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Single-channel Speech Enhancement (SE)

* Assumptions
* Noisy speech = Speech + Noise
* Noise attributes change slower than speech

* Goals
* Suppress noise
* Retain speech
* Improve human or/and machine perception

* Our goal: enhancing speech quality for human listeners



Generic SE Pipelines

Classical

X(f)—»

STFT

Deep-learning-based

. Feature
.X(t )—> Extraction

Neural Network

Data

(Training

O(\(r).s(n);

Noise Gain
Estimator Estimator 6;({ )
= et
- »g)
I &.(1.f)
7 > ISTFT (—»3(7)
1X(z. 1)

) P
LG(t, )~ R—I5(t. )

—~_

Learning
Objective

(x(1), .S‘(I)‘i N

Q,f)l



Generic SE Pipelines

Classical

X(f)—»

STFT

Deep-learning-base

> Feature
A (t ) Extraction

1.

Neural Network

Data

(Training

O(\(r)..s(r));

Noise Gain
Estimator Estimator G(T )
= ] G.s
o
0.(t.1)
> ISTFT (—»3(7)
X (2, )l

) P
LG(t, )~ R—I5(t. )

—~_

Learning
Objective

(x(1), .S‘(I)'i N

a,f)l



Generic SE Pipelines

Classical

X(f)—»

STFT

Deep-learning-base

> Feature
A (t ) Extraction

1.

Noise Gain

Estimator Estimator _l G(T f)
"

0.(t.1)

> ISTFT (—»3(7)

X(z.f)

. I
Neural Network >G(f,f)—>®-—>|S(f,f)|

1 \ Learning

Data

Objective
(Training (-)(\(I)..\(l)).l lS(],f)l

(x(1), .S‘(I)'i N




Generic SE Pipelines

Classical

X(f)—»

STFT

Deep-learning-base

> Feature
A (t ) Extraction

1.

Noise Gain

Estimator Estimator _l G(T f)
"

0.(t.1)

> ISTFT (—»3(7)

X(z.f)

. I
Neural Network >G(f,f)—>®-—>|S(f,f)|

Learning
Objective !

(Training (-)(\(I)..\(l)).l lS( ,f)l
Data :
(x(1), s(D))w




Generic SE Pipelines

Classical

X(f)—»

STFT

Deep-learning-base

> Feature
A (t ) Extraction

1.

Noise Gain

Estimator Estimator _l G(T f)
"

0.(t.1)

> ISTFT (—»3(7)

X(z.f)

. I
Neural Network >G(f,f)—>®-—>|S(f,f)|

Learning
Objective !

(Training (-)(\(I)..\(l)).l lS( ,f)l
Data :
(x(1), s(D))w




SP vs. DL for Online Enhancement
m—m

Spectral subtraction Estimate noise magnitude spectra by a moving No
[Boll1979] average filter
Decision-directed Estimate SNRs by smoothing instantaneous No Yes
[Ephraim1984] measurements of SNRs
Deep clustering Cluster each time-frequency bin based on Yes No
[Hershey2016] feature embeddings generated from a 100-
frame spectrograms
Audio-visual speech 2-D convolution cross time and frequency of a Yes No
separation [Ephrat2018] spectrogram
RNNoise [Valin2018] Recurrent units output one frame from one Yes Yes
input frame
SEGAN [Pascual2017] Generate enhanced speech from a waveform Yes Maybe, if trained on a

segment single frame.
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function in [0, 1]

Technical details:

* 16 KHz sampling rate

* 32-ms analysis frame

* Hamming window

* 75% overlap between frames
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Learning Machines

* Recurrent neural network (RNN) the most
“natural” choice
* Ability to encode long-term temporal patterns
* Information exchange across frequencies

* Example: RNNoise [Valin2018]

* GRUs [Bahdanau2014] encode temporal
patterns

* Full-connected (dense) layers transform
composite features to a gain

Input features (42)
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Image credit: [Valin2018|



Recurrent Units with Residual Connections

e Residual connections facilitate
learning deep networks [He2016] .17 3

* Depth = sequence length in our
context

e Existing work using RNN + residuals

* Sequence classification [Wang2016]

 Automatic speech recognition N
[Kim2017] x[t]

* Feature compensation for ASR et
[Chen2017] https://en.wikipedia.org/wiki/Gated recurrent unitif/media/File:Gat

ed_Recurrent_Unit, base_type.svg. The original website is down.
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GRU + Residuals for Speech Enhancement

