
Direct Visual Odometry for a Fisheye-Stereo Camera

Peidong Liu1, Lionel Heng2, Torsten Sattler1, Andreas Geiger1,3, and Marc Pollefeys1,4

Abstract— We present a direct visual odometry algorithm for
a fisheye-stereo camera. Our algorithm performs simultaneous
camera motion estimation and semi-dense reconstruction. The
pipeline consists of two threads: a tracking thread and a
mapping thread. In the tracking thread, we estimate the camera
pose via semi-dense direct image alignment. To have a wider
field of view (FoV) which is important for robotic perception,
we use fisheye images directly without converting them to
conventional pinhole images which come with a limited FoV.
To address the epipolar curve problem, plane-sweeping stereo
is used for stereo matching and depth initialization. Multiple
depth hypotheses are tracked for selected pixels to better
capture the uncertainty characteristics of stereo matching.
Temporal motion stereo is then used to refine the depth and
remove false positive depth hypotheses. Our implementation
runs at an average of 20 Hz on a low-end PC. We run
experiments in outdoor environments to validate our algorithm,
and discuss the experimental results. We experimentally show
that we are able to estimate 6D poses with low drift, and
at the same time, do semi-dense 3D reconstruction with high
accuracy. To the best of our knowledge, there is no other existing
semi-dense direct visual odometry algorithm for a fisheye-stereo
camera.

I. INTRODUCTION
Forster et al. [8] and Engel et al. [5] started a new wave

of semi-direct and direct visual odometry (VO) methods
respectively for high-speed motion estimation. Previously,
traditional feature-based visual odometry methods [19, 10]
were dominant, but have fallen out of favor as they involve
the computationally expensive tasks of feature descriptor
computation and outlier identification in a set of feature
correspondences. These tasks have been made redundant by
semi-direct and direct visual odometry methods which di-
rectly use pixel intensity values instead of hand-crafted high-
dimensional feature descriptors. Consequently, these meth-
ods are able to run at high frame rates and with less compu-
tational resources, and are most suited for computationally-
constrained mobile robotic applications.

Semi-direct and direct visual odometry methods gener-
ally follow the simultaneous-tracking-and-mapping paradigm
[14]. These two types of methods are similar in the aspect
that pixel intensity values are used for both motion estimation
and stereo matching. However, semi-direct methods use
indirect pose and structure optimization which minimizes
feature-based reprojection errors while direct methods use
direct pose and structure optimization which minimizes

1Computer Vision and Geometry Group, Department of Computer Sci-
ence, ETH Zürich, Switzerland

2Robotics Autonomy Lab, Manned - Unmanned Programme, Information
Division, DSO National Laboratories, Singapore

3Autonomous Vision Group, MPI for Intelligent Systems, Tübingen,
Germany

4Microsoft, Redmond, USA

photometric errors. The semi-direct approach of Forster et al.
[8] has both direct and feature-based characteristics. The
direct method of image alignment is used to estimate the
initial motion. At the same time, feature-based methods are
used to implicitly obtain feature correspondences through
feature alignment, and feature-based optimization is used to
optimize the pose and landmark coordinates based on feature
correspondences over a window of frames. In contrast, Engel
et al. [5] exclusively uses direct techniques. A semi-dense
depth map is propagated from frame to frame, and refined
with depth values that are obtained from variable-baseline
stereo matching for pixels with high gradient values. At
the same time, the depth map with respect to the most
recent keyframe is used to track current frame via direct
image alignment. Another difference between the semi-direct
approach of Forster et al. [8] and the direct approach of Engel
et al. [5] is the number of pixels used for motion estimation.
Similarly to conventional feature-based VO methods, the
semi-direct approach samples features very sparsely while
the direct approach uses a much larger number of pixels with
high gradients. In other words, the direct approach is able
to do motion estimation and semi-dense 3D reconstruction
simultaneously. This motivates us to follow the formulation
of the direct method proposed by Engel et al. [5] for our
algorithm.

