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Abstract

Accurate visual localization is a key technology for au-

tonomous navigation. 3D structure-based methods employ

3D models of the scene to estimate the full 6DOF pose of

a camera very accurately. However, constructing (and ex-

tending) large-scale 3D models is still a significant chal-

lenge. In contrast, 2D image retrieval-based methods only

require a database of geo-tagged images, which is trivial

to construct and to maintain. They are often considered in-

accurate since they only approximate the positions of the

cameras. Yet, the exact camera pose can theoretically be

recovered when enough relevant database images are re-

trieved. In this paper, we demonstrate experimentally that

large-scale 3D models are not strictly necessary for accu-

rate visual localization. We create reference poses for a

large and challenging urban dataset. Using these poses,

we show that combining image-based methods with local

reconstructions results in a pose accuracy similar to the

state-of-the-art structure-based methods. Our results sug-

gest that we might want to reconsider the current approach

for accurate large-scale localization.

1. Introduction

Determining the location from which a photo was taken

is a key challenge in the navigation of autonomous vehi-

cles such as self-driving cars and drones [28], robotics [30],

mobile Augmented Reality [31, 32], and Structure-from-

Motion (SfM) [2, 14, 42, 43]. In addition, solving the vi-

sual localization problem enables a system to determine the

content of a photo. This can be used to develop interesting

new applications, e.g., virtual tourism [46] and automatic

annotation of photos [16, 52].

Currently, approaches that tackle the visual localization

problem are divided into two categories (c.f . Fig. 1 and

Tab. 1). Visual place recognition approaches [6, 12, 17, 37,
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Figure 1. The state-of-the-art for large-scale visual localization.

2D image-based methods (bottom) use image retrieval and return

the pose of the most relevant database image. 3D structure-based

methods (top) use 2D-3D matches against a 3D model for camera

pose estimation. Both approaches have been developed largely

independently of each other and never compared properly before.

48, 49] cast the localization problem as an image retrieval,

i.e., instance-level recognition, task and represent a scene as

a database of geo-tagged images. Given a query photo, they

employ 2D image-based localization methods that operate

purely on an image level to determine a set of database im-

ages similar to the query. The geo-tag of the most relevant

retrieved photo then often serves as an approximation to the

position from which the query was taken. Image-based lo-

calization methods [13, 19, 26, 36, 38, 57] cast the localiza-

tion problem as a camera resectioning task. They represent

scenes via 3D models, with image descriptors attached to

the 3D points, which are obtained from SfM or by attach-

ing local features/patches to 3D point clouds [7, 44]. 3D

structure-based localization algorithms then use these de-

scriptors to establish a set of 2D-3D matches. In turn, these

matches are used to recover the full 6DOF camera pose, i.e.,

position and orientation, of the query image [18, 25].

A common perception is that 2D image-based ap-

proaches can be a part of 3D structure-based methods to

determine which parts of a scene might be visible in the

query [9, 19, 36, 40]. Purely 2D-based techniques are con-

sidered unsuited for accurate visual localization due to only

approximating the true camera position of the query. Con-

sequently, 2D- and 3D-based localization methods are only

compared in terms of place recognition performance [36,
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2D image-based localization 3D structure-based localization

Scene representation Database of geo-tagged images 3D points with associated image descriptors

Approach Image retrieval Descriptor matching followed by pose estimation

Output Set of database images related to query, 6DOF camera pose of the query image

coarse position estimate (position and orientation)

Advantage Easy to maintain / update database Directly provides pose estimates

Disadvantage Requires extra post-processing to obtain 6DOF poses Needs to construct a consistent 3D model

Table 1. System-level summary of visual localization approaches.

37, 57]. However, this ignores the fact that a more accu-

rate position, together with the camera orientation, can be

computed if two or more related database images can be re-

trieved [55,58]. This naturally leads to the question whether

2D image-based localization approaches can achieve the

same pose accuracy as structure-based methods. This is a

compelling question due to the way both types of methods

represent scenes: especially for large-scale scenes, building

and maintaining the 3D models required by structure-based

techniques is a non-trivial task. At the same time, image-

based techniques just require a database of geo-tagged im-

ages, which is easy to generate and to maintain.