* Global view e Zoomed-in view

Input features (257)

GRU (257)
(last layer only) E®S{gle]ls
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Gain outputs (257)
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Learning Objectives

* Mean squared error (MSE) e

Luse(©;X,Y) = 7= 3 Y ||Xt; — G(Y2,1:0)Yi 4/
t=0 f=0

* Classical statistical methods based on minimum MSE [Ephraim1984]
* Assumes complex STFTs of speech/noise have Gaussian distribution
* Assumes complex STFTs of speech and noise are uncorrelated
* Solves for the optimal solution in MMSE sense




Learning Objectives

* Mean squared error (MSE) e

Luse(©;X,Y) = 7= 3 Y ||Xt; — G(Ys,1:0)Yi 4/
t=0 f=0

 Classical statistical methods based on minimum MSE [Ephraim1984]
e Assumes complex STFTs of speech/noise have Gaussian distribution
* Assumes complex STFTs of speech and noise are uncorrelated
* Solves for the optimal solution in MMSE sense

* Deep learning methods based on MSE
* No assumptions about distributions

* Solves for a “good” solution by stochastic gradient descent
* Good =small MSE for both seen and unseen examples

* Stable convergence (if able to learn at all)

SIS /I \
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SNR-weighted Objectives

* The weighting is static, but our goal varies across different scenarios
* We want little speech distortion when only speech is present (SNR =2 +0)
* We want aggressive suppression when only noise is present (SNR = 0)
e Existing work in classical SP approach [Low2011]
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* The weighting is static, but our goal varies across different scenarios
* We want little speech distortion when only speech is present (SNR =2 +0)
* We want aggressive suppression when only noise is present (SNR = 0)
e Existing work in classical SP approach [Low2011]

* Adapt the loss of each example pair {speech, noise} by the global
SNR:

LE\r(€; SO, ND) = ¢ b”IIS“) GSA |2 + (1 - a) “’||GN )||2

O-N() O N (i)




Training Consideration

* Classical decision-directed approach [Ephraim1984]:
* Transparent “hidden states” — a priori SNR, a posteriori SNR

* Hidden states from the previous estimates affect the current by recursive
smoothing

* “Short-term memory that decays exponentially” in DL lingo
* RNN-based learning approach:
e Black-box hidden states

* LSTM/GRU are capable of learning long temporal patterns [Gers1999]
e Patterns are learned through backpropagation through time [Werbos1990]



Training Consideration

* Backpropagation through time:

h+t)
XY —» L9 hO=¥0 Ly = PR E-D)

= f(x(t)+h(t-1))[F'(x(t-1)+h(t-2))h'(t-2)]

f y(t) = f(x(t)+h(t-1)) i = e
| = g(x(t), x(t-1), ..., x(0))

h(t-1) .
* We want to compare a small batch of long sequences to a large batch
of short sequences, given the same amount of information per batch.

JU1L
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Evaluation: Data

* 84 hours of training data
* Speech: Edinburgh 56 Speakers Corpus

* Noise: 14 noise types from DEMAND Database and Freesound

* Air Conditioner, airport announcements, af_pliances, car noise, copy machine, door shutting,
elating, multi-talker babble, neighbor speaking, squeaky chair, traffic, road, typing, vacuum
cleaner.

* 18 hours of test data in 5500 clips

* Speech: Graz University 20 Speakers Corpus

* Noise: 9 challenging classes from DEMAND and Freesound

* Air conditioner, airport announcements, babble, copy machine, munching, neighbor, shutting
door, typing, vacuum cleaner.

* All clips are unseen in training
* SNR: {40, 30, 20, 10, 0} dB
* All clips sampled at 16 kHz



Evaluation: Data & Data Augmentation

Same utterance from the same speaker

repeated 5 times
|

v D 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00

Mono, 16000Hz
32-bt fioat

AISabct

X /| Noise (dB) W
Mute Solo

- +

L+ 2
L R
o
Mono, 1600042
32-bit fioat
A! Select |

l

Same noise repeated 5 times with five

discrete SNRs (assuming point-wise addition)
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Baseline Systems

* Noisy
 \MSR’s statistical-based

* Proposed

. L(t))g spectra with global and FD online normalization; Twelve 5-second segments/batch; various
objectives

* RNN

« Same as proposed, except no residual connections; MSE loss

* RNNoise [Valin2018]

* Online enhancement of 22-dimensional energy envelope with 42-dimensional features
* No augmented data

