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Abstract

We present a system which is able to reconstruct hu-
man faces on mobile devices with only on-device process-
ing using the sensors which are typically built into a cur-
rent commodity smart phone. Such technology can for ex-
ample be used for facial authentication purposes or as a
fast preview for further post-processing. Our method uses
recently proposed techniques which compute depth maps by
passive multi-view stereo directly on the device. We propose
an efficient method which recovers the geometry of the face
from the typically noisy point cloud. First, we show that we
can safely restrict the reconstruction to a 2.5D height map
representation. Therefore we then propose a novel low di-
mensional height map shape model for faces which can be
fitted to the input data efficiently even on a mobile phone.
In order to be able to represent instance specific shape de-
tails, such as moles, we augment the reconstruction from
the shape model with a distance map which can be regu-
larized efficiently. We thoroughly evaluate our approach
on synthetic and real data, thereby we use both high res-
olution depth data acquired using high quality multi-view
stereo and depth data directly computed on mobile phones.

1. Introduction
Digital 3D reconstruction of human faces has been stud-

ied extensively in the past. Reconstruction algorithms are
often aimed at specific applications or a group of applica-
tions. These range from digital avatars, 3D printing to track-
ing of facial expressions in videos or even authentication.
Recently, mobile devices have become powerful enough to
generate 3D models with on-device computing and using
the live imagery of built-in cameras. This opens the tech-
nology for new applications where the ability to run the 3D
reconstruction on the device is crucial. One example is se-
curity critical applications where the input data should not
leave the device, such as authentication through a face scan.
Another example where on-device processing is desirable is
for a live preview of reconstructions to ensure that the cap-
tured data is of sufficient quality for post processing. We

propose a system which fully automatically reconstructs a
human face in a few seconds on commodity mobile phones
using only on-device processing and built-in sensors.

Impressive 3D models of faces computed with passive
stereo matching were presented in [15, 5], the key require-
ments for high quality reconstructions are 1) high resolution
data taken in excellent lighting conditions and 2) very accu-
rate camera calibrations using bundle adjustment or a fixed
multi-camera rig. None of that is given when using mobile
devices in uncontrolled environments. The user takes im-
ages with the built-in camera in potentially bad lighting con-
ditions leading to motion blur, rolling-shutter artifacts, and
non-rigid deformation of the face during capturing. More-
over, currently computational resources on mobile devices
do not facilitate the usage of high resolution images and
bundle adjustment. All these shortcomings lead to a high
level of noise and inaccuracies in the captured depth maps.
Therefore, one of the main difficulties when acquiring high
quality reconstructions of faces on a mobile device is tack-
ling this high level of noise.

One of the most popular tools when dealing with noise
or incomplete data of faces, are low dimensional statistical
models of human faces [7, 33]. Typically the model is di-
rectly fitted into the input data. Compared to generic recon-
struction algorithms, this leads to a better constrained for-
mulation as only the parameters of a low dimensional model
and its alignment to the input data are estimated. Due to
the dependency between the size of faces and their shape,
e.g. female faces tend to be smaller, an expensive proce-
dure which alternates between finding the correspondences
between model and data, and estimating its parameters is
typically utilized [2]. Another shortcoming of such models
is that they are unable to capture instance specific details
such as moles, wrinkles or scars. We propose to overcome
these shortcomings with the following contributions:

• A pipeline which fuses a set of noisy depth maps ac-
quired using passive stereo into a 3D face model by
using a processing pipeline which works on a 2.5D
height map representation. (Sec. 2)



• A statistical 2.5D height map shape model of faces, in
which the scale is removed from the model through a
prior alignment to the mean shape for efficient align-
ment and fitting. (Secs. 4 and 5)

• We propose to add instance specific details to the
model with a difference map which can be efficiently
regularized using convex optimization. (Sec. 6)

1.1. Related Work

Acquiring 3D reconstructions of faces from images is a
broad topic. Many 3D reconstruction algorithms for generic
shapes can also be used for faces.