Contributions. In this paper, we want to answer whether

large-scale 3D models are actually necessary for accurate

visual localization or whether sufficiently precise pose es-

timates can already be obtained from a database of geo-

tagged images. Our work makes the following contri-

butions: i) We generate reference camera pose annota-

tions for the query images of the San Francisco Landmarks

dataset [12], resulting in the first city-scale dataset with such

information. We make our reference poses together with all

data and evaluation scripts required to reproduce our results

or use our dataset for further research publicly available1.

ii) We use this new dataset for the first comparison of 2D-

and 3D-based localization approaches regarding their pose

accuracy. To this end, we combine 2D image-based meth-

ods with a SfM-based post-processing step for pose estima-

tion. Our results clearly show that 2D image-based meth-

ods can achieve a similar or even better positional accuracy

than structure-based methods. As such, our paper refutes

the notation that purely image-based approaches are inaccu-

rate. iii) We demonstrate that the previously used strategy of

evaluating localization methods via a landmark recognition

task is unsuitable for predicting pose accuracy. Also, we

show that pose precision results obtained on smaller land-

mark datasets do not translate to large-scale localization.

Thus, our new benchmark closes a crucial gap in the litera-

ture and will help to drive research on accurate and scalable

visual localization.

2. Related work

Image-based approaches model localization as an image re-

trieval problem. They employ standard retrieval techniques

1 http://www.ok.sc.e.titech.ac.jp/˜torii/

project/vlocalization/

such as Bag-of-Words (BoW) representations with inverted

files [45], fast spatial verification [34], or more compact rep-

resentations such as VLAD or Fischer Vectors [5, 21].

A more discriminative BoW representation can be

constructed by only using informative features for each

place [41]. Similarly, detecting and removing confusing

features [24], e.g., structures appearing in multiple places,

or down-weighting their influence [49] improves perfor-

mance as well. Arandjelović & Zisserman consider the de-

scriptor space density to automatically weight the influence

of image features [6]. Thus, features on repetitive structures

have a smaller impact on the similarity score between im-

ages than features with unique local appearance.

One major challenge in visual localization is to handle

large changes in illumination, e.g., between day and night.

To this end, Torii et al. create synthetic views from novel

viewpoints by using the depth maps associated with street-

view images to warp the original images [48]. Adding these

images to the database lessens the burden on the feature de-

tector to handle both viewpoint and illumination changes,

resulting in a higher localization performance. Very re-

cently, convolutional neural networks (CNNs) have been

used to directly learn compact image descriptor suitable for

place recognition [3, 35].

Another approach is to model visual localization as a

classification task [10, 17, 51]. Such methods subdivide a

scene into individual places and then learn classifiers, e.g.,

based on a BoW representation [10,17] or using CNNs [51],

to distinguish between images belonging to different places.

3D structure-based localization. Structure-based local-

ization methods assume that a scene is represented by a

3D model. Each 3D point is associated with one or more

local descriptors. Thus, structure-based methods establish

2D-3D matches between features in a query image and

the 3D points via descriptor matching. In a second stage,

the camera pose can be estimated by employing a PnP

solver [8, 18, 25] inside a RANSAC [15, 39] loop.

Descriptor matching quickly becomes a bottleneck in

a localization pipeline and three (partially orthogonal) ap-

proaches exist to accelerate this stage: i) Prioritized search

strategies [13,27,38] terminate correspondence search early

on, ii) model compression schemes use only a subset of all

3D points [11, 27], iii) retrieval-based approaches restrict

matching to the 3D points visible in the top-ranked database

images only [11, 19, 36, 40].

Lowe’s ratio test [29], which measures the local density
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of the descriptor space, is commonly used to reject ambigu-

ous matches. Larger 3D models induce a denser descriptor

space, forcing the ratio test to reject more correct matches as

ambiguous [26]. In order to handle the higher outlier ratios

resulting from a relaxed test, large-scale, structure-based lo-

calization methods use co-visibility information [36, 38] or

advanced pose estimation approaches [26, 47, 57].

Rather than explicitly estimating a camera pose from 2D-

3D matches, recently proposed CNN-based approaches di-

rectly learn to regress a 6DOF pose from images [22,23,50].

However, as shown in [50] and our own experiment results,

such methods do (not yet) achieve the same localization ac-

curacy as 3D structure-based algorithms.

3. San Francisco Revisited

In this section, we first motivate our new pose dataset by

reviewing the currently used evaluation protocols. Next, we

review the San Francisco dataset before detailing how we

generate reference poses for some of its query images.

Current evaluation protocols & their shortcomings. 3D

structure-based localization approaches are typically evalu-

ated by counting how many query images have an estimated

pose with at least X inliers, where X is some threshold.

This is based on the observation, made on smaller datasets,

that wrong pose estimates are rarely supported by many in-

liers. However, this observation does not transfer to large-

scale datasets [36, 37]. Repetitive structures and sheer size

increase the chance of finding more wrong matches that

are geometrically consistent [36, 57]. Simply counting the

query images with at least X inliers thus overestimates the

performance of structure-based methods. As such, it is nec-

essary to also consider pose accuracy.

