computer vision with applications in ob-
ject retrieval [1, 2], location recognition [3–5], image-based localization [6, 7],
automatic photo annotation [8], view clustering [9, 10], loop-closure [11], and
Structure-from-Motion [12–14]. Although methods that use compact image rep-
resentations [15–17] have gained popularity, especially in combination with deep
learning [18–20], state-of-the-art systems [2,21–25] still follow the Bag-of-Words
(BoW) paradigm [1] proposed over a decade ago. The BoW model represents each
image as a set of visual words obtained by quantizing the local feature space.
Visually similar database images can then be found by searching for photos with
similar visual words, usually implemented efficiently using inverted files [1]. For
the sake of computational efficiency, BoW models generally only consider the
presence and absence of visual words in an image and largely ignore their spatial
configuration. Thus, a subsequent spatial verification phase [26] is typically used
to filter retrieved photos whose visual words are not spatially consistent with the

? These authors contributed equally to the paper.

2 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

words in the query image. If not implemented efficiently, this spatial verification
step quickly becomes the bottleneck of an image retrieval pipeline.

Spatial verification computes a geometric transformation, e.g ., a similarity or
affine transformation [26], from feature correspondences between the query and
database images. The correspondences are obtained from common visual word
assignments of the query and database features. This often leads to many wrong
correspondences, especially in the presence of repetitive structures or when us-
ing small vocabularies to reduce quantization artifacts. This makes traditional
RANSAC-based approaches [27] that estimate transformations from multiple
matches infeasible, as their runtime grows exponentially with the percentage of
outliers. A key insight for fast spatial verification is to leverage the local feature
geometry to hypothesize a geometric transformation from a single correspon-
dence [26,28]. This significantly reduces the number of hypotheses that need to
be verified. Spatial verification can be accelerated by replacing the hypothesize-
and-verify framework with a Hough voting scheme based on quantizing the space
of transformations [28, 29]. These methods approximate the similarity between
two images by the number of matches falling into the same bin in the voting
space. Quantization artifacts are typically handled by using hierarchical voting
schemes [29] or by allowing each match to vote for multiple bins [30].

Recent work demonstrates that a better verification accuracy can be obtained
by explicitly incorporating verification into voting schemes, e.g ., as a more de-
tailed verification step [31] or when casting multiple votes [30]. However, in this
paper, we show that even such advanced voting schemes still achieve lower ac-
curacy than classic hypothesize-and-verify approaches [26]. To close this gap,
we propose a novel spatial verification approach that incorporates voting into
a hypothesize-and-verify framework. In detail, we propose a hierarchical voting
approach to efficiently identify promising transformation hypotheses that are
subsequently verified and refined on all matches. Instead of finding the correct
hypothesis through random sampling, we use a progressive sampling strategy
on the most probable hypotheses. Furthermore, our approach offers multiple
advantages over voting-based methods: First, rather than explicitly handling
quantization artifacts in the voting space, our approach only requires that a rea-
sonable estimate for the true transformation can be obtained from some matches
falling into the same bin. Quantization artifacts are then automatically handled
by the subsequent verification and refinement stages. As a result, our approach
is rather insensitive to the quantization of the voting space and the visual vo-
cabulary size. Second, in contrast to voting-based methods, which usually return
only a similarity score, our approach explicitly returns a transformation and a
set of inliers. Hence, it can be readily combined with query expansion (QE)
schemes [2, 21, 32, 33] as well as further reasoning based on the detected in-
liers [4, 34]. Experimental evaluation on existing and new datasets show that
our approach achieves accuracy equivalent to state-of-the-art hypothesize-and-
verify methods while providing runtimes faster than state-of-the-art voting-based
methods. The new query and distractor image datasets and the source code for
our method are released to the public at https://github.com/vote-and-verify.

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 3

2 Related Work

In the following, we discuss prior work on spatial verification in the context of
image retrieval. We classify these works based on whether they employ weak ge-
ometric models, use RANSAC’s [27] hypothesize-and-verify framework, or follow
a Hough voting-based approach. In this context, our method can be seen as a
hybrid between the latter two types of approaches, as it replaces RANSAC’s
hypothesis generation stage with a voting scheme.

Weak geometric models. Instead of explicitly estimating a geometric transfor-
mation between two images, methods based on weak geometric models either
use partial transformations [25, 31] or local consistency checks [35–37]. For a
feature match between two images, both Sivic & Zisserman [35] and Sattler et
al . [36] define a consistency score based on the number of matches shared in
the spatial neighborhoods of the two features. A threshold on this score is then
used to prune matches. The geometry of the local features, i.e., their position,
orientation, and scale, can be used to hypothesize a similarity transformation
from a single correspondence [26, 28]. Jegou et al . [25] focus on the change in
scale and orientation predicted by a correspondence. They quantize the space of
changes into a fixed set of bins and use Hough voting to determine a subset of
matches that are all similar in terms of either scale or orientation change. Pair-
wise Geometric Matching (PGM) of Li et al . [31] uses a two-stage procedure to
handle noise in the voting process caused by inaccurate feature frames. First,
voting provides a rough estimate for the orientation and scale change between
the images, as well as putative matches. PGM then checks whether the trans-
formations obtained from correspondence pairs are consistent with the initial
estimate. To improve the runtime, Li et al . perform a pruning step that enforces
1-to-1 correspondences. PGM’s computational complexity is O(n + m2), where
n is the total number of matches and m is the number of matches falling into
the best bin. O(n) is required for voting for the best bin and O(m2) for pair-
wise verification. If all matches are correct, m = n holds, and the complexity is
O(n2). This worst case actually happens in practice, e.g ., when the query is a
crop of a database image. In comparison, while we also apply pruning, our vote-
and-verify strategy has O(n) complexity and achieves both faster runtimes and
better verification accuracy. A drawback to methods based on weak geometric
models is they only determine a similarity score and do not identify individual
feature correspondences. Thus, query expansion (QE) [21,32], which transforms
features from the database into the query image, cannot be directly applied.

Hypothesize-and-verify methods. Probably the most popular approach to com-
pute a geometric transformation in the presence of outliers is RANSAC [27]
or one of its many variants [36, 38–41]. However, matching features through
their visual word assignments usually generates many wrong correspondences.
This makes it impractical to use any RANSAC variant that samples multiple
matches in each iteration, as the runtime grows exponentially with the outlier
ratio. Philbin et al . [26] therefore propose a more efficient spatial verification

4 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

approach, termed Fast Spatial Matching (FSM), exploiting the fact that a sin-
gle correspondence already defines a transformation hypothesis. Consequently,
they generate and evaluate all possible n transformations and apply local op-
timization [38, 39] whenever a new best model is found. FSM is the de facto
standard for spatial verification and is used in most state-of-the-art retrieval
pipelines [2, 21–25]. Its main drawback is the O(n2) computational complexity
due to evaluating all n hypotheses on all n correspondences. In practice, FSM
can be accelerated by integrating it into a RANSAC framework and using early
termination once the probability of finding a better model falls below a given
threshold. Still, the worst-case complexity remains O(n2). Our approach uses
voting to efficiently identify promising transformation hypotheses in time O(n),
and we show that it is sufficient to progressively sample a constant number of
these hypotheses, resulting in an overall complexity of O(n). As such, our ap-
proach can be seen as borrowing the hypothesis prioritization of PROSAC [40]
and using voting to achieve linear complexity. PROSAC orders matches based
on matching quality and initially only generates transformation hypotheses from
matches more likely to be correct. However, PROSAC is not directly applicable
in our scenario, since matching via visual words does not provide an estimate
of the matching quality. The output of FSM is a set of inliers and a geometric
transformation, which can be used as input to QE. Our approach provides the
same output and can thus directly be combined with existing QE methods.