One of the first steps that is traditionally executed for 3D
reconstruction form images, is the recovery of the camera
poses of the input images, i.e. solving the structure-from-
motion (SfM) problem [18]. From the input images and the
recovered camera poses a collection of depth maps can be
computed by dense stereo matching [42, 15]. Alternatively,
also active sensors such as structured light, time-of-flight or
laser scanners are used to measure depth data. A variety of
methods for computing a final 3D model from depth data
have been proposed: A set of a few high quality depth maps
[23, 28], volumetric binary labeling into free and occupied
space [21, 26, 25, 43], volumetric truncated signed distance
fields [13, 44, 29], and mesh based optimization [14, 19].

Using the on-device sensors of commodity mobile
phones [38, 24, 31] compute 3D models interactively with
only on-device processing. With specialized computer vi-
sion enabled mobile devices [22] and [36] achieve 3D re-
constructions using an active structured light sensor or pas-
sive motion stereo, respectively.

Human faces have a strong shape similarity between in-
dividual faces. Statistical shape models which capture the
variations of human faces in a low dimensional space are
therefore a popular tool. Several models have been pro-
posed which either only capture the shape of the neutral ex-
pression [7, 32, 33] or also add facial expressions [2, 39, 8].
One drawback of statistical face models is that they are un-
able to capture instance specific shape variations. There-
fore, they are either discarded or added afterwards using for
example shading based techniques [37] or local regressors
[9]. In this paper, our objective is to reconstruct a human
face in neutral expression, e.g. for authentication purposes.
The main objective becomes fitting the face shape model
into a potentially noisy input point cloud. Fitting the model
of [33] requires an iterative process which alternates be-
tween finding correspondences and fitting the model [2, 3]
leading to a running time of up to 90 seconds to fit the model
to an input scan. In [8] an iterative coarse-to-fine optimiza-
tion is utilized, leading to a running time for the model fit-
ting of several seconds on a desktop computer. [20] pro-
poses to speed up the model fitting by using a discrimina-
tively trained random forest to estimate the correspondences

between a single input depth frame, captured with an active
depth sensor, and the shape model. In our work, we aim
for accurate and efficient reconstruction of faces on mobile
phones, which typically do not have active depth sensing
available and have restricted computing resources.

1.2. Overview

The inputs to our height map face reconstruction algo-
rithm is a set of images, I = {I1, . . . , In}, depth maps
D = {D1, . . . , Dn} and the corresponding camera param-
eters P = {P1, . . . , Pn}. Each camera parameter Pi =
{Ki, Ri, Ci} consists of the camera intrinsics Ki and pose
[Ri, Ci]. An initial alignment is established by computing
a similarity transform between a few selected points of the
mean face of the Basel Face Model (BFM) [33] and triangu-
lated landmarks computed on the input images using [34].
The depth maps are then integrated into a height map rep-
resentation that we introduce in Sec. 2. Details of the depth
map integration procedure are explained in Sec. 3. The
alignment of the height map is then further refined by an it-
erative optimization that is detailed in Sec. 4. The depth in-
formation is then re-integrated using the refined alignment.
A face model computed directly in the height map repre-
sentation is fitted to the data using a simple weighted least
squares fit presented in Sec. 5. The residual obtained by
subtracting the fitted model from the height map is regular-
ized using an efficient convex optimization that we describe
in Sec. 6. The optimized residual contains individual spe-
cific details that cannot be captured by the low dimensional
face model. Finally, the optimized residual is added back to
the fitted model to obtain the final result. Fig. 1 summarizes
all the steps of the proposed algorithm as a flow diagram.

