Neural Feature Search: A Neural Architecture for
Automated Feature Engineering

Xiangning Chen! *, Qingwei Lin?*** Chuan Luo?*, Xudong Li®, Hongyu Zhang?,
Yong Xu?, Yingnong Dang5, Kaixin Sui2, Xu Zhang6, Bo QiaoQ,
Weiyi Zhang?, Wei Wu”, Murali Chintalapati® and Dongmei Zhang?
ITsinghua University, China
2Microsoft Research, China
3University of California, Los Angeles, United States
4The University of Newcastle, Australia
5Microsoft Azure, United States
6Nanjing University, China
"University of Technology Sydney, Australia
cxnl5@mails.tsinghua.edu.cn, {glin, chuan.luo, yox, yidang, kasui, boqiao, v-weiyzh, muralic, dongmeiz} @microsoft.com,
lixudong @ucla.edu, hongyu.zhang @newcastle.edu.au, zhangxu037 @smail.nju.edu.cn, william.third.wu@ gmail.com

Abstract—Feature engineering is a crucial step for developing
effective machine learning models. Traditionally, feature engi-
neering is performed manually, which requires much domain
knowledge and is time-consuming. In recent years, many auto-
mated feature engineering methods have been proposed. These
methods improve the accuracy of a machine learning model by
automatically transforming the original features into a set of
new features. However, existing methods either lack ability to
perform high-order transformations or suffer from the feature
space explosion problem. In this paper, we present Neural
Feature Search (NFS), a novel neural architecture for automated
feature engineering. We utilize a recurrent neural network
based controller to transform each raw feature through a series
of transformation functions. The controller is trained through
reinforcement learning to maximize the expected performance
of the machine learning algorithm. Extensive experiments on
public datasets illustrate that our neural architecture is effective
and outperforms the existing state-of-the-art automated feature
engineering methods. Our architecture can efficiently capture
potentially valuable high-order transformations and mitigate the
feature explosion problem.

Keywords-Feature Engineering, Automated Feature Engineer-
ing, Neural Architecture

I. INTRODUCTION

Feature Engineering is a crucial step for building an ef-
fective machine learning model. However, traditional feature
engineering is largely a manual process, which is time-
consuming and requires much domain knowledge. The tra-
ditional practice is also prone to bias and error as there is a
lack of standard procedures to perform feature engineering.

In recent years, many automated feature engineering meth-
ods have been proposed. These methods apply transformation
functions such as arithmetic operators to the raw features and
generate the new, engineered features. Generally, automated
feature engineering can be realized by expansion-reduction,

*Xiangning Chen, Qingwei Lin and Chuan Luo contributed equally to this
work and share the first authorship of this work.
**Qingwei Lin is the corresponding author of this work.

which first expands the feature set and then performs feature
selection. In the phase of expansion, all possible or ran-
domly sampled transformation functions are applied to raw
features [1]-[3]. In the phase of reduction, features are selected
based on the improvement in model performance. However,
the possible number of feature transformations is unbounded
since transformation functions can be composed and applied
recursively to features generated by previous transformation
functions. The space of constructed features could grow expo-
nentially (e.g., the possible number of features constructed by
division based on n features is O(n?). It will become O(n?)
by applying another transformation function on newly gener-
ated features). As a result, expansion-reduction suffers from
the feature explosion problem. Recently, the paper [4] builds
a transformation graph and employs Q-learning [5] to search
for feature transformations. The resulting machine learning
model built using the transformed features can achieve higher
performance. However, it also has an exponential number of
features in the bottom layer despite the introduction of the
feature selection operator. LFE [6] manages to eliminate the
problem by recommending a few promising transformation
functions. However, it has a performance bottleneck since they
do not consider a composition of transformations, i.e. high-
order transformations, which have been demonstrated valuable
by our experiments.

This paper presents Neural Feature Search (NFS), a neu-
ral architecture for automated feature engineering. In our
architecture, we address the feature explosion problem by
employing an effective searching algorithm to explore the
most promising transformation rule (a series of transformation
functions) for each raw feature. That is, we only perform
the most valuable transformation rather than expansion and
reduction. We support a number of transformation functions
such as logarithm, square root, and multiply. We also support
two special functions delete and terminate, which perform
feature selection and terminate the transformation process, re-

spectively. In this way, the process of finding optimal features
for the whole dataset can be divided into finding a series of
transformation functions for each raw feature. We design a
Recurrent Neural Network (RNN) based controller to generate
such a series. The controller is trained through reinforcement
learning to maximize the expected performance of the machine
learning algorithm.

As an example, consider the problem of predicting heart
disecase based on the features weight and height. Al-
though the raw features could be useful indicators for this
problem, a more effective feature is Body Mass Index
(BMTI) [7], which is defined as BMT i‘;el;g}f;tz Such
a new feature is actually a series of transformation func-
tions [square, reciprocal, Xxweight] based on the raw feature
height: reciprocal(square(height)) x weight. NFS is able
to generate this third-order new feature by composing the raw
features through multiple functions.

To evaluate the proposed approach, we have conducted
extensive experiments on 41 public datasets, which have
different numbers of features and instances and cover both
classification and regression problems. The results show that
NES is effective and outperforms the existing state-of-the-art
automated feature engineering methods. NFS has achieved the
best performance on 37 out of 41 datasets. The experimental
results also demonstrate that the performance of our approach
continues to increase when the order of transformations in-
creases.

Our main contributions can be summarized as follows:

o We propose a novel neural architecture for automated
feature engineering. To our best knowledge, it is the
first work that addresses the feature explosion problem
and supports high-order transformations through deep
learning.