The use of a monocular pinhole camera in [5, 8, 20] leads
to scale drift. Researchers have proposed the use of inertial
measurement units (IMUs) [15, 17] and stereo cameras
[4, 16] to eliminate scale drift. We see a stereo camera as
more robust than an IMU; noisy accelerometer measurements
on vehicle platforms with considerable amounts of vibration
do not allow precise observations of scale whereas a stereo
camera is immune to effects of vibration as long as the
mount does not allow the vibration to distort the extrinsic
stereo parameters. Furthermore, fisheye cameras improve
robustness by significantly increasing the number of image
pixels corresponding to static areas in dynamic environments
and which can be used for accurate motion estimation.

Therefore, we propose a direct visual odometry algorithm
for a fisheye-stereo camera in this paper. The proposed
algorithm enables mobile robots to do motion estimation and
semi-dense 3D reconstruction simultaneously. Real world
experimental results show that our algorithm not only gives
low-drift motion estimation but also is able to do accurate
semi-dense 3D reconstruction.

The rest of the paper is organized as follows. Section II
provides an overview of the related work. Section III lists
the main contributions of our method. Section IV and Sec-
tion V describes the formulations of our algorithm in detail.

Section VI discusses the evaluation results of our proposed
method with real-world datasets.

II. RELATED WORK

A. Monocular vs. Stereo

Forster et al. [9] and Engel et al. [7] make extensions
to their seminal work in semi-direct [8] and direct visual
odometry [5] respectively for monocular cameras moving at
high speeds. In [9], edgelet features are tracked in addition to
corner features. In turn, motion estimates are more accurate,
especially in environments lacking in corner features. They
use motion priors from either a constant velocity model or
gyroscopic measurements to make tracking more robust and
faster. With motion priors, the initial motion estimate for
image alignment is closer to the actual value, resulting in
convergence at the global minimum, especially in the pres-
ence of local minima. Furthermore, convergence is faster due
to a fewer number of iterations in optimisation. In contrast to
Forster et al. [9] which both minimizes photometric and geo-
metric (reprojection) errors, Engel et al. [7] only minimizes
photometric errors. In this case, for more accurate results,
a photometric calibration is used in addition to a standard
geometric calibration that models image projection and lens
distortion. Such a photometric calibration accounts for a non-
linear response function, lens vignetting, and exposure time.
Besides camera poses, they also optimize affine brightness
parameters, inverse depth values, and camera intrinsics.

Stereo visual odometry resolves scale ambiguity in monoc-
ular visual odometry by estimating metric depth from stereo
images with a known baseline. Forster et al. [9] expand their
original semi-direct visual odometry method [8] for monocu-
lar cameras to multi-camera systems. Omari et al. [18] follow
the direct approach advocated by Engel et al. [5] but neither
propagate nor update a semi-dense depth map. Instead, they
directly obtain the depth map from stereo block matching
applied to rectified stereo images, and uses this depth map to
track new frames. Engel et al. [6] improve on their original
direct visual odometry method [5] by incorporating depth
measurements from static stereo in addition to those from
temporal stereo.

B. Pinhole vs. Fisheye

With a fisheye camera comes a large field of view. This
can be advantageous in urban settings with many moving
vehicles which can otherwise occlude a pinhole camera’s
field of view, making tracking impossible. Both semi-direct
and direct visual odometry methods for pinhole cameras
typically perform disparity search along the epipolar line.
However, epipolar curves instead of epipolar lines exist in
fisheye images. A fisheye camera brings added computational
complexity to epipolar stereo matching as epipolar curves
are much more expensive to compute. Caruso et al. [3]
do a disparity search along the epipolar curve. We can
circumvent the problem of epipolar curves by using the
naı̈ve step of extracting rectified pinhole images from fisheye
images at the expense of a significant loss of field-of-view.
Heng and Choi [13] propose a semi-direct approach for a

fisheye-stereo camera and which directly operates on fisheye
images. They use a fisheye camera model in both image
alignment, and pose and structure refinement, and leverage
plane-sweeping stereo for direct stereo matching with fisheye
images. However, there exists no direct approach for a
fisheye-stereo camera to the best of our knowledge.

III. CONTRIBUTIONS
The main contribution of this paper is a direct visual

odometry algorithm for a fisheye-stereo camera. To the best
of our knowledge, no direct visual odometry algorithm exists
for a fisheye-stereo camera.