2. Height Map Representation
In order to keep the demands on computing and mem-

ory resources of our approach low, we model the 3D shape
of a human face with a 2.5D height map. That is, we as-
sume that the manifold of the human face is homeomorphic
to a square. To obtain such a parametrization one needs to
find a mapping X → p that maps each point X ∈ R3 on
the face to a point p ∈ [1, N ] × [1,M ] in a rectangular
region. In order to map all 3D points of the human face
onto a height map, we assume that all these points are vis-
ible from a single point. We model the height map by a
projection with a virtual omni-directional camera that is lo-
cated inside the head looking toward the face and store the
distance between the camera center C0 and the face point
X at the corresponding position. The resulting height map
and camera parameters will be denoted asH ∈ RN×M and
P0 = {K0, R0, C0} respectively. To be flexible in terms of
field of view we use the unified projection model [16, 4, 27].
First, a face point X = (Xx, Xy, Xz)

> is projected onto the
unit sphere Xs = X

‖X‖ . Then, the function m = }(Xs, ξ)
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Figure 1. Overview of proposed approach.

maps the 3D point Xs to a point m on the normalized im-
age plane. The scalar parameter ξ models the mirror. Fi-
nally, the image point is given by p = K0m, where K0

denotes the virtual camera intrinsic parameters. Given an
image point p and a height map H one can obtain the cor-
responding face point X as follows

X = H(p)}−1(K−10 p, ξ). (1)

For validation of the assumption that each point on the face
is visible from the virtual camera center, we conducted an
experiment. For a height map resolution of N = M = 100
we have computed the number of ray-face intersections with
200 faces randomly sampled from the BFM [33] by shoot-
ing one ray per pixel for each camera position. The total ray
count per camera position amounts to 8679 as not all pixels
in the height map representation have a corresponding face
point. All rays with more than one intersection represent
a case in which our assumption is violated. Therefore, we
seek for a camera center which has a minimal number of
violations. The statistical face model is designed in such a
way that the Y Z-plane is the plane of symmetry of the face,
therefore we limited our search to this plane. To clarify
the setup we have displayed the mean face of the statistical
model and its Y Z bounding box in Fig. 2. We considered
the camera centers C0 ∈ {(0,−30+ 10i,−70+ 10j) : 0 ≤
i ≤ 10, 0 ≤ j ≤ 10} (units in mm) and at each position
we computed K0 and R0 such that the border of the mean
face projects to the boundaries of the height map. Fig. 2
shows a contour plot of the percentage of rays that have two
or more intersections averaged over the 200 faces. We high-
lighted the region in which we get the lowest percentage of
multiple intersections. Positions that have a negative Y co-
ordinate have a higher percentage of multiple intersections
because they cannot represent the ocular cavity, the nostril
area and nose tip whereas points above Y = 50 tend to in-
tersect both the upper and lower lip due to the very steep
angle especially when close to the mean face. This angle

becomes less and less steep as we go further away from the
mean face, this is reflected by the generally lower amount
of intersections with decreasing Z coordinate values. Since
on average only 0.03% of the rays have multiple intersec-
tions our assumption is justified and - as shown later in the
experiments - the remaining errors are small or negligible.

3. Depth Integration
In this section we will explain how input depth maps

D = {D1, . . . , Dn} are brought into the height map repre-
sentation. For each input image Ii, each pixel x = (xx, xy)
is unprojected using the corresponding depth value d =
Di(xx, xy) to obtain a point in world coordinates X̃ =
R>i K

−1
i [xx, xy, d]

> + Ci. The point is then transformed
into the virtual camera reference frame X = R0X̃−R>0 C0.
Then, the 3D point is projected into the height map rep-
resentation. The position in the height map is given by
p = projH(X) := K0}( X

‖X‖ , ξ) while the distance is sim-
ply ‖X‖. Since multiple points will project to the same po-
sition we compute a weighted mean distance that takes into
account the camera viewing direction [30] and the distance
to the mean face of the statistical model [33]. Additionally,
we also compute the weighted variance V ∈ RN×M and
number of projected points C ∈ RN×M . The final height
map value is given by

H(p) = 1
C(p)

∑
i: p=projH(Xi)

I(Xi)W (Xi)‖Xi‖. (2)

The term I(Xi) = 1{|‖Xi‖−Hµ(p)|<τI(p)} is an indica-
tor function that discards points that are further away than
τ I(p) from the distance map of the mean face Hµ. The
threshold is computed from the variation in distance values
at the position p in the height map. The factor

W (Xi) =

〈
Ci − X̃i

‖Ci − X̃i‖
, Nµ(X̃i)