« We have conducted extensive experiments on public
datasets. The experiments show that our approach signif-
icantly outperforms the existing state-of-the-art methods
for automated feature engineering.

The rest of this paper is organized as follows. In Section II,
we review the related work on automated feature engineering
and neural network controller. In Section III, we propose
NFS and use it to find the best feature transformations. In
Section IV, we perform extensive experiments to show the
effectiveness of NFS. Section V briefly introduces a success
story of our work, and Section VI concludes this paper.

II. RELATED WORK

In this section, we briefly review the related work on
automated feature engineering and neural network controller.

A. Automated Feature Engineering

Many automated feature engineering methods are based on
domain knowledge. For example, the work presented in [§]
automates feature engineering by constructing features from
semantic knowledge bases. Similarly, [9] utilizes the explicitly
captured relations and dependencies modeled in a knowledge
graph to perform feature selection and construction. The

knowledge-based methods imitate traditional manual feature
engineering and relies heavily on domain knowledge.

Recently, the general framework of expansion-reduction is
proposed for automated feature engineering. It first expands
the feature space and then performs feature selection to reduce
redundancy. FEADIS [1] randomly selects raw features and
mathematical functions to generate new features. The Data
Science Machine (DSM) [10] includes a Deep Feature Synthe-
sis component, which synthesizes new features by recursively
enumerating all possible combinations. DSM can generate a
large number of features per entity. To reduce the size of the
feature space, it performs feature selection via truncated SVD
transformation. [3] adopts a similar approach and develops
a system called One Button Machine for automating feature
engineering in relational databases. Instead of utilizing trans-
formation functions, AutoLearn [11] generates and selects new
features by applying regularized regression models to feature
pairs. Being data-driven, it requires no domain knowledge.
However, learning a regression model on every feature pair
is time-consuming. Also, as mentioned above, expansion-
reduction based approaches cannot handle the feature space
explosion problem.

Like the expansion-reduction approach, ExploreKit [2] per-
forms all transformation functions on the whole dataset. It then
chooses the most promising features by ranking the features
through supervised meta-learning. This method also suffers
from the feature space explosion problem and is limited by
the effectiveness of meta-learning, which demands massive
amount of training data. Due to the complex nature of this
method, it does not allow for functional compositions. Another
plausible work is Learning Feature Engineering (LFE) [6],
which recommends the most promising transformation func-
tion for features via offline meta-learning. This method is fast
in computation but is constrained to classification problems.
Most importantly, LFE does not take into account high-order
transformations and thus is not able to generate complex
features.

There are also search-based feature engineering methods.
For example, [12] employs genetic algorithm to determine
a proper single transformation function for a given dataset.
Cognito [13] introduces the notion of a tree-like exploration of
transform space, and presents some heuristic search strategies
such as depth-first traversal. [4] is a related work of Cognito,
which is based on performance driven exploration of a trans-
formation graph. It utilizes Q-learning to systematically and
compactly enumerates the space of given options. It is the
current state of the art and achieves better performance than
other related approaches. However, it still suffers from the
feature explosion problem since the number of features grows
exponentially in the hierarchically structured transformation
graph, especially at the bottom of the graph.

Deep Neural Network has the capability of performing com-
plex feature transformation as well. However, deep learning
methods require massive amount of training data and face
overfitting problem when it comes to real-world small and
unbalanced datasets. Most importantly, the learned implicit

feature transformations lack interpretability. In contrast, NFS
outputs human readable features as insights into the data via
explicit transformation functions.

Our approach explores the most promising transformation
rule for each raw feature, which is time-efficient and eliminates
feature space explosion problem. The discovered transforma-
tion rule can be very complex since new features can be
generated through a series of functional composition.

B. Neural Network Controller

NAS [14] proposes a general framework to search for the
architecture of a deep neural network, which employs a recur-
rent neural network controller to generate a string. Training
the network specified by the string will result in an accuracy
on a validation set. Using this accuracy as reward signal,
NAS utilizes policy gradient to update the controller. Apart
from searching for the neural network architectures, Searching
for Activation Functions [15] employs a similar controller to
search for activation function named Swish. A Hierarchical
Model for Device Placement [16] uses hierarchical controller
to search for optimal placement of computational graphs onto
hardware devices. In this paper, we apply a neural controller
to generate transformation rule (i.e. a series of transformation
functions) for each raw feature.

III. PROPOSED APPROACH

In this section, we propose and introduce Neural Feature
Search (NFS), a novel neural architecture for automated fea-
ture engineering.

A. Problem Formulation

Given a dataset D = (F,y) that consists of raw features
F = {f1, fa, .., fn} with a target vector y, we use VZ(F,y)
to denote the performance of a machine learning algorithm L
(e.g. Random Forest or Logistic Regression) constructed on
F' and measured by an evaluation metric E (e.g. Fl-score or
mean squared error).

In addition, we transform a raw feature set F' into F
through a set of transformation functions {A;, Ao, ..., A, }. As
described in [4], [6], there are two categories of mathematical
transformation functions: unary functions that are performed
on a single feature (e.g. logarithm and square) and binary
functions that are performed on a pair of features (e.g. plus
and minus). Note that transformations can be performed on
three or more features, since it is equivalent to applying binary
transformations recursively.