The datasets commonly used to evaluate the localization

accuracy of structure-based approaches, Dubrovnik [27]

and Arts Quad [14], both mostly depict scenes with signifi-

cant texture. Consequently, it is often possible to find many

matches, which aids pose accuracy. Such scenes become

less frequent in urban environments due to the prevalence

of reflecting or texture-less surfaces. This creates a need to

also evaluate pose accuracy for more complex datasets.

2D image-based localization are mostly evaluated in the

context of landmark or place recognition [3,6,12,37,49,49,

55, 56]. For landmark recognition, the goal is to retrieve at

least one database image that depicts the same landmark or

scene element as the query photo [12]. Vision is a long-

range sensor and as such, a relevant database image might

depict the same landmark while being taken tens or hun-

dreds of meters away from the position of the query image.

Thus, the geo-tag of such an image is not necessary a good

approximation to the position of the query. Still, it might be

possible to accurately determine this position through cam-

era pose estimation (c.f . Sec. 4). One of the contributions

of this paper is to evaluate to what extend landmark recog-

nition performance translates to accurate localization.

In terms of place recognition, image-based localization

methods are tasked to find a database image whose geo-

tag is within a certain radius of the query’s GPS posi-

tion [49, 55]. The fact that vision is a long-range sensor

again causes problems in this setting as it is can be hard

to distinguish between database images depicting the same

part of the scene taken close to or far away from the query

position [37]. In addition, the GPS positions associated with

the query images can be rather inaccurate, especially in ur-

ban environments [12], requiring the use of a high threshold

of tens or even hundreds of meters.

The San Francisco dataset. The publicly available San

Francisco (SF) dataset, originally presented in [12], con-

sists of 1, 062, 468 street view images taken from the top

of a car and 803 query images taken with cell phones. All

photos depict downtown San Francisco (see the gray points

in Fig. 2 for the distribution of the database images). Each

database image is associated with an accurate GPS position

and a building ID, generated by back-projecting a 3D model

of the city into the image [12]. Similarly, most query im-

ages have a GPS position and a list of IDs of the buildings

visible in them. Unfortunately, the GPS coordinates of the

query photos are not very precise and thus cannot be used

as ground truth to measure localization accuracy.

There exist two SfM reconstructions of the San Fran-

cisco models [26]. The SF-0 version of the dataset con-

tains around 30M 3D points, associated with SIFT descrip-

tors [29], reconstructed from 610, 773 images. To create the

SF-1 variant, the database images were histogram-equalized

before extracting upright SIFT features, resulting in a model

containing roughly 75M points reconstructed from 790, 409
images. For both 3D models, each 3D point can be associ-

ated with the building IDs from the database photos it was

reconstructed from. Thus, the SF dataset is commonly used

to evaluate and compare structure- and image-based local-

ization methods in the context of landmark recognition.

3.1. Generating Reference Poses

Without any precise geo-tags, which are hard to obtain in

downtown areas due to multi-path effects, the easiest way

to obtain ground truth poses at scale is to use SfM algo-

rithms. We follow this approach. Yet, instead of adding the

query images to an existing model, which would require us

to solve the vision-based localization problem, we generate

local reconstructions around the queries which we subse-

quently geo-register. While we took great care to ensure

the accuracy of our poses estimates, there is still a certain

(hard-to-quantify) error in them. We thus use the term ”ref-

erence poses” rather than ”ground truth poses” to indicate

that our poses should be considered as a rather precise ref-

erence rather than a centimeter accurate ground truth.

1639



In the following, we detail the steps of our process.

Generating local reconstructions. The first step is to gen-

erate SfM reconstructions from the database images around

the query images. Unfortunately, the GPS coordinates for

the query images provided by the SF dataset are inaccurate

with errors up to hundreds of meters. Thus, we determine

relevant database images by exploiting the readily available

building IDs. For each query, we perform feature match-

ing against all database photos with a relevant building ID,

followed by approximate geometric verification [34]. We

visually inspect the 20 images with the largest number of in-

liers, as long as they have at at least 5 inliers, and select the

photo that is visually most similar to the query image. Us-

ing the accurate geo-tag of this database photo, we run SfM

on the query image and database photos within 50m of the

selected one. For redundancy, we use both COLMAP [42]

and VisualSFM [53, 54] to obtain two SfM reconstructions.

