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Motivation

Augmented Reality for Wearable Camera
Highlight Hands for better User Experience

Challenges:
1. Limited Resources (no powerful GPUs).
2. Process images in real time.
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Abstract

State-of-the-art segmentation methods rely on very deep
networks that are not always easy to train without very large
training datasets and tend to be relatively slow to run on
standard GPUs. In this paper, we introduce a novel recur-
rent U-Net architecture that preserves the compactness of
the original U-Net [33], while substantially increasing its
performance to the point where it outperforms the state of
the art on several benchmarks. We will demonstrate its ef-
fectiveness for several tasks, including hand segmentation,
retina vessel segmentation, and road segmentation. We also
introduce a large-scale dataset for hand segmentation.

1. Introduction
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Hand Segmentation
Dataset Collection - KBH (Keyboard Hand Dataset)

Resolution # Images

Dataset Width Height Train Val. Test Total
KBH (Ours)  230x 306 2300 2300 7936 12536

(a) Environment setup (b) Attributes
Parameters Amount Details Attribute  #IDs

Desk 3 White, Brown, Black Bracelet 10

D k t '; Watch 14
eSK poSTHOn i Brown-skin 2
K(?y bqard J ) Tatoo 1
Lighting 8 3 sources on/off Nail-polish 1
Objects on desk 3 3 different objects Ring(s) 6




Intultion

Mimic human Saccadic eye Movement

When we observe a scene, our eyes undergo saccadic movements
[Neuroscience. 2nd edition], and we accumulate knowledge about the scene
and continuously refine our perception.

When you read, your eyes do not smoothly
travel over the print. Instead, they make short

jumping movements called saccades.

These eye movements must be made quickly,
sequentially, and accurately so that the words

come to the brain in the proper order.
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Intultion

Recursive Refinement




Model Overview
Ours-DRU vs Others
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Model Backbone: U-Net

* Resource Constrained tasks:
* Limited computing resource ® e.g., VR Camera.
 Limited training data ® e.g., Biomedical Images.

* Main stream fast segmentation models:

 Multi-branch based ones;
e Complex
e Careful Design

 U-Net based ones;
* Compact (lower risk of overfitting)
* Simple (do notrequire careful design)



Model Details
Recurrent U-Net: DRU & SRU
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Experiment

* Segmentation Tasks
* Retina Vessel
* Hand
* Road

Recursive Refinement

Train with 3 Recurrences
Test with 3 Recurrences




Experiment

More Results of Hand
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Study of Hyper-Parameters & Other Architectures

* Hyperparameters:
* 1. Weight of loss at each recurrence.
e 2. Number of recurrences

e New Architectures:
e 1. VGG16 as Encoder
e 2. ResNet50 as Encoder



Hyper-parameter: The impact of a in loss.
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EYTH validation set

a=0.4 has the best performance.



Hyper-parameter: The impact of Rec. Number

2

Rec No R:3 R: 6 R: 9 R: 12
[h,w]=[1,0.4] | 0.8383 | 0.8406 | 0.8420 | 0.8361
EYTH Validation Set EYTH Test Set
0.865 A m 0.865 A
0.860 A 0.860 1
S 0.855 A /.’.—._Hﬂ\.*. S 0.855 A
O 0.850 LED 0.850

0-845 1 —e— Train-Rec-12

0.840 —e— Train-Rec-9

—e— Train-Rec-6
Train-Rec-3

o830 —mm—mh———————F——7— 77—

0.835 A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Test-Rec-Number

0.845 A

0.840 A

0.835 A

0.830 —+

—e— Train-Rec-12
—e— Train-Rec-9
—e— Train-Rec-6

Train-Rec-3

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

Test-Rec-Number

EYTH validation set

Same Recurrence Number
in the training and validation stage.

9 Recurrences lead to the best performance.

Question: Can we have different
Recurrence Number for each image
in the training and validation stage?



Compare with more baselines w.r.t

Accuracy, Speed, Size.
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Other Architectures with Powerful Encoders

;
» Dec3 f
sDecz] |
sCon]
| Pt-1 |[Img]| Conv i Conv

(a) DRU-VGG16 (b) DRU-ResNet50



Experiment

Model ] EYTH [40] GTEA [11] EgoHand [4] HOF [40] KBH
] mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec mIOU mRec mPrec

No pre-train

ICNet [45] 0.731 0915 0.764 0.898 0971 0.922 0.872 0.925 0.931 0.580 0.801 0.628 0.829 0.925 0.876

U-Net-B [33] 0.803 0.912 0.830 0.950 0973 0975 0.815 0.869 0.876 0.694 0.867 0.778 0.870 0.943 00911

U-Net-G 0.837 0.928 0.883 0.952 0977 0980 0.837 0.895 0.899 0.621 0.741 0.712 0905 0.949 0.948

Rec-Middle [27] | 0.827 0.920 0.877 0.924 0979 0.976 0.828 0.894 0.905 0.654 0.733 0.796 0.845 0.924 0.898
= Rec-Last [41] 0.838 0.920 0.894 0.957 0975 0980 0.831 0.906 0.897 0.674 0.807 0.752 0.870 0.930 0.924
.5‘3 Rec-Simple [21] | 0.827 0918 0.864 0.952 0975 0.976 0.858 0.909 0.931 0.693 0.833 0.704 0.905 0.951 0.944

Ours at layer (1)

Ours-SRU(0) 0.844 0.924 0.890 0.960 0976 0981 0.862 0913 0.932 0.712 0.844 0.764 0.930 0.968 0.957

Ours-SRU(3) 0.845 0931 0.891 0.956 0977 0.982 0.864 0913 0.933 0.699 0.864 0.773 0.921 0.964 0.951