Generally, feature transformation should be able to perform
the following two activities: (1) generating new features via
transforming the raw features. Note that transformation func-
tions can be composed to form a higher-order transformation
(e.g. BMI = = i;%f;é, a third-order transformation, is formed
by transforming the feature height through a square function,
then a reciprocal function, and subsequently a multiply
function of feature weight). (2) deleting existing features
through feature selection.

Sample Transformation Rules
with action probabilities

}

Evaluate
The Controller Tranij;or:lnatlczl ;?ules
1,4z, .. Ay
{RNNy, RNN;, .. RN N} with Learning Algorithm L
and Metric E

t |

Compute gradient with action probabilities and
scale it by reward signal VE(F,y) — VE(F,y)
to update the controller

Fig. 1. An Overview of Neural Feature Search

Formally, the goal of automated feature engineering is
to search the optimal transformed feature set F* where
VE(F*,y) is maximized, F* = argmax VF(F,y).

F

B. An Overview of the Proposed Approach

In this paper, we propose Neural Feature Search (NFS),
a neural architecture for automated feature engineering.
We employ a Recurrent Neural Network (RNN) to gen-
erate a transformation rule A (i.e., a series of transfor-
mation functions with the maximum order of 7', such as
reciprocal (square(height)) x weight) for each raw feature
within 7" time steps. That is, rather than performing transfor-
mation on the whole dataset or on the sampled features, we
aim to find the most promising transformation rule for every
feature. One big advantage of our approach is that rather than
adopting a hierarchical structure which is likely to introduce
feature space explosion problem, our architecture performs
the most promising transformation for each feature in parallel
through an efficient search algorithm.

Figure 1 gives an overview of the NFS architecture. For
datasets with n raw features, we build n RNNs as our
controller to generate n transformation rules {41, A, ..., A, }
in parallel, where A; is related to raw feature f;. Guided
by the transformation rules, we transform the raw feature
set F into ' and compute its performance V7 (F,y) with
respect to a learning algorithm L and an evaluation metric F.
Next, we utilize policy gradient [17] to train our controller
via reward signal VZ(F,y) — VF(F,y), which represents
the performance improvement of those transformation rules.
Figure 2 illustrates how each RNN predicts a transformation
rule. A transformation function is predicted at each time step
and they together form a transformation rule. Every prediction
is carried out by a softmax classifier and then fed into the next
time step as input.

In the following subsection, we will first show how our
transformation rules transform raw features. We then describe
our RNN-based controller, which generates transformation
rules. Finally, we show how the proposed NFS architecture

[One Transformation Rule A;]

7 f i

[sample all [sample aZ] E

ar Prob. Distributioni

a; Prob.Distribution a, Prob.Distribution

\ \

o \
[softmax] ‘I [softmax] 'l
1 1
oo 1

[};]—‘?[hz]—x..

Initial State

Note: Each RNN predicts transformation function a at time
step t. A series of transformations [a1, a2, ..,ar] form a
transformation rule. Every prediction is carried out by a
softmax classifier and then fed into the next time step.

Fig. 2. The Generation of Transformation Rule by a RNN

can be effectively trained with policy gradient to maximize
the expected performance of the learning algorithm.

C. Feature Reconstruction through High-order Transforma-
tions

As mentioned, there are two types of transformations:
unary and binary. Our approach focuses on finding the most
promising transformation rule A for each feature. However,
binary transformations take two features as input and thus
cannot be performed on a single feature. Therefore, we unify
a binary transformation by converting it into a set of unary
transformations for each individual feature f;. For example,
for the binary transformation plus, we convert it into a set of
unary transformation addition(f;).

We have two special unary transformations: delete and
terminate. delete removes the corresponding feature and rermi-
nate indicates a stop command for the current transformation.
Such two transformations enable our architecture to eliminate
features and stop at the most suitable order of transformation
(i.e., the number of feature composition), respectively.

For every raw feature, we utilize a series of transformation
functions A;.p = [a1, ag, ..., ar] to represent a transformation
rule, where the length of the series 7' is the max order of
transformations it can take. Each element in the series is
a unary transformation or a unified binary transformation.
For dataset with n raw features, we have n transformation
rules, and the transformation process for each raw feature is
independent of each other since we have already captured
the correlation between features by unifying every binary
transformation. As a result, we can perform transformation
of each feature in parallel.

Guided by all transformation rules, NFS transforms the raw

Algorithm 1 Dataset Transformation

Input: Dataset D = {f1, fa, ..., fn} With n raw features;
Transformation Rules A = {A1, A,, ..., A, }, where each 4; =
[a1,ag, ..., ar];

Output: New Dataset D after the transformation;

1: for each f; € D do
2: tailor A; to be A; = [a1,aq,..,at], where a;4q is the
first ferminate transformation in A;;

3: if t == 0 then

4: continue,

5. else

6: if Ja; € A; = delete then
7: delete f; from D,

8: elsg

9: fi = ai (ar—1... (a2 (a1 (£i))))s
10: add f; to D;

11: end if

12 end if

13: end for

dataset as shown in Algorithm 1. In order to reduce the feature
space, NFS first conducts feature selection on the raw dataset
by selecting 3 features according to the feature importance via
random forest [18] if the number of features of the raw dataset
is greater than (. Given a raw feature f; and its corresponding
transformation rule A;, NFS first tailors A; to be A; by
removing all actions after the first terminate transformation
(A; = A; if terminate does not exist) (line 2). This enables
NEFES to automatically find the proper length of transformation
rule A, which is the order of transformation. If the length of
/L- is 0, which means that the first element of A; is terminate,
then no feature is generated or eliminated (line 4). If A; has
length 7" > 0 and there exists an delete element in fli, we
then delete the raw feature f; (line 7). Otherwise, we generate
a new feature f; = a; (a¢_1... (az (a1 (f;)))) (line 9), where ¢
is the length of A;. Finally, we add f; to the dataset (line 10).