〉
(3)
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Figure 2. Process for finding the best projection center to map a
face to a height map representation. Each dot in the contour plot
represents a sampled projection center for which we computed the
number of intersections with 200 face samples from the BFM by
shooting one ray for each height map pixel. The height map res-
olution of 100 × 100 pixels gives a total of 8679 rays per height
map which all intersect the face. We show the sampled positions
relative to the mean face of the statistical model and its bounding
box with coordinates in millimetres as a reference. The contour
plot shows the average percentage of rays that have intersected
a face multiple times. In the optimal region marked in light green
we have 0.03% multiple intersections on average (2.6 intersections
per face).

weighs the influence of samples based on the cosine of the
angle between the camera viewing direction and the nor-
mal of the mean face at the point X̃i which is denoted as
Nµ(X̃i). The normalization weight

C(p) =
∑

i: p=projH(Xi)

I(Xi)W (Xi) (4)

corresponds to the weighted number of projected points.
The weighted variance is computed as

V(p) = 1
C(p)

∑
i: p=projH(Xi)

I(Xi)W (Xi)(H(p)− ‖Xi‖)2. (5)

Note that the variance is computed efficiently in an online
fashion [40].

4. Alignment
A precise alignment is of great importance when fitting

a parametric face model. This step is commonly performed
using alternating optimization, which are variants ICP al-
gorithms [35]. We propose to improve the initial landmark
based alignment with a refinement that can efficiently be
computed in the height map representation. LetMH be the
mesh corresponding to the height map H. The goal of this
step is to align MH with the mean face of the statistical

model µ. Our height map based method is closely related
to registration methods for range images that use a projec-
tion to find the corresponding points during the alignment
optimization [11, 6]. However, due to the fact that in our
case both target and source mesh are represented in a height
map that share the same virtual camera, we can evaluate the
3D euclidean distance between points directly in the height
map representation. This allows to circumvent the most ex-
pensive step of ICP algorithms, namely finding the point
correspondences. We propose to minimize

E(α) =
∑
p∈H

WA(p)min
(
|Hα(p)−Hµ(p)| , τA

)
(6)

with Hα = projM
(
T (MH,α)

)
. The function T denotes

a similarity transform that depends on a scaling factor, yaw,
pitch and roll angles and a translation vector that are stored
in α. The function projM(MH) denotes the projection of
MH into the height map representation. The threshold τA

clamps the maximal difference to reduce the influence of
outliers. Finally, WA is a weighing matrix that enforces
good alignment in the eye, nose and mouth region. The cor-
respondences between points in MH and Mµ are given
implicitly by projM(·) whereas taking the difference of
height map values gives the signed euclidean distance be-
tween corresponding points. One important detail is that
WA does not depend on the similarity transform T . This
forces the optimization to find an alignment with some over-
lap as shrinking the solution to a single point would cost
τA
∑

p∈HW
A(p), which is the maximum over all solu-

tions α. Therefore, our energy does not need normalization
and overlapping constraints as proposed in [6]. The energy
in Eq. (6) is minimized using the gradient descent based,
L-BFGS line search approach, implemented in the Ceres
solver [1].

5. Model Fitting
The most important step when fitting a statistical model

to some data is to find good correspondences between the
two. Generally, one has to first align the input data to some
reference model, a common choice is the mean shape, and
then establish the correspondences between the reference
and the data, which is then projected into the model. Statis-
tical models that are metric, such as [33], require an iterative
refinement of the fitted model to estimate the right scale.
For this purpose the fitted model is iteratively refined by re-
peating the same procedure that we have described above
with the fitted model as a reference for the alignment and
correspondence computation until convergence. This pro-
cedure has two problems for our application. First, find-
ing correspondences at each iteration is expensive and not
suited for a real-time algorithm. Second, we have no notion
of scale. Therefore, we have decided to construct a scale-



free parametric model directly in the height map represen-
tation. The scale is factored out from the model by aligning
each face to the mean shape before the statistical model is
computed. This allows for a much more efficient fitting ap-
proach that consists of an alignment step and a projection
into the model without any iterative refinement.