Geo-registration. In order to obtain the global positions

and orientations of the cameras in each local reconstruction,

we transformed the local model coordinate system to UTM

coordinates. We first convert the GPS tags of the database

images to UTM, where the height of each camera is set to

zero. We then estimate the similarity transform between the

camera positions in the model and their UTM coordinates.

Verification. Besides not being able to register the query

image in the model, there are multiple ways a SfM recon-

struction might provide an inaccurate estimate for a query’s

camera pose. For example, only few matches might be

found or the correspondences might be in an unstable con-

figuration, e.g., all matches are situated in a small region of

the query image. Consequently, we verify the poses after

the registration process through a set of consistency checks.

Given the database image D selected above and the SF-0

model, also registered to UTM coordinates, we generate a

set of 2D-3D matches for the query image Q. From the

SF-0 model, we obtain a list of 3D points visible in D. We

project these 3D points into D to obtain 2D pixel positions,

which we use to manually annotate the corresponding im-

age positions in the query image. This results in a set of

2D-3D matches and, as a side product, also produces a set

of 2D-2D correspondences between Q and D. To obtain

additional correspondences, we manually annotate 20 to 50

2D-2D matches between D and Q. We use all these 2D-

2D matches to compute the relative pose between the two

images and use the 2D-3D matches to determine the scale

of the translation. The resulting pose in UTM coordinates

is then refined using bundle adjustment [1]. Ideally, this

procedure should result in a precise estimate of Q’s camera

pose. However, it is hard to obtain accurate manually an-

notated pixel matches, resulting in some inaccuracy on the

pose. We thus use it for a consistency check on the absolute

camera pose. The check accepts a SfM pose if it is inside 10

Method \Consistency Test Absolute Relative Both

COLMAP 195 258 125

VisualSFM 139 263 134

COLMAP & VisualSFM 76 110 45

Table 2. Statistics on the consistency of the reconstructed SfM

poses with our manual annotations.
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Figure 2. The San Francisco dataset with the reference poses

of query images. We provide the reference poses of query im-

ages (blue) which can be used as the ground truth for large-scale

localization benchmarks on the SanFrancisco dataset.

meters of the position and within 15 degrees of view angle

of the pose obtained from the manual matches.

A second consistency check employs the manually an-

notated 2D-2D matches between D and Q. From each of

the two SfM models, we extract the essential matrix E de-

scribing the relative pose between the two images. For a

given 2D-2D match (xQ,xD), we measure the pixel dis-

tances from the epipolar lines defined by E and E
−1. E is

considered to be consistent with the match if both errors are

less than 3 pixels each. We consider a pose obtained by SfM

to be consistent with this relative check if E is consistent

with at least 10 of the manually annotated correspondences.

For each query image, a pose obtained by COLMAP or

VisualSFM is accepted as a reference pose if it passes one of

the two consistency checks. If poses from both COLMAP

and VisualSFM pass this test, we select the one estimated

by COLMAP.

Statistics. We created manual annotations for 684 out of

the 803 query images from the SF dataset. Tab. 2 shows

statistics on how many SfM poses, obtained with either

COLMAP or VisualSFM, pass the two consistency checks.

Based on the results, we obtain 442 reference poses that are

consistent with our manual annotations.

4. 2D Image-based Localization

The introduction posed the question whether 2D image-

based localization approaches can achieve the same pose

accuracy as structure-based methods. In other words, we

1640



are interested in determining whether an underlying 3D rep-

resentation is necessary for high localization precision or

whether a database of geo-tagged images can be sufficient.

In the following, we first review the 2D image-based

methods that we chose for evaluation and then explain how

the different strategies we used to obtain their camera poses.

We evaluate the performance of three 2D image-based

approaches that differ in the way they solve the image re-

trieval problem inherent to 2D-based methods.

Disloc [6, 37]. Disloc is a state-of-the-art method based

on the BoW paradigm and Hamming embedding [20]. Dur-

ing the voting stage of the retrieval pipeline, Disloc takes

the density of the Hamming space into account to give less

weight to features found on repeating structures while em-

phasizing the impact of unique features.

We use the combination of Disloc with the geomet-

ric burstiness weighting scheme recently proposed in [37].

Given a list of spatially verified database images found by

Disloc, the weighting strategy clusters these photos into

places based on their geo-tags. It identifies features in

the query image that are inliers to database photos coming

from different places, i.e., features found on repeating struc-

tures. Finally, the strategy performs a second re-ranking

step where such features have less influence, which has been

shown to improve the overall performance.