NFS traverses and transforms every feature in parallel,
which facilitates high-order transformations. We make each
binary transformation to n unary transformations and reduce
the searching space from ((3))” = O(n?T) to n x n’ =
O(nT*1), where n is the number of raw features and T is the
max transformation order. Within the reduced searching space,
our architecture explores the most promising transformation
for each raw feature. Therefore, NFS does not suffer from the
feature explosion problem and can capture high-order trans-
formation meanwhile. Our architecture also supports feature
selection because of the special action delete. Furthermore,
the terminate function enables NFS to automatically stop at a
certain time step, so transformation rules of variable lengths
can be generated.

D. Generate Transformations with a Neural Network Con-
troller

In the architecture of NFS, we utilize a controller to generate
n transformation rules A = {A;, As, ..., A, }. The controller
consists of n RNNs {RNN;, RNNs,...,RNN,}, where n
is the number of raw features. In other words, we build a
separate recurrent neural network for each feature. Each RNN
predicts a transformation rule A;.7 for the corresponding raw
feature within 7' time steps, where 7' is the max order of
transformation. Every prediction is carried out by a softmax
classifier and then fed into the next time step as input, as
shown in Figure 2.

We utilize RNN in our architecture to generate transfor-
mation rules A because of its ability to support sequences
of variable lengths. The controller has a fixed number of
parameters regardless of the max transformation order T'. As a
result, NES is efficient because an increase of 1" only results in
linearly increasing time steps, in contrast to the exponentially
increasing feature space in expansion-reduction.

E. Training with Policy Gradient

Policy gradient [17] has achieved tremendous success in
many application areas [19], [20]. It aims to learn an explicit
policy for an agent such that it behaves optimally according
to a reward function. In our work, at the time step ¢ and
the state s, the network controller chooses a transformation
function according to its current policy 7 (a|st), and then the
state changes to s;y; according to dynamics p (s¢41]S¢,at)
and the gontroller receives a reward 7 (sy,a;). Let Ry =
S, vt tr (s, a,) denote a y-discounted cumulative re-
turn from ¢. The goal of policy gradient is to maximize the
expected return J (6) = E[Ry]. We replace the ~-discounted
cumulative return by A-return [21] to mix long-term and
short-term returns when training our controller.

More specifically, for n transformation rules, there are
n x T transformations to predict. We define the state s; in
reinforcement learning as Aq.;,t = 1,2,...,n x T, where sg is
the initial state and A is the universal set of n transformation
vectors. On each state s;, we can achieve a cross-validation
score V; given a predefined learning algorithm L and an
evaluation metric E. Then we compute the reward of each
transformation as follows: for taking transformation a;, the
improvement R; is the score V; of state s; minus V;_; of
state s;—1, which means the gain of performing a, intuitively.
Then, we utilize the A-return Gt)‘ that combines all k-step
returns ng) as the final reward signal for transformation a;:

Ry =V, —Vi ey

ng) =Ri+vRiy1+ ...+ 7"’Rt+k 2)
nxT

G = (1-ny Al 3)
k=1

The k-step return ng) looks k steps forward into the future
from current time step ¢, G§°) equals to R; at time step t

and G\ = Ztofj:tfyt/’th/ traverses the future. When n
is small, short-term return could lead to low variance but
high bias as the function is shortsighted. When n is large,
the long-term return could lead to low bias but high variance.
We employ A-return G7 rather than the original R; because
of its superiority in balancing between bias and variance.

To find the optimal transformation vectors, we ask our
controller to maximize its expected return, represented by
J (6), where 0 is parameters of the controller:

nxT
J(a) = EP(al:nxT;o) [Z G?] “4)

t=1

We utilize policy gradient to iteratively update 6. Without
loss of generality, we utilize the REINFORCE rule [22] and
Monte Carlo simulation [23] to obtain an empirical approxi-
mation:

m nxT
1

Vo (0) = — > Volog P(arlari—1;0) Gl (5)

k=1 t=1

where m is the number of different feature engineering
paradigms that the controller samples per epoch and Gi\[k]
is the cross-validation score that the k-th sample achieves.

IV. EXPERIMENTS

In this section, we conduct extensive experiments in order
to answer the following research questions:

« RQ1: How effective is the proposed NFS approach?

¢ RQ2: How effective are the high-order transformations?
e RQ3: Can NFS work with different learning algorithms?
e RQ4: Is NFS robust to hyperparameters?

A. Experimental Settings

In our experiments, we utilize the following 12 trans-
formation functions: 10 mathematical functions (includ-
ing logarithm, square, square-root, min-max-normalization,
reciprocal, addition, subtraction, multiplication, division,
modulo operation) and 2 special functions delete and
terminate.

In our experiments, we set the parameter 3 to 50. Each RNN
is implemented as a one-layer LSTM. We utilize Monte-Carlo
simulation to estimate the gradient, and the sample size of
every epoch m is 32. We set the discount factor v = 0.99 and
choose the Adam optimizer [24] to train the controller.

For RQI1, we set the maximum transformation order to
5, which is the maximum time steps of RNN. Without loss
of generality, we set A = 0.4, which is the parameter of
A-return. In RQ2, we evaluate NFS with different numbers of
the maximum transformation order (7'). In RQ3, we evaluate
NFES with different machine learners. In RQ4, we evaluate the
impact of different hyperparameters on the accuracy of NFS.