For completeness and to facilitate the understanding of
the model fitting approach we will quickly describe the face
model presented in [33]. A face is composed of m vertices
{X1, . . . ,Xm}. Each point is then concatenated into a 3m

dimensional vector
[
X>1 , . . . ,X

>
m

]>
. The parametric face

model
F = (µ,σ,U) (7)

consists of the mean µ ∈ R3m, the standard deviation
σ ∈ Rn−1 and an orthonormal basis of principal com-
ponents U = [u1, . . . ,un−1] ∈ R3m×n−1. Faces f are
sampled by computing linear combinations of the principal
components

f(β) = µ+ Udiag(σ)β (8)

Where each component in β ∈ Rn−1 is drawn from a nor-
mal distribution with zero mean and unit variance.

To construct a parametric height map face model we
sampled p = 2000 faces f(β1), . . . , f(βp) from the BFM.
Each face is then aligned against the mean face µ using
Eq. (6). We denote the aligned faces as fA(·). The aligned
face is then projected into the height map representation
Hi = projM (fA(βi)) to obtain the data matrix

D = [vec(H1), . . . , vec(Hp)] ∈ RNM×p. (9)

We now apply a covariance based PCA to the mean normal-
ized data to obtain the height map face model

FH = (µH,σH,UH) (10)

where µH = 1
p

∑p
i=1Hi ∈ RNM is the mean face of the

statistical model, σH ∈ Rp−1 is the standard deviation and
UH ∈ RNM×p−1 is an orthonormal basis of principal com-
ponents as in Eq. (7).

Fitting a parametric height map face model to a height
mapH amounts to finding coefficients β such that

vec(H) = µH + ŨHΣHβ (11)

where ŨH is the matrix that contains the first q � p prin-
cipal components of UH and ΣH = diag(σH). It’s easy to
see that the least squares solution is given by

β∗ = Σ−1H Ũ>H(vec(H)− µH). (12)

This model fitting approach is very sensitive to noise and
outliers, therefore we propose an extension that weighs

the contribution of every facial point differently. Given a
weight matrix W̃F ∈ RM×N we want to minimize

WF vec(H) =WF

(
µH + ŨHΣHβ

)
(13)

where WF = diag(vec(W̃F )) ∈ RMN×MN . Again one
can easily see that the least squares solution is given by

β∗ = Σ−1H (Ũ>HW
2
F ŨH)

−1Ũ>HW
2
F (vec(H)− µH). (14)

6. Optimization
Low dimensional parametric face models yield smooth

and visually pleasing reconstructions but cannot represent
instance specific shape details such as large moles, even
if they are observed well in the input data. Especially for
tasks such as authentication this is not desirable as such
instance specific data is important to distinguish one per-
son from another. The input depth information is very de-
tailed but often quite noisy, especially when computed on
mobile devices with limited resources. The optimization
procedure proposed in this paper tries to find a good trade-
off between the two afore mentioned extremes. It tries to
enforce a smooth result while also preserving facial details
that are not present in the face model. This, for example,
allows us to get a complete reconstruction of the whole face
in cases where only one side of the face is well observed and
at the same time the details are still kept in the model for the
well observed side (an example is given in Fig. 4 top row,
right side). We propose the following method to add the de-
tails back to the shape model based reconstruction. From a
height map H of weighted mean distances, cf. Eq. (2), and
a fitted model HF computed using Eq. (14), we compute
the residualR = H−HF . The noise will manifest itself as
random variation around zero while errors in the geometry
will be visible as consistent positive or negative deviations
from zero. This can be exploited by regularizing the resid-
ual difference map with a smoothness prior which enforces
smooth surfaces but still allows for discontinuities, such as
the Huber Total Variation [10]. Taking all these considera-
tions into account we propose to minimize