Our paper is most similar in spirit to that of Engel et al.
[5] with three key differences:

1) We use fisheye cameras instead of pinhole cameras.
2) We avoid scale ambiguity by using depth measure-

ments from wide-baseline stereo.
3) We keep track of multiple depth hypotheses when

initializing depth values for new pixels to track.
In wide-baseline stereo, it is common to encounter many

local minima, making it difficult to find correct depth values.
We solve this problem by keeping track of multiple depth
hypotheses corresponding to local minima, and eliminating
incorrect hypotheses over time until we are left with a single
depth hypothesis.

IV. NOTATION
We denote the world reference frame as F�!W , the stereo-

camera reference frame as F�!S , and the individual camera
reference frames as F�!C1 and F�!C2 . Here, C1 is the reference
camera in the stereo camera, and thus, F�!C1 coincides with
F�!S . We denote the image from camera Ci at time step k as
IkCi

, and the stereo frame at time step k as F k
S = {IkC1

, IkC2
}.

IkCi
(u) is the intensity of the pixel with image coordinate u.

The camera projection model ⇡ : R3 7! R2 projects a
landmark with coordinates Ci

p = [x y z]T in F�!Ci to an
image point u = [u v]T in ICi :

u = ⇡(Ci
p). (1)

We use the unified projection model [2, 11] whose intrinsic
parameters are known from calibration. Given the inverse
projection function ⇡�1, we recover the coordinates of the
landmark corresponding to an image point u in ICi for which
the depth du 2 R is known:

Ci
p = ⇡�1(u, du). (2)

If the depth is not known, we recover the ray fu in F�!Ci

and passing through the landmark that corresponds to the
image point u in Ci:

Ci
fu = ⇡�1(u). (3)

We denote the stereo camera pose at time step k as a
rigid body transformation Tk

SW 2 SE(3) from F�!W to
F�!S and whose rotation matrix part is Rk

SW , corresponding
quaternion part is qk

SW , and translation part is tkSW . Simi-
larly, we denote the pose of camera Ci at time step k with

Plane-sweeping
stereo

Model-based
motion prediction

Motion stereo

Direct image
alignment

KF?

Local map

Request KF

Insert

Refine

Tracker Mapper

Fig. 1: System overview

Tk
CiW

= TCiST
k
SW . TCiS is known from calibration. The

rigid body transformation Tk
CiW

maps a 3D point Wp in
F�!W to a 3D point Ci

p in F�!Ci :

Ci
p = Tk

CiW Wp. (4)

Given the fact that a rigid body transformation matrix
is over-parameterized, on-manifold optimization requires a
minimal representation of the rigid body transformation. In
this case, we use the Lie algebra se(3) corresponding to the
tangent space of SE(3). We denote the algebra elements,
also known as twist coordinates, with ⇠ = [v !]T where v
is the linear velocity and ! is the angular velocity. We use
the exponential map to map the twist coordinates ⇠ in se(3)
to a rigid body transformation T in SE(3):

T(⇠) = exp(⇠). (5)

Similarly, we use the logarithm map to map a rigid body
transform T in SE(3) to twist coordinates ⇠ in se(3):

⇠ = log(T(⇠)). (6)

V. ALGORITHM

In this section, we describe our semi-sense visual odome-
try algorithm for a fisheye-stereo camera. As shown in Fig. 1,
we follow the simultaneous-tracking-and-mapping paradigm
[14], which encompasses a tracking thread and a mapping
thread. The tracking thread tracks the current frame with
respect to a keyframe. The mapping thread initializes and
refines the depth map corresponding to the current keyframe;
binocular stereo and temporal stereo are used for depth
initialization and refinement respectively. The tracking thread
only processes images from the reference camera in the
stereo pair for efficiency considerations while the mapping
thread processes images from both cameras. We describe
each step in the pipeline in detail.