TABLE I

COMPARISON BETWEEN NFS AND THE EXISTING AUTOMATED FEATURE ENGINEERING METHODS

Instances' Trans-
Dataset Source C\R Random Randompyprgs Exp-Red NFS

Features Graph
Higgs Boson UCIrvine C 50000)\28 0.699 0.723 0.682 0.729 0.731
Amazon Employee Kaggle C 32769\9 0.740 0.945 0.744 0.806 0.945
Pimalndian UCIrvine C 768\8 0.709 0.772 0712 0.756 0.805
SpectF UCIrvine C 267\44 0.748 0.801 0.790 0.788 0.876
SVMGuide3 LibSVM C 1243\21 0.753 0.834 0.711 0.776 0.865
German Credit UCIrvine C 1001\24 0.655 0.745 0.680 0.724 0.805
Bikeshare DC Kaggle R 10886\ 11 0.381 0.980 0.693 0.798 0.990
Housing Boston ~ UCIrvine R 506\13 0.637 0.658 0.621 0.680 0.686
Airfoil UCIrvine R 1503\5 0.753 0.771 0.771 0.801 0.796
AP-omentum-ovary OpenML C 275\10936 0.710 0.831 0.725 0.820 0.864
Lymphography UCIrvine C 148\18 0.680 0.887 0.727 0.895 0.929
Tonoshpere UCIrvine C 351\34 0.934 0.923 0.939 0.941 0.969
Openml_618 OpenML R 1000\50 0.428 0.403 0.411 0.587 0.640
Openml_589 OpenML R 1000\25 0.571 0.511 0.650 0.689 0.754
Openml_616 OpenML R 500\50 0.343 0.284 0450 0.559 0.673
Openml_607 OpenML R 1000\50 0.411 0.366 0.590 0.647 0.688
Openml_620 OpenML R 1000\25 0.524 0.471 0.533 0.683 0.732
Openml_637 OpenML R 500\50 0.313 0.248 0.581 0.585 0.634
Openml_586 OpenML R 1000\25 0.549 0.495 0.598 0.704 0.780
Credit Default UCIrvine C 30000)\25 0.766 0.798 0.802 0.831 0.799
Messidor_features UClIrvine C 1150\19 0.655 0.743 0.703 0.752 0.762
Wine Quality Red UCIrvine C 999\ 12 0.380 0.692 0.344 0.387 0.708
Wine Quality White UCIrvine C 4900\ 12 0.678 0.689 0.654 0.722 0.707
SpamBase UCIrvine C 4601\57 0.937 0.954 0.951 0.961 0.955

B. Effectiveness of NFS (RQI)

1) Design: To evaluate the effectiveness of NFS, we com-
pare it with the state-of-the-art and bseline methods, which
are described as follows:

+ Random is a baseline method, which randomly applies

a transform function to a random feature and adds the
result to the original dataset. This is the same Random
experiment described in [4].

« Randomygs is a baseline method, which uses random
selection under NFS architecture to generate features
instead of policy gradient. Although this baseline seems
naive, it is actually very hard to surpass [25]. We sample
the same number of actions as in the Monte Carlo esti-
mator by using uniformly distributed action probabilities
in each training epoch and report the best result achieved.

« Expansion-Reduction is a state-of-the-art approach. All
transformations are applied separately and added to the
raw features, followed by a feature selection routine. In

(DSM) [10], which is a well-known expansion-reduction
method.

Transformation Graph [4] builds a transformation graph
and employs Q-learning to search. The transformation
graph is a directed acyclic graph in which each node cor-
responds to the raw dataset or a derived dataset through
the transformation path. To generate a new dataset node,
they either perform transformation on the whole dataset
or merge two transformed nodes together.

LFE [6] recommends the most promising transformation
for each feature. At the core of LFE, there is a set
of Multi-Layer Perceptron (MLP) classifiers, each cor-
responding to a transformation. Note that LFE is limited
to the classification problems only.

In our experiments, we utilize the same datasets used for

this experiment, we compare with Data Science Machine evaluating the related methods, which are publicly available

at OpenML!, UCI repository?, Kaggle®, and LibSVM*. In
particular, Table I shows the 24 datasets used for evaluating
Expansion-Reduction (Exp-Red) and Transformation Graph
(Trans-Graph). There are 14 classification datasets and 10
regression datasets that are collected from various sources and
have various numbers of features (5 to 10936) and instances
(148 to 50000). For all datasets in Table I, we use Random
Forest as the learning algorithm (L). For evaluation metrics
(F), we use the metric (I - (relative absolute error)) [26] for
regression (R) problems:

Lly—yl
15—yl

where 1 — rae means the metric (I - (relative absolute
error)), ¥ is the model prediction, y is the actual target and
4 is the mean of y. We use Fl-score (the harmonic mean
of precision and recall) for classification (C) problems. Both
metrics are also used for evaluating the related work [4]. In
addition, following the related work, stratified 5-fold cross-
validation is adopted to obtain the results. For comparison,
we use the results of Expansion-Reduction (Exp-Red) and
Transformation Graph (Trans-Graph) on the same datasets as
reported in [4].

Table II presents another group of datasets for comparing
with related methods including LFE’. All datasets are clas-
sification problems since LFE is restricted to classification.
We utilize the Random Forest as L and the Fl-score of 10-
fold cross-validation as E. These settings are also used for
evaluating LFE. For comparison, we use the results reported
in the LFE paper [6] on the same datasets.