DenseVLAD [48]. Disloc is based on the BoW paradigm

and thus needs to store an entry for each image feature in an

inverted file. This quickly leads to large memory require-

ments for large-scale scenes such as San Francisco. The

DenseVLAD descriptor [48] is an example for a state-of-

the-art localization algorithm based on compact image rep-

resentations. Each image is represented by a single VLAD

vector [5, 21], resulting in a more compact database rep-

resentation. The DenseVLAD descriptor is constructed by

aggregating RootSIFT [4] descriptors densely sampled on a

regular grid in each image. As such, the method foregoes

the feature detection stage, which has been shown to lead to

more robust retrieval results, especially in the presence of

strong illumination changes [48].

NetVLAD [3]. The DenseVLAD descriptor is based

on hand-crafted RootSIFT descriptors. In contrast, the

NetVLAD representations uses a convolutional neural net-

work to learn the descriptors that are aggregated into a

VLAD descriptor. Training this representation in an end-

to-end manner using a weakly supervised triplet loss has

been shown to improve place recognition performance over

DenseVLAD and other compact image descriptors.

4.1. Pose Estimation for 2D-based Approaches

Nearest neighbor (NN). Traditionally, most 2D image-

based localization methods approximate the pose of the

query image by the pose of the most relevant database im-

age, i.e., the database photo with the most similar BoW or

VLAD descriptor. We use this strategy as a baseline and

refer to it as Nearest Neighbor pose (NN).

Spatial re-ranking (SR). Re-ranking the retrieved

database images after spatial verification is known to im-

prove image retrieval performance. As a second baseline,

we use the pose of the best-matching database image after

verification and refer to this strategy as Spatial Re-ranking

pose (SR). We perform spatial verification [34] for the top-

200 retrieved images. For Disloc, we exploit the matches

computed during the retrieval process while we extract and

match RootSIFT features for both VLAD-based methods.

For Disloc, we re-rank based on the geometric burstiness

score while re-ranking based on the number of inliers for

DenseVLAD and NetVLAD.

SfM on the fly (SfM). The previous two pose estima-

tion strategies only consider the top-ranked database image.

They ignore that each 2D-based approach typically retrieves

multiple database images depicting the same place. In addi-

tion, the geo-tags of the database photos can also be used to

identify a larger set of potentially relevant images. Inspired

by [43], who generate a SfM model from a single phot by

repeatedly querying an image database, we use small-scale

SfM to obtain a local 3D model around the query image.

Poses in the local model can then be converted into global

poses by registering the SfM reconstruction into UTM co-

ordinates based on the geo-tags of the database images.

For DenseVLAD and NetVLAD, we generate a small

subset from the top-200 retrieved images which are located

within 25 meters from the pose obtained via the NN or SR

strategy. For Disloc with geometric burstiness, we exploit

the place clusters it computes [37]. We use those among the

top-200 retrieved images that come from the same place as

the top-retrieved photo. We use VisualSFM on the selected

photos to obtain the 3D reconstruction. If VisualSFM fails

to recover the pose of a query camera, e.g., when the recon-

struction fails, we resort to the NN or SR pose.

5. 3D Structure-based Localization

This section reviews the two 3D structure-based localization

methods used in this paper and justifies their selection.

Camera Pose Voting (CPV) [57]. Following [47], CPV

assumes that the gravity direction, both in the local coordi-

nate system of the camera and the global coordinate frame

of the 3D model, is known together with a rough prior on

the camera’s height above the ground and its intrinsic cal-

ibration. In this setting, knowing the height of the cam-

era directly defines the distance dist(p) of the camera to a

matching 3D point p up to ±ε, where ε is a small distance

modeling the fact that the point might not re-project per-

fectly into the image. Thus, the camera’s center falls into a

circular band with minimum radius dist(p) − ε and maxi-
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mum radius dist(p) + ε around p. As shown in [57], fixing

the final2 orientation angle of the camera also fixes the po-

sition of the camera inside the circular band.

The last observation directly leads to the camera pose

voting scheme from [57]: Iterating over a set of discrete

camera heights (defined by the coarse height prior) and a

set of discrete camera orientations, each 2D-3D match votes

for a 2D region3 in which the camera needs to be contained.

The matches voting for the cell receiving the most votes

define a set of putative inliers and the position of the cell,

together with the corresponding height and orientation, pro-

vides an approximation to the camera pose. This approxi-

mation is then refined by applying RANSAC with a 3-point-

pose (P3P) solver on these matches. If available, a GPS

prior can be used to further restrict the set of plausible cells

and thus possible camera positions.