* Simplified RNNoise
* Full-band (257) enhancement; same network architecture as RNNoise
* No VAD during training

* Oracle information + Wiener filter rule
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Evaluation Metrics

* Classical speech quality/intelligibility measures

e Scale-invariant signal-to-distortion ratio (SI-SDR) [LeRoux2019]
* Cepstral distance (CD) [Hu2008]

* Short-time objective intelligibility (STOI) [Taal2010]
* Perceptual evaluation of speech quality (PESQ) [Rix2001]

* DNN-based mean opinion score (MQOS) prediction
* AudioMOS

* Trained on MOS by real users
* 0.89 Pearson correlation coefficient on test data
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Results: “Best” from each Category

# Trainable | SI-SDR (dB) AudioMOS (MOS)
Parameters

Babble
@ 20dB

“ - Noisy 9.81 4.56 88.0 2.22 2.40
“ . Statistical-based 0 6.10 4.64 84.7 2.33 2.61
.~ RNNoise 61.2 K 10.4 4.24 84.3 2:33 273
<~ RNN 1.26 M 10.4 4.48 88.6 2.39 3.15
“ - Full-band RNNoise 2.64 M 13.0 3.88 89.3 2.56 2.95

Proposed 1.26 M 14.8 3.72 909 273 3.24

(SNR wt.; a = 0.35)
«.  Oracle Wiener Oracle 20.5 2:13" 198.1 3.82 3.75
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Results: Effect of Feature Normalization

PESQ Improvement of Proposed over Noisy STOIl Improvement of Proposed over Noisy
0'5 3.5
3
0.4
2.5
0.3 [ - 2
1.5
0.2 - ~
| : b
0.1 - : 0.5 f
i -
0 0
PESQ (MOS) STOI (%)
B STSA W STSA+G M STSA+FD W STSA+FI B STSA W STSA+G B STSA+FD W STSA+FI
M Logspec M Logspec+G M Logspec+FD M Logspec+Fl M Logspec B Logspec+G M Logspec+FD M Logspec+Fi

STSA — short-time spectral amplitude
Logspec — short-time log power spectra
G — global normalization

FD — Frequency-dependent online norm.

FI = Frequency-independent online norm.
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Results: Effect of Sequence Lengths
Duion e o P 5o e <o 510 s o Lo wos

13.8 3.81 90.6 2.61 2.82
5 12 14.1 3:67 910 2.64 2.88
15 4 14.1 3.74 90.7 2.64 2.96

r 30 2 13.8 3.79 903 2.60 2.91

Stopped early at 53/100 epochs.
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Results: Optimal Speech-Noise Weighting
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Results: Optimal SNR-weighted SN Weighting
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Outline

Introduction to Single-channel Speech Enhancement

* Classical signal processing vs. Deep learning
* Considerations for online processing
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* Results
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Major Findings

* Residual connections within recurrent cells really, really help

* GRUs are able to encode extremely long temporal patterns in high
dimensional space (probably with the aid of residual connections)
* 5-second waveform = 625 frames of 257-point spectra _,

e Trust the old faithful for stationary patterns? o
 The model learns to ALWAYS strongly suppress ~6 kHz =

d R
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* We proposed a DNN-based online speech enhancement system
* A compact recurrent network with residual connections

* Two novel learning objectives motivated by balancing speech distortion and
noise suppression

* The speech-noise weighting happens to coincide (apart from VAD) with a paper
published on arxiv a few days ago.
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Conclusions

* We proposed a DNN-based online speech enhancement system
* A compact recurrent network with residual connections

* Two novel learning objectives motivated by balancing speech distortion and
noise suppression

* The speech-noise weighting happens to coincide (apart from VAD) with a paper
published on arxiv a few days ago.

* We studied the impact of multiple factors associated with training a
RNN on speech quality

* Feature normalization, sequence length, objective weightings

* We compared multiple competitive SP or DL-based online systems in
terms of objective speech quality measures




Future Directions

* Study the speech quality improvement by SNR

* Investigate learning objectives to replace MSE
* MAE, log-domain and cepstral-domain objectives

* Feature dimensionality reduction
* Speech energy is sparse and noisy at very high frequencies



Thank you!

* Sebastian, Hannes, and all mentors from the Audio and Acoustics
Group

* Ross, Chandan, and Hari from Skype
* All interns from the Audio and Acoustics Group

* Stay in touch!
* School email: raymondxia@cmu.edu
* Personal email: raymondxia@pm.me