A. Semi-Dense Image Alignment

The tracking thread of our pipeline tracks the current
frame against a keyframe by using semi-dense direct im-
age alignment. In particular, we estimate the camera pose
corresponding to the stereo-camera reference frame at time

step r by minimizing the following cost function which is
the sum of squared photometric errors:

E(Tk,r
C1

) =
X

i2⌦(IrC1
)

r2i (7)

=
X

i2⌦(IrC1
)

(IrC1
(ui)� IkC1

(⇡(Tk,r
C1

⇡�1(ui, dui)))
2,

(8)

where ⌦(IrC1
) is the set of high-gradient pixels in the

keyframe, and Tk,r
C1

is the transformation from the keyframe
to the current frame at time k. The camera pose correspond-
ing to the current frame can be recovered from the known
camera pose corresponding to the keyframe.

The above cost function is minimized iteratively by using
the Gauss-Newton method. To achieve better efficiency, we
employ the inverse compositional algorithm from [1]. Here,
we do a one-time computation of the Jacobian and Hessian
matrices instead of re-computing them for each iteration.
Specifically, we minimize the following cost function for
each iteration,

E(⇠) =
X

i2⌦(IrC1
)

(IrC1
(⇡(T(⇠)⇡�1(ui, dui))� (9)

IkC1
(⇡(Tk,r

C1
⇡�1(ui, dui)))

2. (10)

Using the chain rule, we derive the Jacobian matrix:

Ji =
@ri(⇠)

@⇠
= rIrC1

· @⇡

@Ci
pi

·
@(T(⇠)C1

pi)

@⇠
. (11)

According to the Gauss-Newton method, we can compute
the update ⇠:

⇠ = �(
X

i2⌦(IrC1
)

JT
i Ji)

�1
X

i2⌦(IrC1
)

riJ
T
i . (12)

The motion estimate between the current frame and the
keyframe is then updated:

Tk,r
C1

= Tk,r
C1

T(⇠)�1. (13)

We use the Huber robust weighting scheme for the resid-
ual error of each pixel to suppress the effect of outliers.
To achieve better convergence performance, a coarse-to-
fine approach using multiple pyramid levels is used in the
optimization method. Furthermore, the initial camera pose
for the above optimization procedure is estimated using a
constant velocity motion model as shown in Fig. 1.

B. Plane-Sweeping Stereo

For a fisheye-stereo frame, pixel correspondences lie on
epipolar curves instead of straight epipolar lines. Thus,
conventional epipolar line disparity search algorithms cannot
be used for fisheye stereo matching. To use fisheye images
directly without rectifying them to pinhole images, we use
the plane-sweeping stereo algorithm [12] for fisheye stereo
matching to initialize the depth map of the keyframe. Plane-
sweeping stereo assumes that scenes are locally planar and
tests a set of plane hypotheses. These plane hypotheses are

used to warp pixels from a reference view to the current
view for similarity matching. The plane hypothesis which
gives the maximum similarity measure is recorded and used
to compute the ray depth for the corresponding pixel. The
algorithm is implemented based on [12], and we will discuss
the details as follows.

We define a set of plane hypotheses {n1, d1},. . . ,
{nm, dm}, . . . ,{nM , dM} where nm and dm are the normal
and depth respectively of the mth plane in F�!C1 . For each
high-gradient pixel in the keyframe image IrC1

, we evaluate
each plane hypothesis by computing the corresponding ho-
mography HC2C1 and using it to warp an image patch from
IrC1

to IrC2
such that the warped 7x7 image patch in IrC1

is
centered on the selected pixel point:

HC2C1 = RC2C1 �
tC2C1nm

T

dm
. (14)

For the plane hypotheses, we use all possible permutations
drawn from 64 depth values over the range [0.5 30] m
with a constant disparity step size, and fronto-parallel and
ground plane orientations. In total, 128 plane hypotheses are
generated.