Ours-DRU(4)

0.849 0.926 0.900 0.958 0.978 0.977 0.873 0.924 0.935 0.709 0.866 0.774 0.935 0.980 0.970

With pretrain

o

% Deeplab V3+ [6]

T U-Net-VGG16
U-Net-ResNet50

0.757 0.819 0.875
0.879 0.945 0.921
0.893 0.942 0.939

0.907
0.961
0.959

0.928
0.978
0.978

0.976
0.981
0.980

0.870 0.909 0.958 0.722 0.822 0.816
0.879 0916 0.951 0.849 0.937 0.893
0.900 0.936 0.954 0.867 0.949 0.904

0.856
0.946
0.948

0.901
0.971
0.973

0.935
0.972
0.972

0.897 0.946 0.940

‘ DRU-VGG16

0.902 _0.947 _0.945

0.964
0.959

0.981
0.980

0.982
0.978

0.892 0.925 0.958 0.863 0.948 0.901
0.898 _0.937 0952 _0.889 0.948 0.930

0.954
0.957

0.973
0.978

0.979
0.977

Table 3: Comparing against the state of the art. According to the mIOU, Ours-DRU(4) performs best on average, with Ours-SRU(0) a
close second. Generally speaking all recurrent methods do better than RefineNet, which represents the state of the art, on all datasets except
HOF. We attribute this to HOF being too small for optimal performance without pre-training, as in RefineNet. This is confirmed by looking
at DRU-VGG16, which yields the overall best results by relying on a pretrained deep backbone.




Experiment

Retina Vessel, Road, Cityscapes Segmentation

Retina Road
Models ‘ mIOU mRec  mPrec mF1 Models ] mIOU mRec mPrec P/R mF1
ICNet [15] 0.618 0.796 0.690  0.739 ICNet [15] 0476 0.626 0.500 0.513 0.656
_ U-Net-G [37] 0.800 0.897 0.868  0.882 _ U-Net-G [17] 0.479 0.639 0502 0.642 0.563
£, Rec-Middle [27] 0.818  0.903 0.886 0.894 < Rec-Middle [27] | 0.494 0.767 0.518 0.660 0.574
3 Rec-Simple [71] 0.814 0.898  0.885  0.892 3 Rec-Simple [21] | 0.534 0.802 0.559 0.723 0.659
Rec-Last [/1] 0.819 0900 0.890  0.895 Rec-Last [ 1] 0.526 0.786 0.551 0.730 0.648
Ours-DRU(4) \ 0.821 0.902  0.891  0.896 Ours-DRU(4) ] 0.560 0.865 0.583 0.757 0.691
> DeepLab V3+ [0] 0.756  0.875  0.828  0.851 > Deeplab V3+[0] | 0.529 0.763 0.555 0.710 0.643
é? U-Net-VGG16 0.804 0910 0862  0.886 § U-Net-VGG16 | 0.521 0.836 0.544 0.745 0.659
DRU-VGG16 0817 0905  0.883  0.894 = DRU-VGG16 0.571 0.862 0.595 0.761 0.704
Cityscapes

Model mloU | Model mloU

ICNet[ 5] 0.695 DeepLab V3 3] 0.778

U-Net-G 0.429 U-Net-G x2 0.476

Rec-Last 0.502 Rec-Last x2 0.521

DRU(4) 0.532 DRU(4) x2 0.627

DRU-VGG16 0.761

DRU-VGG16 0.775



Summary

e Recurrent U-Net refines predictions step by step.

* |t is friendly to embedded systems with
* less parameters,
* high speed,
* lower risk of overfitting.

* |t is easy to scale up for unconstrained settings with more powerful
encoders.

 Two ongoing works:
* 1. Improve performance: Remove the noise and redundancy in deep networks.
e 2. Virtual keyboard typing.



Ongoing Work 1

Problem:

e Big Network has more parameters,
but brings noise & redundancy.

Solution:

* Build normalization layers (ZCA/PCA
normalization) to Remove Noise &
Redundancy (correlation).

Challenges:

 Needa numerically Stable
eigendecomposition layer in deep
networks.

Our work:

e Use SVD in the forward pass.

* Use Power Iteration in the backward
pass (it has bounded gradients).

Backpropagation-Friendly Eigendecomposition

Wei Wang!, Zheng Dang?, Yinlin Hu!, Pascal Fua!, and Mathieu Salzmann'

ICVLab, EPFL, CH-1015 Lausanne, Switzerland {firstname. lastname}@epfl.ch
2Xi’an Jiaotong University, China {dangzheng713@stu.xjtu.edu.cn}

Abstract

Eigendecomposition (ED) is widely used in deep networks. However, the backprop-
agation of its results tends to be numerically unstable, whether using ED directly
or approximating it with the Power Iteration method, particularly when dealing
with large matrices. While this can be mitigated by partitioning the data in small
and arbitrary groups, doing so has no theoretical basis and makes its impossible to
exploit the power of ED to the full.

In this paper, we introduce a numerically stable and differentiable approach to
leveraging eigenvectors in deep networks. It can handle large matrices without
requiring to split them. We demonstrate the better robustness of our approach over
standard ED and PI for ZCA whitening, an alternative to batch normalization, and
for PCA denoising, which we introduce as a new normalization strategy for deep
networks, aiming to further denoise the network’s features.

Partially Done!

Can not compute full rank eigenvectors.
Forward pass is slow for large matrices whose dim>=128.



Ongoing Work 2

* Virtual Keyboard Typing.

letter “J” letter “L”

RGB Depth RGB Depth
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