E(u) =
∑
i,j

‖∇ui,j‖ε + λ
∥∥WO

i+jN (ui,j −Ri,j)
∥∥2
2

(15)

where u ∈ RM×N is the sought solution, WO =
diag(vec(V))−1 vec(C) ∈ RMN is a weight vector that is
proportional to the sample count and inversely proportional
to the variance. Further, weighting parameter λ ∈ R≥0
trades solution smoothness against data fidelity and ‖·‖ε de-
notes the Huber norm [10]. The rationale behind the choice
of WO is the following. If the variance V is low and the
number of samples C is high, the mean distance H should
be accurate. Therefore, we want to strongly penalize a de-
viation from the residual. This is indeed the case as WO
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Figure 3. Experimental evaluation of the reconstruction error for varying number of depth maps, noise and outliers on synthetic data. First
row: faces sampled from the BFM [33] that are used as ground truth for the evaluation. For each face we have rendered 1 depth map from
−45◦, 1 frontal depth map (denoted as 1∗), 2 depth maps from −45◦ and +45◦ and 5 respectively 11 depth maps sampled uniformly
between−45◦ and 45◦. Each depth map has been corrupted with Gaussian noise with 0 mean and standard deviation σ ∈ {0, 1, 2, 3, 4, 5}
and up to 10% outliers sampled uniformly from [0, 10]. A unit is equivalent to 1mm. Second row: reconstruction result with 11 depth
maps, no noise and no outliers. Third row: reconstruction result with 5 depth maps, σ = 2 and 10% outliers. Fourth row: reconstruction
result with 1 lateral depth map, σ = 5 and 10% outliers. The table reports the average and maximal error in mm for all possible
combinations averaged over 10 faces sampled from the BFM that have not been used to train the height map face model.

will be large. On the other hand, if the variance is high or
the number of samples is low, it’s likely that the mean dis-
tance will not be very accurate and therefore WO should be
small. The final optimized residual u is added back to the
fitted model to obtain the final solution

H = HF + u. (16)

The proposed energy is convex in u and can be efficiently
optimized using a first-order primal-dual algorithm [10].

7. Experimental Evaluation
7.1. Reconstruction Accuracy on Synthetic Data

To assess the accuracy and robustness of the proposed
method we performed the following experiment. We have

sampled 10 faces from the BFM that have not been used
to create the height map face model FH. For each face
we have rendered 11 depth maps from positions that see
the face at angles between −45◦ and 45◦, where 0◦ de-
notes a frontal viewing position. Each depth map has been
corrupted with noise sampled from a normal distribution
with 0 mean and standard deviation σ ∈ {0, 1, 2, 3, 4, 5}
and contaminated with up to 10% outliers sampled from
a uniform distribution between [0, 10]. We reconstructed
the face model with a varying number of depth maps, noise
and outliers. To compute the average distance in millime-
tres between the original model and the reconstruction we
use [12]. The results are reported in Fig. 3 along with ren-
derings of the reconstructions for a few selected configu-
rations. The second row shows an ideal case with many
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Figure 4. Experimental evaluation of the reconstruction error for varying number of depth maps on real data. Left column: results computed
using all available depth maps (between 75 and 105). Right column: results computed using 5 depth maps. From left to right in each col-
umn: Result computed using TV-Hist [43], Result computed by regularizing directly the integrated depth in the height map representation
(only right column), distance between TV-Hist and regularized integrated depth (only right column), fitted height map model (q = 100
principal components), distance between TV-Hist result and fitted height map model, proposed approach, distance between TV-Hist and
proposed approach. The color map units are in mm.

depth maps, no noise and no outliers which has a very low
reconstruction error of only 0.1mm on average with a max-
imal error of 0.9mm. This shows again that the proposed
height map representation yields a good parametrization of
the face. The third row shows that even with considerable
noise (σ = 2mm) and outliers (10%) the reconstruction ac-
curacy is still very high when using 5 depth maps which
cover all parts of the face. In this case the average and max-
imal errors amount to 0.4mm and 1.7mm, respectively. In
the extreme case, where only a single depth map that sees
the face from the side with strong noise σ = 5mm and 10%
outliers is used, the errors get bigger. However, the recon-
struction nicely fills in the missing part thanks to the height
map shape model and yields a visually plausible result.