2) Results: Table 1 shows the comparison results between
NFS and Transformation Graph, Expansion-Reduction, and
two baseline methods (Random and Randomygs). The results
show that our neural architecture achieves the best perfor-
mance in all but four cases. On these datasets, NFS exceeds the
performance of Random, Randomygs, Expansion-Reduction
and Transformation Graph. It is also noteworthy that applying
random search in our NFS architecture outperforms purely
random generation of new features since it has the advantage
of reducing searching space.

Table II shows the comparison between NFS and LFE on
the datasets used in [6]. The experimental results show that
NFS performs better than the related methods on these datasets
too. More specifically, NFS outperforms LFE on all datasets.

The experimental results also demonstrate that NFS can
handle different numbers of instances and features. For ex-
ample, on a small dataset such as Wine Quality Red (with size
999 x 12), NFS achieves an average improvement of 82.95%
compared with Transformation Graph. On big datasets such
as Amazon Employee (32769 instances) and lymph (10936

1—rae=1-

(6)

Uhttps://www.openml.org/
Zhttps://archive.ics.uci.edu/ml/index.php
3https://www.kaggle.com/
“https://www.csie.ntu.edu.tw/~cjlin/libsvm/

SWe omit a few datasets that could no longer be found online.

40 4
-
c
@
E
g 30 4
I
(=%
E
)
a 204
=
lU
[
7]
o
10 A
\// —— top_1_unique_features
" top_5_unique_features
04 = top_15 unique_features
T T T T T T
0 20 40 60 80 100
Epochs
Fig. 3. Performance improvement of NFS over Randomygs on different

numbers of epoch. We plot the average across all datasets in Table 1

features), NFS also achieves an improvement with an average
of 17.25% and 30.38% over Transformation Graph and LFE,
respectively.

3) Efficiency of Policy Gradient: Under NFS architecture,
instead of policy gradient, one can utilize random search to
find the best feature transformations. Although this baseline
seems simple, it is often difficult to surpass [25]. In Figure
3, we show the performance improvement of policy gradient
over random search under the NFS architecture (i.e., the
Randomynps method) during the training process. The perfor-
mance improvement is defined as the improvement of F1-score
or (I - (relative absolute error)) between the model trained
with the top k features generated by policy gradient and the
model trained with the top k features generated by random
search. To evaluate the effectiveness of the proposed model,
we select different k settings (kK = 1,5,15). Figure 3 shows
that the resulting three lines all exhibit a tendency of steady
increase, which illustrates the effectiveness of the training.
The results also confirm that our controller always finds better
features than random search.

In summary, the experimental results in this subsection show
that the proposed automated feature engineering architecture
NFES is effective and outperforms the existing state-of-the-art
and the baseline methods.

C. Effectiveness of High-Order Transformation (RQ2)

1) Design: This RQ evaluates the ability of NFS to per-
form complex high-order transformation. We choose the max
transformation order 7" from 1 to 10. Note that 7" = 0 means
the base dataset without feature transformation and 7" = 5 is
the default setting in RQ1. For classification (C) datasets, we
report the relative improvement in F1-score. For regression (R)
datasets, we report the relative improvement using the metric
(1 - (relative absolute error)).

TABLE II
COMPARISON BETWEEN NFS, LFE, AND OTHER RELATED METHODS

Dataset Source Instances\Features Random Exp-Red LFE Randomygpg NFS
AP-omentum-lung OpenML 203\ 10936 0.903 0.925 0.929 0.947 0.981
AP-omentum-ovary OpenML 275\10936 0.714 0.801 0.811 0.833 0.873
credit-a UClrvine 690\6 0.657 0.521 0.771 0.770 0.803
diabetes UClrvine 768\8 0.729 0.737 0.762 0.760 0.786
fertility UClrvine 100\9 0.846 0.861 0.873 0.903 0.913
gisette UClrvine 2100\5000 0.871 0.741 0.942 0.948 0.959
hepatitis UClrvine 155\6 0.751 0.753 0.831 0.821 0.905
higgs-boson-subset UClIrvine 50000\28 0.660 0.661 0.68 0.824 0.827
ionosphere UClrvine 351\34 0.899 0912 0.932 0.941 0.972
labor UClrvine 57\8 0.877 0.855 0.896 0.853 0.960
lymph OpenML 138\10936 0.594 0.534 0.757 0.943 0.987
madelon UClrvine 780\500 0.602 0.585 0.617 0.697 0.836
megawatt] UClrvine 253\37 0.865 0.882 0.894 0.897 0.933
pima-indians-subset UClIrvine 768\8 0.729 0.751 0.745 0.760 0.790
secom UClrvine 470\590 0.911 0913 0918 0.931 0.934
sonar UClrvine 208\60 0.723 0.468 0.801 0.709 0.839
spambase UClrvine 4601\57 0.911 0.39 0.947 0.938 0.948
2) Results: Figure 4 shows experimental results on four
randomly sampled datasets, which have different instances- 16.0%{ g diabetes (C]
features combinations and cover both classification and re- oo] o own :E: ,‘_——-*""*----‘““‘

gression problems. When 7T is small, the performance of our
NFES is basically the same as that of the baselines. However,
the performance increases stably as we increase the max
transformation order 7T'. As illustrated in Figure 4, when the
transformation order is as high as 10, NFS can still achieve
some improvements. The results confirm the effectiveness of
the high-order transformation.