We compute the similarity score based on zero-mean
normalized cross-correlation (ZNCC) between the image
patch in IrC1

centered on the selected high-gradient pixel
point, and warped image patch from IrC2

. For a given plane
hypothesis {ni, di}, the depth du of the selected pixel u in
IrC1

can be further computed as:

du = � di
fu · ni

. (15)

Stereo matching usually has ambiguities due to repetitive
textures, occlusions, and so on. Experimentally, we find the
estimated depth map using a winner-takes-all approach to be
rather noisy. To better capture the uncertainty characteristics
of the estimated depth, we propose to keep track of multiple
depth hypotheses for each pixel. Since the procedure to
get these depth hypotheses are the same for all pixels, we
illustrate the concept for one pixel. For each pixel, we
accumulate a 1D (⇢i,Si) volume, where ⇢i is the inverse
depth and Si is its corresponding ZNCC score. We select
only the elements in the volume such that their ZNCC scores
Si are larger than a pre-defined threshold. We use a threshold
value of 0.85 in our experiments; a ZNCC score of 1.0
is considered perfect. All the selected elements from this
volume are then clustered according to ⇢i. In particular,
we sort the elements according to ⇢i. We separate two
neighboring elements ⇢i and ⇢j into two different clusters
if their inverse ray depth difference |⇢i� ⇢j | is larger than a
pre-defined separation distance. We use a cluster separation
distance of 0.1. We fit a Gaussian model to each cluster as

µ =

P
i Si · ⇢iP

i Si
, (16)

�2 =

P
i Si · (⇢i � µ)2P

i Si
. (17)

Furthermore, we choose the best score among all Si be-
longing to the current cluster as the representative score for

the current cluster. The cluster with the best score for each
pixel is used for direct image alignment. All clusters for
each pixel are tracked for temporal motion stereo so that
depth ambiguities can be eliminated and the ray depth can
be refined iteratively.

C. Temporal Motion Stereo

We use temporal motion stereo to refine the estimated
depth and to eliminate depth ambiguity in the case that there
is more than one inverse depth cluster for each pixel. Due
to the epipolar curve issue for fisheye images mentioned
earlier, we cannot use the conventional epipolar line disparity
search method for stereo matching. Instead, we propose a
technique to refine the mean depth estimate for each ray
segment corresponding to a cluster, which is bounded by
a two-sigma distance from the mean inverse depth of that
cluster. Since this technique is applied in the same way to
each cluster and each pixel, we use one cluster to explain
the concept.

Each cluster or each depth hypothesis is parameterized
by five parameters: its mean inverse ray depth µ⇢, the
variance of its inverse ray depth �2

⇢, its best matching score
Sbest, a good matching count nInliers, and a bad matching
count nOutliers. µ⇢, �2

⇢ and Sbest are initialized from
plane-sweeping stereo. Both nInliers and nOutliers are
initialized to be 2 in our experiment to avoid the zero division
problem when we compute either the inlier ratio or the
outlier ratio. Based on the initial µ⇢ and �2

⇢, we assume
that the correct inverse ray depth would lie in the interval
[µ⇢ � 2�⇢, µ⇢ + 2�⇢], which has a probability of 95.45%
statistically. To get subpixel projection matching accuracy,
we subdivide this interval iteratively until the pixel distance
between two neighboring projected pixels falls below 1 pixel.
For all the sampled inverse ray depths within this interval, we
compute their ZNCC matching scores between the reference
image and the current image in the same way we compute the
scores in plane-sweeping stereo. We use the fronto-parallel
and ground plane orientations and current sampled inverse
ray depth to compute the homography matrices. Using these
homography matrices, we then compute the ZNCC scores
for a 7⇥7 patch with the current refined pixel centered at
the patch. As in plane-sweeping stereo, each cluster will
then accumulate its own local volume. If this volume is not
empty, we fit a new Gaussian model for it and fuse it with
the original model:

µrefined =

µprev

�2
prev

+ µcur

�2
cur

1
�2
prev

+ 1
�2
cur

, (18)

�2
refined =

1
1

�2
prev

+ 1
�2
cur

. (19)

If no good matching (i.e., Sbest < 0.85) is found, then
we increment nOutliers by 1. Otherwise, we increment
nInliers by 1. If the outlier ratio (i.e., nOutliers

nInliers+nOutliers)
is larger than a pre-defined threshold, we label the current
cluster or depth hypothesis as an outlier and stop tracking
it. If only one cluster remains after several motion stereo

refinement iterations, and its corresponding variance falls
below a certain threshold, we mark the current hypothesis as
the true depth estimate and further mark this pixel’s depth as
converged. If all hypotheses are marked as outliers, we label
this pixel as a bad pixel and consider its ray depth estimation
to have diverged. Only pixels not labeled as either converged
or diverged are refined in the next iteration.