Hough voting-based approaches. Lowe [28] uses Hough voting to identify a subset
of all putative matches, consisting of all matches whose corresponding similarity
transformation belongs to the largest bin in the voting space. Next, they apply
RANSAC on this consistent subset of matches to estimate an affine transforma-
tion. To reduce the complexity to O(n), Avrithis & Tolias [29] propose to restrict
spatial verification to the voting stage. To mitigate quantization artifacts, their
Hough Pyramid Matching (HPM) uses a hierarchical voting space, where every
match votes for a single transformation on each level. For each match, they then
compute a strength score based on the number of other correspondences falling
in the the same bins and aggregate these strengths into an overall similarity
score for the two images. Wu & Kashino propose to handle quantization arti-
facts by having each match vote for multiple bins [30]. For each feature match m,
their Adaptive Dither Voting (ADV) scheme finds neighboring correspondences,
similar to [35, 36]. If m is consistent with the transformation hypothesis of its
neighbor, a vote is cast in the neighbor’s bin. This additional verification step
helps ADV to avoid casting unrelated votes, resulting in better accuracy com-
pared to HPM. Since ADV finds a fixed number of nearest neighbors in the image
space, its computational complexity is O(n log n). Similar to methods based on
weak geometric models, both HPM and ADV only provide an overall similarity
score and thus cannot be directly combined with standard QE. In addition, our
approach achieves superior verification accuracy at faster runtimes than ADV.

Verification during retrieval. All previously discussed methods operate as a post-
processing step after image retrieval. Ideally, spatial verification should be per-

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 5

formed during the retrieval process to detect and reject incorrect votes. While
there exist a variety of approaches that directly integrate geometric informa-
tion [42–46], this usually comes at the price of additional memory requirements
or longer retrieval times. Thus, most state-of-the-art approaches still apply spa-
tial verification only as a post-processing step [2, 21–23].

3 Vote-and-Verify for Fast Spatial Verification

One inherent problem of hypothesize-and-verify methods is that finding a good
hypothesis through either random sampling or exhaustive search often takes
quite some time. In this paper, we propose to solve this problem by finding
promising transformation hypotheses through voting. Starting with the most
promising ones, we verify a fixed number of these hypotheses on all matches,
i.e., perform inlier counting. As in FSM [26], local optimization [38,39] is applied
every time a new best transformation is found.

At first glance, the voting stage of our approach may seem identical to ex-
isting voting-based approaches [29–31], but there are two important differences
between previous methods and our approach: i) Existing works [29–31] use vot-
ing with the aim of identifying all geometrically consistent matches. As such,
handling quantization artifacts in the voting space is very important and the
methods are rather sensitive to the number of bins in the voting space. In con-
trast, we only require to find transformations that need to be geometrically con-
sistent with some of the matches. Matches missed due to quantization are then
automatically detected during inlier counting and are subsequently used dur-
ing local optimization to refine the model. ii) Instead of only using the number
of matches associated with the same bin, we are also interested in the trans-
formation induced by these matches. To this end, we find that simply taking
the transformation defined by the center of a bin does not provide an accurate
enough hypothesis, even for high levels of quantization. Consequently, we pro-
pose a refinement process to obtain more accurate transformation hypotheses.
As a result, our approach is rather insensitive to the quantization level.

In the following, we first recapitulate the process of computing a similarity
transformation from a single feature match (Sec. 3.1). We next detail the voting
procedure (Sec. 3.2) and explain how to derive transformation hypotheses from
the voting space (Sec. 3.3). Sec. 3.4 then describes the verification and local
optimization stage, while Sec. 3.5 analyses the computational complexity of our
method. Finally, Algorithm 1 gives an overview of our proposed method.

3.1 From Local Features to Similarity Transformation

Consider a local image feature f , e.g., a SIFT feature [28], defined by its local
feature frame f = (fx, fy, fσ, fθ). Here, (fx, fy)T and fσ are the location and
scale of the detected feature in the image, while fθ denotes the feature orien-
tation. Following [29], each feature f is associated with a canonical coordinate

6 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

Algorithm 1 Proposed Vote-and-Verify algorithm: Verify(Vote(mi=1...n)).

1: procedure Vote(mi=1...n)
2: for i = 1...n do
3: for l = 1...L do
4: Vote for C(mi, l) with w(l) in Hough space

5: Find bins bt=1...T with highest votes w(bt)
6: return Hypotheses T(bt=1...T) ordered in decreasing number of votes

7: procedure Verify(T(bt=1...T))
8: Set initial score ŝ = 0 and transformation T̂ as invalid
9: for t = 1...T do

10: Verify T(bt) and count the number of inliers st
11: if st > ŝ then
12: Refine T(bt) with local optimization and update st
13: Update best score ŝ = st and transformation T̂ = T(bt)
14: Update probability p of finding better T̂

15: if p < p̂ then
16: break
17: return Effective inlier count ŝeff for T̂

frame in which the feature is located at the origin with unit scale and zero ori-
entation. The transformation Mf (x) maps a location x = (x, y)T in the image to
a position in the canonical frame as

Mf (x) =
1

fσ
R(fθ)

([
x
y

]
−
[
fx
fy

])
=

1

fσ

[
cos fθ sin fθ
− sin fθ cos fθ

]([
x
y

]
−
[
fx
fy

])
, (1)

where the rotation matrix R(fθ) performs a clockwise rotation by fθ degrees.
Consequently, a feature match m = (fQ, fD) between a query image Q and a
database image D defines a similarity transformation between the two images:

M(fQ,fD)(x) = M−1
fQ

(
MfD (x)

)
(2)

=
fQσ
fDσ

R(fQθ)T R(fDθ)

([
x
y

]
−
[
fDx
fDy

])
+

[
fQx
fQy

]
= σR(θ)x + t . (3)

In Eqn. 3, σ = fQσ /f
D
σ , θ = fQθ − fDθ , and t = (tx, ty)T define the relative

scale, rotation angle, and translation of the similarity transformation. Thus,
each match m = (fQ, fD) can be associated with a 4-dimensional coordinate

C(m) = [σ, θ, tx, ty] . (4)

3.2 From Similarity Transformation to Hough Voting

Each of the n feature matches between a query and database image defines a
transformation hypothesis. We are interested in determining a fixed-sized set
of transformations that is consistent with as many of these n hypotheses as

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 7

possible. This can be done very efficiently using Hough voting, as similar trans-
formations are likely to fall into the same voting bin. This allows us to obtain a
set of promising transformation hypotheses from the best scoring bins. However,
standard Hough voting suffers from quantization artifacts, caused by inaccura-
cies in the detected feature frames. This is especially problematic when only few
matches are correct, in which case it becomes harder to distinguish between bins
corresponding to the underlying geometric transformation and bins receiving
votes from wrong matches. Thus, we use a hierarchical voting scheme similar
to [29], which we describe in the following.