CPV was selected for our evaluation as [57] report state-

of-the-art pose accuracy on the Dubrovnik dataset [27]

and the state-of-the-art recognition performance on the San

Francisco among structure-based localization methods.

Hyperpoints (HP) [36]. Rather than using Lowe’s ratio

test, which enforces global uniqueness of a match in terms

of descriptor similarity, the HP method searches for locally

unique matches [36]. It uses a fine visual vocabulary with

16M words [33] to define the similarity between the de-

scriptor d(f) of a query image feature f and the descriptor

d(p) of a 3D point p based on a ranking function: p has rank

r(p, f) = i if d(p) falls into the i-th nearest visual word of

d(f). The point’s rank is r(p, f) = ∞ if d(p) does not

fall into any of the k = 7 nearest words of d(f). A 2D-

3D match (f, p) is locally unique if there exists no other 3D

point p0 that is co-visible with p and has r(p0, f) ≤ r(p, f).
Two points are co-visible if they are observed together in

one of the database images used to reconstruct the model.

Each locally unique 2D-3D match (f, p) votes for all

database images observing p and the top-N images with

the most votes are considered for pose estimation. Let D

be one of these database images. All matches whose 3D

point is visible in D as well as all matching points visible

in one nearby image are used for RANSAC-based pose es-

timation. Two images are considered nearby if they share at

least one jointly observed 3D point in the SfM model. Con-

sidering points outside D increases the chance of obtaining

more correct matches. Restricting the additional matches to

nearby cameras avoids considering unrelated matches, thus

avoiding high outlier ratios in RANSAC.

After computing a camera pose for each retrieved

database image, the pose with the highest effective inlier

count is selected. Unlike the number of inliers of a pose,

the effective inlier count takes both the number of inliers

and their spatial distribution into account [19].

2The other angles are already fixed by knowing the gravity direction.
3Regions account for the discretization of the pose parameters.

HP was selected as it represents a hybrid between 2D

image-based and 3D structure-based localization methods.

In addition, HP also outperforms other structure-based ap-

proaches employing retrieval techniques [11, 19, 40].

6. Experiments

This section uses our new reference poses to compare the

localization accuracy of 2D image- and 3D structure-based

methods. After describing the experimental setup and the

evaluation protocol, we quantitatively evaluate the different

approaches. We then discuss the results and their relevance.

Experimental setup. For Disloc [6,37], DenseVLAD [48],

and NetVLAD [3], we use source code provided by the au-

thors for our evaluation. Disloc uses a visual vocabulary

of 200k words trained on a subset of all database images.

DenseVLAD uses a dictionary with 128 words also trained

on the SF dataset, while NetVLAD uses 64 words. Unfor-

tunately NetVLAD does not provide a version fine-tuned

on San Francisco. Instead, we use the variant trained on

the Pitts30k dataset [3]. Both DenseVLAD and NetVLAD

generate 4,096 dimensional descriptors. For Hyperpoints

(HP) [36] and Camera Pose Voting (CPV) [57], we use

poses estimated on the SF-0 dataset [26].

Evaluation metric. We are mostly concerned with the

pose accuracy achieved by the different methods. We mea-

sure the positional error in UTM coordinates since the lo-

cal models used to construct the reference poses and the

SF-0 reconstruction are registered to this coordinate system.

However, the SF dataset only provides GPS coordinates and

not the heights of the cameras. Thus, there is one degree

of freedom in these registrations, namely the height above

the plane defined by the GPS coordinates. Accordingly, we

measure the position error in 2D coordinates and evaluate

how many images can be correctly localized by the differ-

ent methods within a certain distance threshold.

Our reference poses provide both a position and an ori-

entation estimate for the query images. However, we follow

the common protocol in image-based localization and only

evaluate the positional accuracy [13, 26, 27, 38, 57].

Quantitative evaluation. We first evaluate the positional

accuracy achieved by the different 2D image-based meth-

ods. We compare the accuracy obtained when using the

pose of the best-matching database image after retrieval

(NN), the pose of the best-matching image after spatial veri-

fication (SR), and after local SfM reconstruction (SfM). The

latter resorts to the NN (NN-SfM) and SR (SR-SfM) strate-

gies if a pose cannot be estimated from the local model.

Fig. 3 shows results for BoW-based methods (a) and

VLAD-based methods (b). Spatial re-ranking (SR) in-

creases the chance that the top-ranked database image is

related to the query, i.e., that the position of the retrieved

database photo is close to the reference pose of the query.
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Figure 3. Evaluation of the positional localization accuracy for BoW-based methods (a), VLAD-based approaches (b), and when com-

paring 2D- and 3D-based methods (c). Each plot shows the fraction of correctly localized queries (y-axis) within a certain distance (x-axis).