VI. EXPERIMENTS AND RESULTS

We evaluate our direct fisheye-stereo visual odometry
pipeline using real world datasets. In addition, we compare
our direct fisheye-stereo visual odometry pipeline against the
semi-direct fisheye-stereo visual odometry pipeline of Heng
and Choi [13]. The data was collected on a ground vehicle
as shown in Fig. 4. Datasets from two different environments
are used to evaluate our pipeline: a vegetated environment
and an urban environment. Fig. 2 and Fig. 3 show sample
images captured on our ground vehicle in both environments.
We describe our testbed platform in Section VI-A and
show and discuss experimental results in Section VI-B. For
ground truth data, we use the post-processed pose estimates
from a GPS/INS system, which according to manufacturer
specifications, has a position error of 2 cm in the absence of
GPS outages.

Fig. 2: A view of the vegetated
environment.

Fig. 3: A view of the urban
environment.

A. Testbed Platform

We have two fisheye-stereo cameras with a 50 cm baseline
on our vehicle platform. Fig. 4 shows the locations of the
fisheye-stereo cameras marked by red ellipses. The left and
right fisheye-stereo cameras look 45� to the left and right
respectively. All cameras output 1280⇥960 color images at
30 frames per second, and are hardware-time-synchronized
with the GPS/INS system.

We calibrate the multi-camera system using a grid of
AprilTag markers, and use hand-eye calibration to compute
the transformation between the reference frames of the multi-
camera system and the INS. This transformation allows direct
comparison of visual odometry pose estimates with the post-
processed GPS/INS pose estimates which are used as ground
truth.

B. Experiments

To achieve real-time performance, we use downsampled
640⇥480 images from the left fisheye-stereo camera as input
to our direct visual odometry pipeline. The vehicle was
driven with a speed range of 10-15 km/h for both datasets.

Fig. 4: DSO’s Isuzu D-Max platform equipped with two fisheye-
stereo cameras which are shown enclosed in red ellipses.

The trajectory lengths are 289 m and 199 m for the vegetated
and urban datasets respectively. Fig. 5 and Fig. 8 show the
post-processed pose estimates from the GPS/INS system,
our visual odometry implementation, and a state-of-the-art
semi-direct visual odometry implementation from Heng and
Choi [13] in red, green and blue respectively. A black circle
marks the starting point, while red, green and blue circles
mark the end of the trajectories. Fig. 6 and Fig. 9 plot the
absolute x � y position errors against traveled distance for
the vegetated and urban environments respectively. Similarly,
Fig. 7 and Fig. 10 plot the absolute yaw errors for the
vegetated and urban environments. We compute the position
error at a given time by computing the norm of the difference
between the x � y components of the pose estimates from
visual odometry implementations and the GPS/INS system.
We compute the yaw error at a given time by computing the
absolute difference between the estimated yaw from visual
odometry and the GPS/INS system at that time.

xy-drift yaw-drift
VO-vegetated-ours 0.86% 0.013 deg/m
VO-vegetated-Heng 0.96% 0.0138 deg/m
VO-urban-ours 0.6% 0.0063 deg/m
VO-urban-Heng 1.6% 0.011 deg/m

TABLE I: Pose accuracy comparison between our direct visual
odometry implementation and [13]

We compare the accuracy of our direct visual odome-
try implementation against that of [13] using position and
orientation drift metrics. We compute the x � y and yaw
errors averaged over all possible subsequences of length
{100, 200} meters. Table I shows that our direct visual
odometry implementation outperforms Heng and Choi [13]
for both the vegetated and urban environments. In addition,
we are able to generate a semi-dense point cloud that can
be used for dense mapping. Furthermore, Fig. 11 shows the
reconstructed and colored point cloud generated by our visual
odometry pipeline. The point cloud only includes points
which are labeled as converged by our motion stereo. To

better show the reconstruction quality of our pipeline, we
choose different viewpoints for purposes of comparison. A
supplementary video showing the experimental results can
be found at https://youtu.be/NOiIVO0jzuc.