Following Avrithis & Tolias [29], we quantize each of the four similarity trans-
formation parameters independently. The Hough voting space of transformations
is then defined as the product space of the four individual quantizations. We dis-
cretize the space at different resolution levels l = 0...L and use nx, ny, nσ, and
nθ bins for translation, scale, and orientation at the finest resolution l = 0. Each
successive resolution level divides the number of bins in half until only two bins
are left for each dimension. Out of the four dimensions, only the rotation space
is naturally bounded by [0, 2π), while translation and scale in theory can take
any value from R2 and R+, respectively. In practice, the space of possible scale
changes σ is bounded, since feature detectors only consider a few octaves of scale
space [29]. A feature match inducing a large scale change between two images
can usually be safely discarded as an incorrect correspondence. Consequently,
we only consider scale changes in the range [1/σmax, σmax] [29]. In addition, we
bound the translation parameters by max(|tx|, |ty|) ≤ max(W,H), where W and
H are the width and height of the query image. Matches violating at least one
constraint are ignored [29].

Given a feature match m = (fQ, fD) with transformation parameters σ, θ,
and t as defined above, we obtain the corresponding Hough space coordinate as

Cx(tx, l) = 2−lbnx (tx + max(W,H)) / (2 max(W,H))c , (5)

Cy(ty, l) = 2−lbny (ty + max(W,H)) / (2 max(W,H))c , (6)

Cσ(σ, l) = 2−lbnσ (log2(σ) + log2(σmax)) / (2 log2(σmax))c , (7)

Cθ(θ, l) = 2−lbnθ (θ + π) / (2π)c . (8)

For uniform sampling in the scale space, we linearize the scale change using the
logarithmic function. The factor 2−l normalizes the Hough coordinates to the
respective resolution level of the voting space. Here, each match m = (fQ, fD)
determines a coordinate C(m, l) at level l in the voting space, with

C(m, l) = [Cx(tx, l), Cy(ty, l), Cσ(σ, l), Cθ(θ, l)] . (9)

The match m then contributes a level-dependent weight w(l) = 2−l to the score
of its corresponding voting bin at level l. Next, we describe how to use these
scores to detect the T most promising transformation hypotheses.

3.3 Hypothesis Generation

The goal of our voting scheme is to provide a set of transformation hypotheses
for subsequent verification. As described in the last section, the center of any bin

8 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

in the hierarchical representation defines a transformation, and we could simply
pick the transformations corresponding to the bins with the highest scores. For
coarser levels in the hierarchy, however, it is unlikely that the center of the
bin is close to the actual transformation between the images. As such, we only
hypothesize transformations corresponding to bins at level l = 0. To mitigate
quantization artifacts, we propagate the scores from coarser levels to the bins at
level 0. Each bin b at level 0 uniquely defines a path through the hierarchy to
the coarsest level L. The total score for this bin is computed by summing the
scores of all bins along this path as w(b) =

∑
l=0...L w(b, l). Finally, we simply

select the T bins that received the highest scores w(b).
As we will show in Sec. 4, the naive approach of associating each bin at level 0

with the transformation defined by the bin’s center coordinate does not perform
well, even when using a reasonably deep hierarchy. In other words, the center
coordinate of a bin can be rather far away from the true image transformation. In
order to obtain a better estimate, we use the mean transformation of all matches
falling into the bin instead. LetM(b) be the matches falling into bin b. Following
Eqn. 4, the mean transformation T(b) is defined as T(b) = 1

|M(b)|
∑
m∈M(b) C(m)

and can be computed efficiently during voting without a significant memory
overhead by maintaining a running average. Intuitively, one can think of this as
local optimization (cf. [38]) on the level of hypothesis generation.

It is well-known that outliers, i.e., wrong matches falling into a bin, sig-
nificantly impact the computation of the mean. As a more robust alternative,
one could use the median transformation instead. However, the mean can be
computed much more efficiently, and experiments in Sec. 4.3 show that its per-
formance is very robust to the choice of the quantization resolution.

3.4 Accurate and Efficient Hypothesis Verification

The scores associated with each of the T similarity transformation hypotheses
only provides an estimate on how well the transformation explains the matches.
As a next step, we thus perform detailed hypothesis verification using inlier
counting. For this stage, we follow FSM [26] and consider a match an inlier to a
transformation if its two-way reprojection error is below a threshold and if the
scale change between two corresponding features induced by the transformation
is consistent with the scales of the two features. The t = 1...T transformation
hypotheses are verified in decreasing order of their scores, and we apply local
optimization [38, 39] every time a new best model is found. The latter step re-
fines the transformation by drawing a constant number of non-minimal sets of
inliers to obtain a least squares estimate for the transformation. If there are
at least s = 3 inliers, we estimate an affine transformation in local optimiza-
tion. Affine transformations have been shown to perform better than similarity
transformations [26], as they can handle more general geometric configurations.

We progressively verify the hypotheses ordered in decreasing number of votes
until the probability p = (1− e)t of finding a better model at the current inlier
ratio e falls below a threshold. Our method is a variant of PROSAC [40] using
Hough voting for ordering and 1-point sampling with a fixed-size hypothesis set.

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 9

One advantage over voting-based methods is that we explicitly determine
the set of inliers. This allows us to use image similarity functions that are more
discriminative than simply counting the number of inliers [4]. One such function
is the effective inlier count [34], which has been shown to outperform raw in-
lier counting for image-based localization [7] and image retrieval [4] tasks. The
effective inlier count is defined as

seff =
| ∪n̂i=1 Ai|∑n̂
i=1 |Ai|

n̂ . (10)

Here, n̂ is the number of inlier matches, Ai is a region centered around the i-th
inlier feature in the query image, |∪n̂i=1Ai| is the area of the union of all regions,

and
∑n̂
i=1 |Ai| is the maximum area that could be covered if none of the regions

would overlap. In our experiments, we use square regions of size 24× 24px.