D. Different Learning Algorithms (RQ3)

1) Design: NFS is designed to be independent of machine
learning algorithm L. In RQ1 and RQ2, we use Random
Forest as the learning algorithm L. In this RQ, we evaluate
whether NFS is still effective when a different learner is used.
We utilize lasso regression [27] (for regression) and logistic
regression [28] (for classification) as L in this experiment. All
other experimental settings are the same as those in RQ1.

2) Results: We have conducted the experiments of evaluat-
ing NFS equipped with other learners on the datasets shown
in Table I and Table II, and the related experimental results
demonstrate that, for classification problems, NFS with logistic
regression outperforms the pure logistic regression, which is
evaluated on the raw datasets without any feature transfor-
mation. For regression problems, NFS with lasso regression
outperforms the pure lasso regression, which is evaluated on
the raw datasets without any feature transformation. These
results confirm that the effectiveness of NFS is independent

—&- housing_boston (R) -~

12.0% - /

10.0% -

8.0%

6.0%

4.0% -

2.0%

% Improvement in F1-Score/1-(relative absolute error)

0.0% -

T T T T T T T T T T T
[} 1 2 3 4 5 6 7 8 9 10
Order of Transformation (T)

Fig. 4. Effect of High-order Transformations

of machine learners.

E. Robustness (RQ4)

1) Design: In this subsection, we evaluate whether NFS is
sensitive to different hyperparameters, i.e. the sample size of
every training epoch and the A value in A-return. We perform
the experiments on the same datasets used in RQ2.

2) Results: Table III shows the experimental results on four
randomly selected datasets that represent both classification

TABLE III
COMPARATIVE RESULTS OF NFS WITH DIFFERENT PARAMETER SETTINGS OF A

Dataset A=02 A=025 A=03 A=035 A=04 AX=045 A=05 A=055 A=06
Airfoil 0.792 0.798 0.796 0.801 0.796 0.797 0.800 0.795 0.799
Housing Boston 0.690 0.690 0.694 0.691 0.686 0.686 0.685 0.686 0.687
AP-omentum-ovary 0.873 0.880 0.873 0.873 0.873 0.874 0.873 0.873 0.873
diabetes 0.785 0.784 0.785 0.786 0.786 0.785 0.784 0.789 0.786
TABLE IV
COMPARATIVE RESULTS OF NFS WITH DIFFERENT PARAMETER SETTINGS OF m
Dataset m=1 m =2 m=4 m=2_8 m =16 m = 32 m = 64
Airfoil 0.792 0.796 0.792 0.794 0.797 0.796 0.801
Housing Boston 0.678 0.688 0.688 0.687 0.692 0.686 0.693
AP-omentum-ovary 0.866 0.862 0.863 0.877 0.866 0.873 0.873
diabetes 0.776 0.775 0.785 0.777 0.784 0.786 0.784

subtraction:21.8% —\
reciprocal:0.5% .

Vamm ‘ min max norm:1.1%

-| addition:26.0%

| multiplication:19.5% |-

logarithm:0.9% |-~
division:16.9% —/

— square root:0.5%
A modulo:11.8%

Fig. 5. Statistics of Effective Transformations

and regression problems. The results show that our NFS
method is robust to different settings of A, but relatively-
small A (A < 0.5) works slightly better on most cases of the
studied four datasets. Relatively-small A implies preference
for shorter-term reward with low variance but higher bias.
Since our policy gradient is trained within 100 epochs for
time performance, variance plays a more important role than
bias from our perspective: relatively-large variance will make
the training loss hard to converge during the first few epochs
and the advantage of low bias will only reveal after enough
training epochs. This helps explain why a relatively-small A
leads to better performance in our experiments. With respect
to the sample size of each training epoch, the performance of
our NFS remains stable across different settings, as shown in
Table IV.

F. Discussion of the Results

We perform statistical analysis by calculating the fre-
quency of every effective transformation in NFS across
all datasets. Figure 5 shows an interesting observation
that most of the transformations are binary operations,
i.e., addition, subtraction, multiplication, division, and
modulo operation between two features. Unary opera-
tions such as logarithm, min-max-normalization, square,
square root, reciprocal are less common. Many of the
transformations are not very intuitive. However, we still
find some explainable/meaningful feature transformations that
could provide some insights into the datasets. For example,
in dataset Air foil, the Scaled Sound Pressure level is related
to the ratio between Chord length and Frequency (i.e., Chord
length/Frequency). In dataset Wine Quality Red, the quality of
wine is related to the following transformed feature:

\/(Chlorides x Density) — pH Value (7

To our best knowledge, NFS is the first automated feature
engineering framework that can solve the feature explosion
problem and support high-order transformations, in the mean-
time being time-efficient and parameter-insensitive. In addi-
tion, NFS is extendable as users can specify and add more
transformations.

There are some limitations for NFS as well. Currently, it
only applies transformations to numerical features. It could
also be affected by randomness due to sampling, so it does
not guarantee to always find the best transformation. We will
address these limitations in our future work.