As can be seen, using local SfM reconstructions (SFM) to estimate the camera poses allows 2D-based methods (Disloc, DenseVLAD) to

achieve a positional accuracy similar or superior to 3D-based methods (Hyperpoints, Camera Pose Voting).

As a result, more query images can be correctly localized

for larger distance thresholds. However, SR does not im-

prove performance for thresholds of 5m or less. The reason

is that the database images of the SF dataset were captured

from a car driving on the road while the query photos were

taken by pedestrians on the sidewalks. Thus, there is a cer-

tain minimal distance between their respective locations. A

much better position estimate can be obtained when using

local SfM reconstructions (SfM), boosting the percentage

of queries localized correctly within 5m from below 20%

to over 40%. We observe that Disloc with inter-place geo-

metric burstiness re-ranking performs better than without,

which is to be expected as it was shown to be superior

to re-ranking based on the number of inliers in [37]. For

the VLAD-based representations, we notice that NetVLAD

with the NN strategy performs worse than DenseVLAD

(NN). DenseVLAD has the advantage that its vocabulary

was trained on SF, while NetVLAD was trained on another

dataset. However, their performance is virtually the same in

combination with spatial re-ranking and local SfM.

Fig. 3(c) compares the positional accuracy of the best-

performing 2D-based approaches with the two structure-

based methods, Hyperpoints (HP) and Camera Pose Voting

(CPV). As can be seen, both Disloc and DenseVLAD per-

form as good as HP for queries with an error of 2m or less.

While HP outperforms all other methods for the error range

2m to 10m, 2D-based approaches are able to localize more

images overall. If a pose cannot be estimated via local SfM,

the 2D-based methods resort to reporting the position of the

highest-ranking database image. The overall lower percent-

age of localized images observed for HP and CPV comes

from such cases. For these images, their 2D-3D matching

stage fails to produce enough matches for pose estimation.

The interesting implication is that it is still possible to find

relevant database images even when pose estimation fails.
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Figure 4. Localization accuracy for subsets of the reference

poses, selected to include more accurate camera poses: (left) refer-

ence poses from either COLMAP or VisualSFM passing both con-

sistency checks (214 reference poses) and (right) reference poses

where both reconstructions pass both checks (45 poses).

Many interesting applications, e.g., self-driving cars, re-

quire highly accurate poses. In order to better understand

the behavior of 2D-based and 3D-based methods in the

high-precision regime, we compare their performance on

two subsets of our reference poses. The first subset, con-

taining 214 poses, is constructed from all reference poses

for which either COLMAP or VisualSFM provides a pose

that passes both consistency checks explained in Sec. 3.1.

This subset represents the more accurate among all of our

reference poses. The second subset contains all 45 poses

where both reconstructed poses pass both tests, thus con-

taining the reference poses most likely to be highly accu-

rate. Fig. 4 depicts the performance of the different methods

on both subsets. On the first subset (Fig. 4, left), we again

observe that HP performs better in the error range 2m to

12m, while both DenseVLAD and Disloc localize more im-

ages overall. An interesting observation can be made on the

second subset containing the 45 reference poses passing the

strictest consistency checks. DenseVLAD, Disloc, and HP

performed equally well for small distance thresholds (<2m)
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in the previous experiments. Yet, Fig. 4(right) shows a clear

and substantial improvement from 20% (HP) to 50% (Den-

seVLAD, Disloc) localized images within 1m. Based on the

results, we conclude that large-scale 3D models are not re-

ally necessary for highly accurate visual localization. How-

ever, pre-built 3D models can help to improve the accuracy

for some images that are not accurately localized otherwise.

Relevance of the results. To put the results obtained with

our references poses into context, we provide results on the

Dubrovnik dataset [27]. The 3D model consists of 1.9M 3D

points reconstructed from 6k database images.

Tab. 3 compares the DenseVLAD variants with CPV. In

addition, we also provide results for Active Search [38],

an efficient structure-based method using prioritization, and

PoseNet [22, 23], a learning-based approach. HP is not ap-

plicable for this dataset as it was designed for larger-scale

scenes where memory consumption and matching quality

are issues. Interestingly, just performing retrieval without

any pose estimation (DenseVLAD (NN)) yields more accu-

rate poses than learning to regress poses via PoseNet.