3.5 Computational Complexity

For a fixed number of levels in the hierarchy, each match votes for a fixed number
of bins, where each transformation bin can be computed in time O(1). Perform-
ing a single vote is also a constant time operation, because it only requires
incrementing a counter and updating the running mean for the transformation.
Consequently, voting can be done in time O(n) for n matches. Since T is a
constant, finding and evaluating the T best hypotheses also requires time O(n).
Each hypothesis is evaluated on all matches, which can again be done in time
O(n). Local optimization is performed at most once for each hypothesis using a
fixed-sized non-minimal set, i.e., each least squares transformation can be com-
puted in constant time as well. Thus, the overall computational complexity is
linear in the number n of matches.

4 Experimental Evaluation

In this section, we first introduce the datasets and describe our experimental
setup. Next, we perform an ablation study and analyze the impact of the different
parameters on the performance of our approach. Finally, we provide an extensive
comparison with state-of-the-art spatial verification methods.

4.1 Query and Distractor Datasets

Following standard procedure [30,31], we primarily evaluate on the Oxford5k [26]
and Paris6k [47] datasets. These image sets, collected from Flickr, contain ∼5k
and ∼6k images, respectively, each consisting of 11 distinct landmarks, with 5
query images per landmark. In addition, we created the new World5k dataset
consisting of 5320 images from 61 landmarks around the world, where the images
were obtained from the Yahoo 100M images dataset [48]. The landmark images
were selected based on geo-tags and using overlap information from Heinly et

10 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

al . [49] for ground-truth. Each landmark has between 30 and 100 database images
and 1 to 3 associated query photos, resulting in a total of 163 query images.
Different from Oxford5k and Paris6k, which represent an object retrieval task
where query photos are obtained by cropping regions from database images, our
query images are full-resolution and are not contained in the database.

To simulate larger datasets and thus create harder retrieval scenarios, it
is common to combine the individual datasets with an additional “distractor”
dataset of ∼100k unrelated images collected from Flickr [26]. It has been shown
that adding this Flickr100k distractor set significantly impacts the retrieval per-
formance. However, the Flickr100k (F100k) dataset mostly contains very unre-
lated photos, obtained by searching for generic terms, such as “graffiti”, “uk”,
or “vacation”. We thus collected four additional distractor sets from the Yahoo
100M images dataset. The first distractor set consists of 140k images taken be-
tween 2km and 50km from the center of the University of Oxford. The other
three distractor sets consist of images taken from 30 cities around the UK (171k
images), 30 cities throughout Europe (179k), and 30 cities across the US (233k).
The collections were formed using the set of geo-tagged images within a 1km
radius (2km for the US images) of the geographic center of the city. We expect
to find more geometrically consistent matches for distractor images, e.g ., due to
buildings with similar architectural styles, on the new distractor datasets com-
pared to the Flickr100k set. As such, we expect that our new distractor sets
represent more challenging scenarios for spatial verification. In the following, we
refer to the distractor sets as Ox (Oxford), UK, EU (Europe), and US. Further
information about our new datasets is available in the supplementary material.

4.2 Experimental Setup

Retrieval system. We employ a state-of-the-art retrieval system using Hamming
embedding [25] and visual burstiness weighting [24]. We use a vocabulary con-
taining 200k words1 to quantize RootSIFT descriptors [2, 28] extracted from
keypoints provided by an upright Hessian affine feature detector [50]. Following
standard procedure [23], we ensure that the vocabulary used for each dataset
has been trained on another image collection. Correspondingly, we use a vocab-
ulary trained on Oxford5k for the experiments on Paris6k and our new dataset.
A vocabulary trained on Paris6k is then used for all experiments performed on
the Oxford5k dataset. After retrieval, the top-1000 ranked database images are
considered for spatial verification and re-ranked based on the similarity scores
computed during verification. We enforce 1-to-1 matches prior to verification [31],
since initial experiments showed that this significantly improved verification ef-
ficiency and quality for all spatial verification methods.

Evaluation protocol. We follow the standard evaluation procedure and assess
the verification performance using mean average precision (mAP), which essen-
tially averages the area under the precision-recall curves. For each verification

1 Results obtained with 20k and 1M words can be found in the supplementary material.

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 11

approach, we report the total time in seconds required to verify the 1000 top-
ranked retrievals for all query images. We ignore retrieval and setup time, e.g .,
the time required to enforce a 1-to-1 matching, since this is separate from veri-
fication. To facilitate comparability, we run single-threaded implementations on
an Intel E5-2697 2.7GHz CPU with 256GB RAM.

Table 1. The impact of the number of voting bins (nσ, nθ, nx, ny) and the number T
of verified transformation hypotheses on the performance and efficiency of our method.
Results, obtained on Oxford5k, with the highest mAP (80.1%) are highlighted in green.

T 10 20 30
nx/y 16 32 64 16 32 64 16 32 64

nσ nθ mAP time mAP time mAP time mAP time mAP time mAP time mAP time mAP time mAP time

8
8 80.1 0.7 79.7 0.7 79.8 0.8 79.9 0.8 79.9 0.9 79.9 0.9 80.0 0.9 79.9 0.9 80.0 1.0
16 79.9 0.7 79.7 0.8 79.8 0.8 80.0 0.8 79.8 0.9 79.9 0.9 80.0 0.8 79.9 0.9 80.0 1.0
32 79.7 0.7 79.8 0.8 79.9 0.8 80.0 0.9 79.9 0.9 79.9 0.9 79.9 0.9 79.9 0.9 80.0 1.0

16
8 79.9 0.7 79.7 0.7 79.8 0.8 80.0 0.8 79.9 0.9 79.9 0.9 80.1 0.8 80.0 0.9 80.1 0.9
16 79.9 0.8 79.8 0.7 79.8 0.8 80.0 0.9 79.9 0.9 79.9 0.9 80.0 1.0 80.0 0.9 80.0 0.9
32 79.7 0.7 79.9 0.8 79.8 0.8 80.0 0.8 79.9 0.9 80.0 0.9 80.0 0.9 80.0 0.9 80.0 0.9

32
8 79.9 0.7 80.0 0.8 79.8 0.8 80.0 0.8 80.0 0.9 79.9 0.9 80.0 0.9 80.0 0.9 80.1 0.9
16 79.7 1.0 79.9 0.7 79.7 0.8 80.0 0.9 80.0 0.9 79.9 0.9 80.0 0.8 80.0 0.9 80.1 0.9
32 79.8 0.7 79.7 0.9 80.0 0.8 79.9 0.8 80.0 1.0 80.0 0.9 80.0 0.9 80.0 1.1 80.1 0.9

4.3 Ablation Study

We evaluate the impact of the different parameters of our approach on its verifi-
cation performance and efficiency. All experiments presented in this section have
been performed on the Oxford5k dataset without any distractor images.