7.2. Reconstruction Accuracy on Real Data

To validate the performance of the proposed approach on
real data we have captured images of three subjects with the
back camera of a LG Nexus 6P smart phone with locked
auto exposure and autofocus at a resolution of 1280 × 960
pixels. To simulate a big mole we have attached a raisin
to the cheek of one of the subjects. We have then computed
the extrinsic calibrations using VisualSFM [41]. To get high
quality reconstructions, which we consider as the reference
solution for the quantitative evaluation, for each subject we
have used our implementation of TV-Hist [43], a very ac-
curate volumetric depth map fusion approach, using depth

maps computed with the publicly available plane sweeping
implementation of [17]. A visual comparison of the recon-
struction accuracy of the fitted height map model and the
full proposed approach is presented in Fig. 4. In a first ex-
periment we used all the depth maps to get the best possi-
ble reconstruction. For the height map face model we have
used q = 100 components which contain 98.4% of the vari-
ation present in the data that has been used to the train the
model. Generally, the full proposed approach yields recon-
structions that have a smaller distance to the reference solu-
tion. The most prominent difference is visible in the model
with the mole, which simply cannot be represented using
just the height map shape model. Using our proposed ap-
proach we recover such instance specific shape details that
are strongly seen in the data by optimizing for a smooth
residual as explained in Sec. 6. In a second experiment we
have taken the first 5 depth maps of each sequence. Those
consist of mostly one depth map that sees the face at a close
to frontal view and a few more depth maps that see the face
with increasing angle from the left side. Here, we immedi-
ately observe that a reconstruction without underlying face
model does not lead satisfactory results, as parts of the face
are not well covered by measurements. To underline this we
made an additional experiment where we use the regulariza-
tion of described in Sec. 6 directly on the integrated depth,
i.e. no shape model is used. This leads to inferior results
in areas where the data evidence is small. Using our pro-
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Figure 5. Results computed on a mobile device using the proposed approach. From left to right: example of input image, integrated depth
before alignment, distance of integrated depth before alignment to mean face, integrated depth after alignment, distance of integrated depth
after alignment to mean face, fitted height map model, proposed approach, proposed approach with texture.

posed formulation we can recover the geometry with high
accuracy.

8. Results

If not stated explicitly in the text all the results in the pa-
per have been generated with the following settings. The
camera center and the mirror parameter are set to C0 =
(0, 20,−20)> and ξ = 50, respectively. The height map
resolution is set to 100× 100 pixels. The alignment thresh-
old is set to τA = 20. The number of principal components
of the height map face model FH have been set to q = 35.
The optimization parameters have been set to ε = 0.5 and
λ = 10. All models are optimized using 1000 iterations.
All the final results presented in Fig. 5 have been computed
on a LG Nexus 5 or Motorola Nexus 6 smart phone. The ex-
trinsic calibrations, depth maps and initial landmark based
alignment are computed in real-time on the mobile device
using the methods presented in [38, 24, 34]. The resolution
of the depth maps is 320×240 pixels. Our unoptimized im-
plementation on average requires 40ms to integrate a sin-
gle depth map, 1.3s for the alignment, 80ms for the model
fitting and 1.5s for the optimization. Additionally the com-
putation of the depth maps using the method proposed in

[24] requires 170ms per depth map. The computation of
the depth map and the integration into the height map rep-
resentation can be done online while scanning. The respec-
tive runtimes on a commodity PC running an Intel Core i7-
2700K CPU at 3.50GHz are 13ms for the depth integration
of a single depth map, 130ms for the alignment, 20ms for
the model fitting and 150ms for the optimization.

9. Conclusion

We presented an efficient and accurate method for recon-
structing faces on commodity mobile devices. Our experi-
mental evaluation shows that our model is able to accurately
recover the facial geometry and even recovers instance spe-
cific shape details. We showed several model of faces which
are fully computed on a mobile phone in only a few sec-
onds. Future work could improve the speed and robustness
of the method by using discriminatively trained classifiers.
Using an atlas of multiple height maps could be a direction
to further improve the accuracy of the method.
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