As can be seen from Tab. 3, combining DenseVLAD

with local SfM results in a localization accuracy compa-

rable to Active Search but worse than CPV. The opposite

is the case for the larger SF-0 model, where DenseVLAD

(SR-SfM) is clearly more precise. The reason is that find-

ing good matches is easy on the Dubrovnik dataset while

it is extremely challenging for the significantly larger SF-0

model. This is evident when comparing CPV’s median po-

sitional accuracy on Dubrovnik (0.56m) and SF-0 (>2m).

The matching step of local SfM is able to recover matches

lost by CPV, enabling more accurate poses at large scale.

The pose accuracy of DenseVLAD (SR-SfM) strongly de-

pends on the quality of the local 3D models. Here, the SF-0

model is better suited due to the regular spatial distribu-

tion of its database images. In contrast, the spatial density

of Dubrovnik’s database photos varies strongly, making it

harder to obtain good local models for some query images.

Another interesting observation can be made from the

relative performance between HP and CPV on SF-0. Pre-

viously, the SF dataset was used to evaluate the perfor-

mance of structure-based localization methods in a land-

mark recognition scenario [26, 36, 57]. In this scenario, an

image was considered correctly localized if it observed the

correct building as specified by the building IDs provided

by the SF dataset. Methods are evaluated based on their

recall@95% precision, i.e., based on the percentage of cor-

rectly localized images if the algorithm is allowed to make

a mistake in 5% of all cases. In this scenario, CPV achieves

a recall of 67.5% and 74.2% without and with a GPS prior,

respectively. In contrast, HP only obtains a recall of 63.5%.

This shows that good performance on the landmark recogni-

tion task does not necessarily translate to pose accuracy. As

such, our new dataset closes a crucial gap in the literature

Time Quantile errors [m]

Method [sec] 25% 50% 75%

DenseVLAD [48] (NN) 1.42 1.4 3.9 11.2

DenseVLAD [48] (SR) 1.43 0.9 2.9 9.0

DenseVLAD [48] (SR-SfM) ∼200 0.3 1.0 5.1

Camera Pose Voting (CPV) [57] 3.78 0.19 0.56 2.09

Active Search [38] 0.16 0.5 1.3 5.0

PoseNet [22, 23] ∼0.005 - 7.9 -

Table 3. Additional comparison on the Dubrovnik dataset [27].

as it enables measuring pose accuracy at a large scale.

Timings. Tab. 3 shows timings for the online components

of the different algorithms. Computing the DenseVLAD

and NetVLAD descriptors for Dubrovnik’s database images

took 2.4h and 0.85h, respectively. While we use existing 3D

models for Dubrovnik and SF-0, we expect that reconstruct-

ing the datasets takes less than 1 day and about 1-2 weeks,

respectively. HP requires about 5s per image on SF-0.

7. Conclusion

In this paper, we have presented the first comparison of

2D image-based and 3D structure-based localization meth-

ods regarding their localization accuracy at a large scale. To

facilitate this comparison, we have created reference poses

for some query images from the San Francisco dataset [12].

Our results show that purely 2D-based methods achieve

the lowest localization accuracy. However, they offer the

advantage of efficient database construction and mainte-

nance and can localize images even if local feature match-

ing fails. In contrast, 3D-based methods offer more precise

pose estimates at the price of significantly more complex

model construction and maintenance. Feature matching be-

comes harder at large-scale and finding fewer matches re-

sults in a lower pose quality. Combining 2D-based methods

with local SfM reconstruction combines the advantages of

both worlds, simple database construction and high pose ac-

curacy, and results in state-of-the-art results for large-scale

localization. However, this comes at the price of signifi-

cantly longer run-times during the localization process.

To the best of our knowledge, ours is the first dataset that

can be used to measure the pose estimation accuracy on a

large, complex dataset. Our results show that our dataset

closes a crucial gap in the literature as this case is not cov-

ered by previous benchmarks and evaluation protocols. At

the same time, our results suggest that there is still room

for improvement in terms of pose precision. We make our

reference poses, as well as all data required for evaluation,

publicly available to facilitate further research on this topic.
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From Single Image Query to Detailed 3D Reconstruction. In

Proc. CVPR, 2015. 1, 5

[44] D. Sibbing, T. Sattler, B. Leibe, and L. Kobbelt. SIFT-

Realistic Rendering. In 3DV, 2013. 1

[45] J. Sivic and A. Zisserman. Video Google: A Text Retrieval

Approach to Object Matching in Videos. In Proc. ICCV,

2003. 2

[46] N. Snavely, S. Seitz, and R. Szeliski. Modeling the World

from Internet Photo Collections. IJCV, 80(2):189–210,

2008. 1
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