Impact of the level of quantization. As a first experiment, we evaluate the impact
of the number of bins for rotation (nθ), scale (nσ) and translation (nx, ny) as well
as the number T of transformation hypotheses that are verified. Tab. 1 shows the
results obtained for different parameter configurations. For this experiment, we
used the mean transformation per bin to generate the hypotheses (cf. Sec. 3.3).
As can be seen from the table, the verification performance of our approach
is rather insensitive against the number of bins and verified transformations,
although increasing T has a slightly positive impact on the measured mAP.
Naturally, increasing the number of bins and T also increases the overall runtime,
but the increase is rather small. We also experimented with fewer (2 and 4) and
more (128) bin sizes but found that the former resulted in a significant drop
in mAP while the latter did not noticeably improve mAP. For all following
experiments, we use T = 30 transformation proposals, nx = 64 and ny = 64
translation bins, nσ = 32 scale bins, and nθ = 8 rotation bins.

Impact of refining the transformation hypotheses. In Sec. 3.3, we proposed to
use the mean transformation for the bins in the voting space, arguing that the
transformation defined by the center coordinate is not accurate enough. We
measure an mAP of 76.2 when using the center coordinate and an mAP of 80.1
when using the mean transformation. At the same time, we do not observe an
increase in runtime when computing the running mean. This clearly confirms

12 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

our approach for refining the transformation hypotheses. In addition, we also
experimented with using the median transformation per bin. As expected, the
measured mAP increases to 80.3 since the median is less affected by outliers than
the mean. However, this increase comes at significantly slower runtimes of 2.5
seconds, compared to 0.9 seconds when using the mean. This increase is caused
by the fact that computing the median requires the individual transformations
to be stored and then partially sorted.

4.4 Comparison with State-of-the-Art Spatial Verification Methods

In the next experiments, we verify the claim that our approach achieves a verifica-
tion accuracy similar to hypothesize-and-verify methods while obtaining faster
runtimes than voting-based methods. Towards this goal, we compare our ap-
proach against state-of-the-art methods for spatial verification. Hypothesize-and-
verify approaches are represented by different variants of FSM [26]: The original
FSM method exhaustively evaluates each transformation hypothesis obtained
from a single feature match. The 1-point-RANSAC version of FSM (FSM-R)
randomly samples from the hypotheses and terminates spatial verification once
the probability of finding a better hypothesis falls below a threshold of p̂ = 0.99.
For both FSM and FSM-R, we use two variants that either estimate an affine
(Aff.) or a similarity (Sim.) transformation from each correspondence. All vari-
ants use local optimization to estimate an affine transformation from the inlier
matches, independent of the type of transformation estimated from the individ-
ual correspondences. Besides ranking transformation hypotheses based on their
numbers of inliers, we also evaluate FSM and FSM-R in combination with the
effective inlier count (cf. Eqn. 10). We again evaluate two variants. The first
variant uses the effective inlier count instead of the standard inlier count during
verification (Eff. Inl. Eval). The second variant simply applies the effective inlier
count as a post-processing step (Eff. Inl. Post) on the best transformation found
by FSM and FSM-R. The effective inlier count of this hypothesis is then used
for re-ranking after spatial verification.

We also compare our approach against the current state-of-the-art approaches
for voting-based verification: HPM [29], ADV [30], and PGM [31]. Since the
three methods do not return inlier matches, they cannot be combined with the
effective inlier count. Notice that the results reported in [30,31] are not directly
comparable due to using different types of features and vocabularies of different
sizes trained on different datasets. Thus, our results were obtained with our own
implementations of HPM (without idf-weighting), ADV, and PGM.

Tables 2, 3, and 4 present the accuracy and runtimes on the Oxford5k,
Paris5k, and new datasets, respectively. There are multiple interesting insights
to be gained from our results: Both FSM and FSM-R outperform HPM, ADV,
and PGM in terms of mAP. The result is especially pronounced on the Paris6k
dataset (cf. Tab. 3). Using early stopping (FSM-R) rather than evaluating all
possible transformations (FSM) significantly accelerates the verification without
a significant impact on mAP. In fact, FSM-R is not more than a factor-of-4
slower than ADV, which is surprising given that one of the main arguments [29]

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 13

for voting-based methods is that they are about an order of magnitude faster
than FSM. Moreover, there is little difference between using an affine or similar-
ity transformation for both FSM and FSM-R, likely due to the local optimization
step. Compared to both ADV and PGM, our method achieves faster runtimes,
which is most pronounced on our new dataset, where more features are found
in each image. At the same time, our method also achieves a better accuracy.
Especially on the Oxford5k and Paris6k datasets, our approach performs nearly
as well as FSM and FSM-R, which are significantly slower than our method.

Table 2. Verification accuracy and efficiency measured on the Oxford5k dataset. The
best , second-best , and third-best results are highlighted for each column.

– F100k Ox UK EU US O
x
+
U
K

O
x
+
E
U

O
x
+
U
S

U
K
+
E
U

U
K
+
U
S

E
U
+
U
S

O
x
+
U
K
+
E
U

O
x
+
U
K
+
U
S

O
x
+
E
U
+
U
S

U
K
+
E
U
+
U
S

O
x
+
U
K
+
E
U
+
U
S

A
ll

mAP [%]

Pure Retrieval 76.2 66.4 64.1 60.3 60.3 59.6 57.6 57.4 57.2 56.3 55.9 55.8 54.4 54.3 54.1 53.7 52.3 51.7

FSM Aff 79.9 75.1 72.9 70.3 70.9 71.4 68.6 69.2 69.7 68.3 68.6 69.1 67.2 67.3 67.9 67.5 66.4 66.3
+ Eff. Inl. Eval 79.8 75.9 73.7 71.0 71.8 72.5 69.7 70.3 71.0 69.6 69.9 70.5 68.6 68.8 69.5 69.1 68.1 67.9
+ Eff. Inl. Post 79.6 75.2 73.3 70.1 71.1 71.7 68.8 69.6 70.2 68.5 68.8 69.5 67.5 67.7 68.4 67.8 66.8 66.6

FSM-R Aff 79.9 75.3 72.9 70.3 70.9 71.4 68.6 69.2 69.6 68.3 68.6 69.1 67.2 67.3 67.9 67.4 66.4 66.3
+ Eff. Inl. Eval 79.8 75.9 73.7 71.0 71.8 72.5 69.7 70.3 70.9 69.6 69.9 70.5 68.6 68.8 69.4 69.0 68.1 67.7
+ Eff. Inl. Post 79.6 75.2 73.1 70.0 71.0 71.7 68.6 69.5 70.0 68.3 68.7 69.4 67.3 67.5 68.3 67.6 66.6 66.3

FSM Sim 79.8 74.8 72.3 69.4 70.2 70.9 67.6 68.3 68.9 67.3 67.7 68.3 66.1 66.4 67.0 66.5 65.5 65.3
+ Eff. Inl. Eval 79.9 75.4 73.5 70.3 71.2 72.1 69.0 69.8 70.5 68.6 69.0 69.7 67.7 68.0 68.7 68.1 67.2 66.7
+ Eff. Inl. Post 79.1 74.4 72.5 69.1 70.0 71.0 67.7 68.5 69.2 67.2 67.8 68.5 66.2 66.6 67.4 66.6 65.7 65.3