V. SUCCESS STORY

It is also worth mentioning that NFS demonstrated its
efficiency in the NeurIPS AutoML Challenge: AutoML for

Lifelong Machine Learning 6. The challenge was to develop an
AutoML system (including feature engineering, model selec-
tion and hyperparameter tuning) for large-scale lifelong learn-
ing such as customer relationship management, online recom-
mendation, sentiment analysis, fraud detection, spam filtering,
transportation monitoring, econometrics, patient monitoring,
climate monitoring, manufacturing and so on. There are many
difficulties in tackling this challenge: very large dataset (~10
Million), various feature types (continuous, binary, ordinal,
categorical, multi-value categorical, temporal), and restricted
time and computing resources (within half an hour on a
4 Cores / 16 GB Memory computer), NFS was able to
discover valuable new features and largely improved the base
performance achieved by XGBoost [29] and LightGBM [30].
More specifically, we applied NFS to those public datasets
used in the challenge’ and achieved performance improvement
in accuracy over the base models. Finally, we obtained an
outstanding score among thousands of participants of the
challenge and is ranked among the very top k.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose NFS, a novel neural architecture
for automated feature engineering. NFS is able to explore
a feature space and automates the process of feature con-
struction and selection through a RNN-based controller. The
controller is trained with reinforcement learning to maximize
the expected performance of the machine learning algorithm.
Extensive experiments on public datasets demonstrate that our
neural architecture is effective and outperforms the existing
state-of-the-art automated feature engineering methods.

In the future, we will consider more complex transformation
functions. We would also like to explore model selection
and hyperparameter tuning methods to further improve the
effectiveness of the proposed approach. We also plan to further
enhance our proposed approach using the effective idea of
programming by optimization [31], which has shown success
in solving computationally hard problems including Boolean
satisfiability [32] and minimum vertex cover [33].

REFERENCES

[1] O. Dor and Y. Reich, “Strengthening learning algorithms by feature
discovery,” Information Sciences, vol. 189, pp. 176-190, 2012.

[2] G. Katz, E. C. R. Shin, and D. Song, “ExploreKit: Automatic feature
generation and selection,” in Proceedings of ICDM 2016, 2016, pp. 979—
984.

[3] H. T. Lam, J. Thiebaut, M. Sinn, B. Chen, T. Mai, and O. Alkan,
“One button machine for automating feature engineering in relational
databases,” CoRR, vol. abs/1706.00327, 2017.

[4] U. Khurana, H. Samulowitz, and D. S. Turaga, “Feature engineering
for predictive modeling using reinforcement learning,” in Proceedings
of AAAI 2018, 2018, pp. 3407-3414.

[5] C.J.C. H. Watkins and P. Dayan, “Technical note Q-Learning,” Machine
Learning, vol. 8, pp. 279-292, 1992.

[6] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. S.
Turaga, “Learning feature engineering for classification,” in Proceedings
of 1JCAI 2017, 2017, pp. 2529-2535.

[71 G. Dong and H. Liu, Eds., Feature Engineering for Machine Learning
and Data Analytics. CRC Press, 2018.

Shttps://www.4paradigm.com/competition/nips2018
7https://competitions.codalab.org/competitions/20203#participate- get_data

[8]

[9]

[10]

(11]

(12]

(13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

[33]

W. Cheng, G. Kasneci, T. Graepel, D. H. Stern, and R. Herbrich, “Au-
tomated feature generation from structured knowledge,” in Proceedings
of CIKM 2011, 2011, pp. 1395-1404.

M. Atzmueller and E. Sternberg, “Mixed-initiative feature engineering
using knowledge graphs,” in Proceedings of K-CAP 2017, 2017, pp.
45:1-45:4.

J. M. Kanter and K. Veeramachaneni, “Deep feature synthesis: Towards
automating data science endeavors,” in Proceedings of DSAA 2015,
2015, pp. 1-10.

A. Kaul, S. Maheshwary, and V. Pudi, “AutoLearn - automated feature
generation and selection,” in Proceedings of ICDM 2017, 2017, pp. 217-
226.

M. G. Smith and L. Bull, “Feature construction and selection using
genetic programming and a genetic algorithm,” in Proceedings of
EuroGP 2003, 2003, pp. 229-237.

U. Khurana, D. S. Turaga, H. Samulowitz, and S. Parthasrathy, “Cognito:
Automated feature engineering for supervised learning,” in Proceedings
of ICDM Workshops 2016, 2016, pp. 1304-1307.

B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proceedings of ICLR 2017, 2017.

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” in Proceedings of ICLR 2018 Workshop Track, 2018.

A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,
“A hierarchical model for device placement,” in Proceedings of ICLR
2018, 2018.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proceedings of NIPS 1999, 1999, pp. 1057-1063.

T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 8, pp. 832-844, 1998.

J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682-697, 2008.
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, 1. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, pp. 484-503, 2016.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, 1998.

R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, pp.
229-256, 1992.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods, ser.
Springer Texts in Statistics. ~Springer, 2004.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of ICLR 2015, 2015.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, pp. 281-305,
2012.

M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A.
Janovsky, and V. A. Kamaev, “A survey of forecast error measures,”
World Applied Sciences Journal, vol. 24, no. 2013, pp. 171-176, 2013.
R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society. Series B (Methodological), vol. 58,
no. 1, pp. 267-288, 1996.

D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Second
Edition. Wiley, 2000.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of KDD 2016, 2016, pp. 785-794.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Liu, “LightGBM: A highly efficient gradient boosting decision tree,”
in Proceedings of NIPS 2017, 2017, pp. 3146-3154.

H. H. Hoos, “Programming by optimization,” Communications of the
ACM, vol. 55, no. 2, pp. 70-80, 2012.

A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown,
“SATenstein: Automatically building local search SAT solvers from
components,” Artificial Intelligence, vol. 232, pp. 20-42, 2016.

C. Luo, H. H. Hoos, S. Cai, Q. Lin, H. Zhang, and D. Zhang, “Local
search with efficient automatic configuration for minimum vertex cover,”
in Proceedings of IJCAI 2019, 2019, pp. 1297-1304.