FSM-R Sim 79.8 74.9 72.3 69.3 70.2 70.9 67.6 68.3 68.9 67.3 67.7 68.3 66.1 66.4 67.0 66.5 65.5 65.3
+ Eff. Inl. Eval 79.8 75.3 73.4 70.1 71.0 71.9 68.8 69.5 70.2 68.3 68.8 69.5 67.4 67.8 68.5 67.8 67.0 66.4
+ Eff. Inl. Post 79.0 74.3 72.4 69.0 69.9 70.8 67.6 68.3 69.0 67.1 67.6 68.3 66.1 66.5 67.2 66.5 65.5 65.2

HPM 73.4 65.4 63.3 59.7 59.6 60.0 58.1 58.1 58.2 57.1 57.1 57.4 56.0 56.0 56.3 55.8 54.9 54.4
ADV 78.5 73.7 71.9 68.2 68.8 70.0 66.8 67.4 68.3 66.1 66.5 67.0 65.1 65.4 65.9 65.2 64.3 64.0
PGM 76.0 64.6 62.5 58.7 59.1 57.9 55.5 55.3 54.9 54.6 53.9 53.8 52.6 52.3 52.0 51.4 50.2 49.4

Ours 80.1 74.5 71.9 68.7 69.5 69.7 67.0 67.6 67.8 66.6 66.7 67.2 65.3 65.4 65.9 65.4 64.4 64.1
+ Eff. Inl. Post 79.8 75.7 73.5 70.5 71.1 72.3 69.2 69.7 70.6 68.6 69.2 69.7 67.6 68.1 68.6 67.9 67.0 66.8

Runtime [s]

FSM Aff 31.1 43.4 44.1 46.3 45.9 49.7 68.0 68.1 70.1 69.9 70.5 68.7 73.5 71.2 69.9 69.8 73.3 73.9
+ Eff. Inl. Eval 309.6 356.4 381.0 456.5 446.8 408.6 476.8 467.1 438.0 500.7 488.6 475.3 523.4 495.0 484.7 512.1 522.7 506.2
+ Eff. Inl. Post 31.0 43.2 44.5 46.8 46.1 49.3 68.9 68.4 71.0 70.4 71.3 71.1 73.9 71.2 71.5 71.0 75.5 77.2

FSM-R Aff 4.3 5.7 6.6 8.4 8.0 7.5 10.4 9.9 9.7 11.2 11.1 10.6 12.1 11.2 10.7 11.3 12.0 12.0
+ Eff. Inl. Eval 193.1 237.1 258.2 333.9 324.8 282.5 347.9 339.2 303.9 370.1 357.5 344.1 387.0 363.2 354.4 381.0 390.0 378.7
+ Eff. Inl. Post 4.4 5.9 6.9 8.9 8.4 7.9 11.3 10.7 10.4 12.2 11.8 11.4 13.2 12.2 11.7 12.4 14.2 15.0

FSM Sim 33.0 45.0 47.5 48.8 47.8 51.0 70.9 70.9 73.5 72.2 73.3 72.1 75.9 73.4 74.2 73.4 76.3 76.1
+ Eff. Inl. Eval 317.3 367.3 389.6 476.3 454.6 416.4 485.7 476.2 446.9 508.1 497.5 482.6 531.2 502.1 491.8 520.8 530.7 516.1
+ Eff. Inl. Post 33.1 45.6 47.4 53.7 48.2 50.2 72.2 71.6 75.0 73.4 74.9 72.9 77.4 74.6 73.6 75.3 78.4 79.2

FSM-R Sim 4.2 5.5 6.3 8.1 7.6 7.2 10.1 9.5 9.5 10.8 10.6 10.1 11.6 10.8 10.2 10.9 11.6 11.5
+ Eff. Inl. Eval 192.5 236.6 257.0 332.4 323.2 281.2 346.0 336.4 301.7 368.7 356.2 341.3 385.9 361.4 352.9 378.1 386.7 376.2
+ Eff. Inl. Post 4.3 5.8 6.7 9.0 8.1 7.7 10.8 10.3 10.4 11.8 11.5 11.0 12.6 11.7 11.2 11.9 13.6 14.3

HPM 1.1 1.4 1.7 1.9 1.8 1.6 2.2 2.2 1.9 2.3 2.2 2.2 2.3 2.2 2.1 2.4 2.5 2.6
ADV 2.3 3.0 3.4 4.6 4.3 3.9 5.1 4.9 4.6 5.5 5.5 5.3 6.0 5.4 5.0 5.1 5.4 5.3
PGM 15.0 15.2 15.4 15.6 15.6 15.9 15.8 15.7 16.2 16.0 16.2 15.9 16.7 16.1 16.1 16.0 16.1 15.5

Ours 0.9 1.6 1.7 2.2 2.0 1.8 2.4 2.3 2.2 2.5 2.4 2.4 2.8 2.7 2.9 2.9 3.1 2.8
+ Eff. Inl. Post 1.2 1.8 1.9 2.5 2.3 2.0 2.7 2.7 2.5 3.0 2.8 2.9 3.4 3.4 3.6 3.5 5.6 5.9

The influence of the distractor sets. Tables 2, 3, and 4 report the impact of
combining each dataset with various combinations of the distractor sets. While
using the effective inlier count provides little benefits without distractors, we
observe a noticeable gain when adding distractors and thus making the problem
harder. Naturally, the best results are obtained by directly incorporating the
count into the verification stage of FSM and FSM-R. However, this comes at
significant runtime costs since it needs to be evaluated often. Yet, using the count
as a post-processing step incurs only negligible cost. Combining the effective
inlier count with our method further increases the accuracy of our method.

The distractor set showing the largest decrease in mAP in combination with
the Oxford5k dataset was the image set from 30 cities around the UK and not Ox.
This is somewhat counter-intuitive, since it might be expected that the distractor

14 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

Table 3. Verification accuracy and effi-
ciency measured on the Paris6k dataset.

– F100k EU US E
U
+
U
S

U
K
+
E
U
+
U
S

O
x
+
U
K
+
E
U
+
U
S

A
ll

mAP [%]

Pure Retrieval 71.2 60.2 56.2 54.6 51.2 49.5 48.7 47.7

FSM Aff 74.2 66.0 62.1 62.0 59.1 57.8 57.1 56.2
+ Eff. Inl. Eval 74.5 66.4 62.5 62.5 59.5 58.3 57.6 56.6
+ Eff. Inl. Post 73.9 65.6 61.5 61.4 58.3 57.1 56.4 55.6

FSM-R Aff 74.2 66.0 62.1 62.1 59.1 57.8 57.2 56.2
+ Eff. Inl. Eval 74.3 66.2 62.3 62.3 59.3 58.1 57.4 56.4
+ Eff. Inl. Post 73.7 65.3 61.3 61.2 58.2 56.9 56.3 55.4

FSM Sim 74.1 65.7 61.8 61.8 58.8 57.5 56.9 55.9
+ Eff. Inl. Eval 74.4 66.0 62.2 62.1 59.1 57.8 57.2 56.2
+ Eff. Inl. Post 73.8 65.2 61.3 61.2 58.2 56.8 56.2 55.3

FSM-R Sim 73.9 65.4 61.5 61.5 58.6 57.3 56.7 55.7
+ Eff. Inl. Eval 74.1 65.6 61.8 61.7 58.8 57.5 56.9 55.9
+ Eff. Inl. Post 73.6 64.9 60.9 60.9 57.9 56.6 55.9 55.0

HPM 70.8 60.8 56.1 55.5 52.2 50.8 50.2 49.3
ADV 71.5 62.9 60.1 60.1 57.3 56.0 55.3 54.2
PGM 70.7 59.3 54.8 53.6 50.0 48.1 47.1 46.2

Ours 73.4 64.9 60.9 60.7 57.8 56.6 56.0 54.9
+ Eff. Inl. Post 73.9 65.6 61.9 61.8 58.9 57.5 57.0 55.9

Runtime [s]

FSM Aff 55.9 64.7 82.2 87.2 125.1 131.6 137.6 118.6
+ Eff. Inl. Eval 545.1 668.6 782.8 800.9 901.4 964.0 987.3 982.0
+ Eff. Inl. Post 55.6 67.4 83.1 89.5 127.5 133.5 144.9 124.2

FSM-R Aff 10.8 17.5 19.5 21.0 26.7 30.5 31.6 33.8
+ Eff. Inl. Eval 314.0 463.0 529.1 541.2 614.8 671.1 688.1 723.2
+ Eff. Inl. Post 11.0 17.8 20.1 21.7 27.8 32.0 35.2 39.2

FSM Sim 61.7 68.5 91.4 97.2 137.4 142.8 151.6 120.9
+ Eff. Inl. Eval 570.0 674.0 816.6 834.8 925.8 1005.1 1013.7 983.4
+ Eff. Inl. Post 62.0 68.4 93.0 98.3 140.0 155.9 152.8 126.7

FSM-R Sim 10.3 16.6 18.7 20.1 25.4 29.4 30.3 32.3
+ Eff. Inl. Eval 310.2 459.5 523.6 536.2 608.7 663.2 679.3 715.2
+ Eff. Inl. Post 10.6 17.2 19.3 20.9 26.7 31.0 33.9 37.9

HPM 2.2 2.3 2.8 2.8 3.8 4.2 4.4 4.5
ADV 3.7 5.4 6.0 6.0 7.7 8.5 8.6 9.1
PGM 19.1 19.8 19.7 19.9 20.3 20.7 22.1 23.5

Ours 2.5 2.8 3.3 3.3 4.4 4.6 4.9 5.4
+ Eff. Inl. Post 2.9 3.2 3.7 3.8 5.0 5.6 8.4 10.0

Table 4. Verification accuracy and ef-
ficiency measured on our new dataset.

– EU US E
U
+
U
S

U
K
+
E
U
+
U
S

O
x
+
U
K
+
E
U
+
U
S

mAP [%]

Pure Retrieval 97.1 92.3 92.5 90.1 89.4 88.9

Aff 98.2 95.8 96.6 95.2 94.9 94.7
+ Eff. Inl. Eval 98.2 95.9 96.8 95.3 95.0 94.9
+ Eff. Inl. Post 97.9 95.5 96.4 94.9 94.6 94.4

Aff RANSAC 98.2 95.8 96.6 95.2 94.8 94.7
+ Eff. Inl. Eval 98.1 95.8 96.6 95.2 94.9 94.7
+ Eff. Inl. Post 97.8 95.4 96.3 94.7 94.4 94.3

Sim 98.1 95.8 96.6 95.1 94.8 94.6
+ Eff. Inl. Eval 98.1 95.9 96.7 95.3 95.0 94.8
+ Eff. Inl. Post 97.8 95.4 96.2 94.8 94.5 94.3

Sim RANSAC 98.0 95.7 96.4 95.0 94.7 94.5
+ Eff. Inl. Eval 98.0 95.8 96.6 95.2 94.9 94.7
+ Eff. Inl. Post 97.6 95.2 96.0 94.6 94.3 94.1

HPM 96.0 91.6 92.0 90.3 89.9 89.6
ADV 97.5 94.2 94.9 93.2 92.9 92.7
PGM 96.4 90.8 90.4 88.0 87.3 86.7

Ours 97.8 95.2 95.8 94.4 94.1 93.9
+ Eff. Inl. Post 97.8 95.4 96.1 94.7 94.4 94.3

Runtime [s]

Aff 255.6 341.4 323.1 437.6 450.1 450.7
+ Eff. Inl. Eval 4234.8 6009.0 5599.8 6372.5 6629.2 6744.8
+ Eff. Inl. Post 256.0 345.2 325.9 441.8 455.7 457.0

Aff RANSAC 55.7 99.5 92.1 123.6 132.2 136.5
+ Eff. Inl. Eval 2485.8 4103.6 3757.2 4361.7 4574.0 4671.2
+ Eff. Inl. Post 57.8 104.0 96.3 128.7 138.6 143.8

Sim 270.5 360.7 339.7 466.5 478.3 475.2
+ Eff. Inl. Eval 4378.2 6146.8 5732.3 6501.5 6758.4 6864.2
+ Eff. Inl. Post 273.5 366.1 344.3 471.9 485.8 483.3

Sim RANSAC 54.8 96.2 88.9 119.3 128.1 132.2
+ Eff. Inl. Eval 2479.8 4087.6 3741.5 4338.6 4544.2 4639.7
+ Eff. Inl. Post 57.2 101.3 93.5 124.9 134.9 139.5

HPM 12.4 17.1 16.4 21.6 21.9 22.3
ADV 24.8 35.7 32.4 39.9 42.1 46.4
PGM 54.5 57.5 54.9 57.9 58.5 59.9

Ours 13.7 19.8 19.7 26.7 27.5 23.4
+ Eff. Inl. Post 16.5 24.3 23.8 29.7 30.8 28.0

set consisting of images taken close to Oxford would be likely to contain images
similar to the query. However, since there are fewer cities in this area, it turns
out that those (typically non-urban) images are more easily discarded during
spatial verification, compared to image sets targeted toward city centers. At the
same time, the UK distractor set proved harder than the Europe and US sets,
despite its smaller size. The Paris6k dataset had a similar drop in accuracy using
our targeted distractor sets, compared to the Flickr100k distractor set.

5 Conclusion

In this work, we presented a novel method for fast spatial verification in im-
age retrieval. Our method is a hybrid of voting-based approaches for efficient
hypotheses generation and inlier counting-based methods for accurate hypothe-
sis verification. Comprehensive experiments demonstrate high robustness to the
choice of parameters. Our method achieves superior performance in balancing
precision and efficiency versus the state of the art. Furthermore, we studied the
impact of distractor image distribution and introduced a new query image set,
which is released to the public alongside the source code of our method.

Acknowledgement

True Price and Jan-Michael Frahm were supported in part by the NSF No. IIS-
1349074, No. CNS-1405847.

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 15

References

1. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: ICCV. (2003)

2. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve
object retrieval. In: CVPR. (2012)

3. Arandjelović, R., Zisserman, A.: DisLocation: Scalable descriptor distinctiveness
for location recognition . In: ACCV. (2014)

4. Sattler, T., Havlena, M., Schindler, K., Pollefeys, M.: Large-Scale Location Recog-
nition and the Geometric Burstiness Problem. In: CVPR. (2016)

5. Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., Pajdla, T.: 24/7 place recogni-
tion by view synthesis. In: CVPR. (2015)

6. Sattler, T., Weyand, T., Leibe, B., Kobbelt, L.: Image Retrieval for Image-Based
Localization Revisited. In: BMVC. (2012)

7. Sattler, T., Havlena, M., Radenovic, F., Schindler, K., Pollefeys, M.: Hyperpoints
and Fine Vocabularies for Large-Scale Location Recognition. In: ICCV. (2015)

8. Gammeter, S., Quack, T., Van Gool, L.: I Know What You Did Last Summer:
Object-Level Auto-Annotation of Holiday Snaps. In: ICCV. (2009)

9. Weyand, T., Leibe, B.: Discovering Favorite Views of Popular Places with Iconoid
Shift. In: ICCV. (2011)

10. Weyand, T., Leibe, B.: Discovering Details and Scene Structure with Hierarchical
Iconoid Shift. In: ICCV. (2013)

11. Lee, G.H., Fraundorfer, F., Pollefeys, M.: Structureless Pose-Graph Loop-Closure
with a Multi-Camera System on a Self-Driving Car. In: IROS. (2013)

12. Schönberger, J.L., Radenović, F., Chum, O., Frahm, J.M.: From single image
query to detailed 3d reconstruction. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (2015)

13. Radenović, F., Schönberger, J.L., Ji, D., Frahm, J.M., Chum, O., Matas, J.: From
dusk till dawn: Modeling in the dark. In: CVPR. (2016)

14. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR). (2016)

15. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: CVPR. (2010)

16. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image catego-
rization. In: CVPR. (2007) 1–8

17. Jégou, H., Zisserman, A.: Triangulation embedding and democratic aggregation
for image search. In: CVPR. (2014)

18. Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: NetVLAD: CNN archi-
tecture for weakly supervised place recognition. In: IEEE Conference on Computer
Vision and Pattern Recognition. (2016)

19. Radenović, F., Tolias, G., Chum, O.: CNN image retrieval learns from BoW:
Unsupervised fine-tuning with hard examples. In: ECCV. (2016)

20. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: Deep Image Retrieval: Learning
global representations for image search. In: arXiv:1604.01325. (2016)

21. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total Recall II: Query Expansion
Revisited. In: CVPR. (2011)

22. Mikuĺık, A., Perdoch, M., Chum, O., Matas, J.: Learning vocabularies over a fine
quantization. IJCV (2013)

23. Tolias, G., Avrithis, Y., Jégou, H.: To aggregate or not to aggregate: Selective
match kernels for image search. In: ICCV. (2013)

16 J.L. Schönberger, T. Price, T. Sattler, J.M. Frahm, M. Pollefeys

24. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: CVPR.
(2009)

25. Jégou, H., Douze, M., Schmid, C.: Hamming Embedding and Weak Geometric
Consistency for Large Scale Image Search. In: ECCV. (2008)

26. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: CVPR. (2007)

27. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Comm. ACM
(1981)

28. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV (2004)
29. Avrithis, Y., Tolias, G.: Hough Pyramid Matching: Speeded-up geometry re-

ranking for large scale image retrieval. IJCV (2014)
30. Wu, X., Kashino, K.: Adaptive Dither Voting for Robust Spatial Verification. In:

ICCV. (2015)
31. Li, X., Larson, M., Hanjalic, A.: Pairwise Geometric Matching for Large-Scale

Object Retrieval. In: CVPR. (2015)
32. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic

query expansion with a generative feature model for object retrieval. In: ICCV.
(2007)

33. Mikuĺık, A., Radenović, F., Chum, O., Matas, J.: Efficient image detail mining.
In: ACCV. (2014)

34. Irschara, A., Zach, C., Frahm, J.M., Bischof, H.: From Structure-from-Motion
Point Clouds to Fast Location Recognition. In: CVPR. (2009)

35. Sivic, J., Zisserman, A.: Efficient Visual Search Cast as Text Retrieval. PAMI
(2009)

36. Sattler, T., Leibe, B., Kobbelt, L.: SCRAMSAC: Improving RANSAC’s Efficiency
with a Spatial Consistency Filter. In: ICCV. (2009)

37. Wu, X., Kashino, K.: Robust spatial matching as ensemble of weak geometric
relations. In: BMVC. (2015)

38. Chum, O., Matas, J., Kittler, J.: Locally Optimized RANSAC. In: DAGM. (2003)
39. Lebeda, K., Matas, J., Chum, O.: Fixing the locally optimized ransac. In: BMVC.

(2012)
40. Chum, O., Matas, J.: Matching with prosac-progressive sample consensus. In:

CVPR. (2005)
41. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.: Usac: A universal

framework for random sample consensus. PAMI (2013)
42. Chum, O., Perdoch, M., Matas, J.: Geometric min-Hashing: Finding a (Thick)

Needle in a Haystack. In: CVPR. (2009)
43. Zhang, Y., Jia, Z., Chen, T.: Image retrieval with geometry-preserving visual

phrases. In: CVPR. (2011)
44. Johns, E.D., Yang, G.Z.: Pairwise Probabilistic Voting: Fast Place Recognition

without RANSAC. In: ECCV. (2014)
45. Tolias, G., Kalantidis, Y., Avrithis, Y., Kollias, S.: Towards large-scale geometry

indexing by feature selection. CVIU (2014)
46. Shen, X., Lin, Z., Brandt, J., Wu, Y.: Spatially-constrained similarity measure for

large-scale object retrieval. PAMI (2014)
47. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization:

Improving particular object retrieval in large scale image databases. In: CVPR.
(2008)

48. Thomee, B., Shamma, D.A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth,
D., Li, L.J.: Yfcc100m: The new data in multimedia research. Comm. ACM (2016)

A Vote-and-Verify Strategy for Fast Spatial Verification in Image Retrieval 17

49. Heinly, J., Schönberger, J.L., Dunn, E., Frahm, J.M.: Reconstructing the world*
in six days *(as captured by the yahoo 100 million image dataset). In: CVPR.
(2015)

50. Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for
large scale object retrieval. In: CVPR. (2009)