Our pipeline is implemented and evaluated on a PC with
an Intel i7 CPU @ 2.9 GHz and a low-end Nvidia GTX
480 GPU. We run our tracking thread at 20 Hz on one CPU
core. Both plane sweeping stereo and motion stereo run on
the GPU at around 5 Hz.

One possible reason that our algorithm performs better
than that of [13] could be the use of more information
from observed images. Our algorithm uses most of the
high gradient pixels (>20k) while [13] only samples several
hundred sparse feature points. The use of more information
increases the robustness of the whole algorithm, especially
in poorly textured environments where [13] does not perform
well as shown in Fig. 10.

VII. CONCLUSIONS

We present a direct visual odometry algorithm for a fisheye
stereo camera in this paper. Our algorithm uses fisheye
images directly instead of converting them to conventional
pinhole images, and in turn, reducing the field of view. Plane-
sweeping stereo is used to do stereo matching for fisheye
images which cannot be processed by traditional epipolar
line disparity search algorithms. The estimated depths are
further refined via temporal stereo. By using the refined semi-
dense depth map, a direct image alignment tracker is used to
estimate the current camera pose in real-time. Experimental
results show that our pipeline not only achieves significantly
accurate motion estimates but also outputs a high-quality
point cloud at the same time. In other words, our pipeline
can facilitate real-time localization and dense mapping for
mobile robots.

REFERENCES

[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A
unifying framework. International Journal of Computer
Vision, 56(3):221–255, 2004.

[2] J. Baretto and H. Araujo. Issues on the geometry of cen-
tral catadioptic image formation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2001.

[3] D. Caruso, J. Engel, and D. Cremers. Large-scale direct
slam for omnidirectional cameras. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2015.

[4] B. Clipp, J. Lim, J.-M. Frahm, and M. Pollefeys.
Parallel, Real-Time Visual SLAM. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), 2010.

[5] J. Engel, J. Sturm, and D. Cremers. Semi-dense
visual odometry for a monocular camera. In IEEE
International Conference on Computer Vision (ICCV),
2013.

[6] J. Engel, J. Stückler, and D. Cremers. Large-scale direct
slam with stereo cameras. In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),
2015.

[7] J. Engel, V. Koltun, and D. Cremers. Direct sparse
odometry. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 2017.

[8] C. Forster, M. Pizzoli, and D. Scaramuzza. SVO:
Fast semi-direct monocular visual odometry. In IEEE
International Conference on Robotics and Automation
(ICRA), 2014.

[9] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and
D. Scaramuzza. SVO: Semi-direct visual odometry for
monocular and multi-camera systems. IEEE Transac-
tions on Robotics (T-RO), PP(99):1–17, 2016.

[10] F. Fraundorfer and D. Scaramuzza. Visual odometry:
Part ii - matching, robustness, and applications. IEEE
Robotics And Automation Magazine (RAM), 19(2):78–
90, 2012.

[11] C. Geyer and K. Daniilidis. A unifying theory for
central panaromic systems and practical implications.
In European Conference on Computer Vision (ECCV),
2000.

[12] C. Häne, L. Heng, G. H. Lee, A. Sizov, and M. Polle-
feys. Real-time direct dense matching on fisheye
images using plane-sweeping stereo. In International
Conference on 3D Vision (3DV), 2015.

[13] L. Heng and B. Choi. Semi-direct visual odometry
for a fisheye-stereo camera. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2016.

[14] G. Klein and D. Murray. Parallel tracking and mapping
for small ar workspaces. In International Symposium
on Mixed and Augmented Reality, 2007.

[15] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and
P. T. Furgale. Keyframe-based visualinertial odometry
using nonlinear optimization. International Journal of
Robotics Research, 2015.

[16] J. Lim, J.-M. Frahm, and M. Pollefeys. Online Envi-
ronment Mapping. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011.

[17] A. I. Mourikis and S. I. Roumeliotis. A multi-state
constraint kalman filter for vision-aided inertial navi-
gation. In IEEE International Conference on Robotics
and Automation (ICRA), 2007.

[18] S. Omari, M. Blösch, P. Gohl, and R. Siegwart. Dense
visual-inertial navigation system for mobile robots. In
IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015.

[19] D. Scaramuzza and F. Fraundorfer. Visual odometry:
Part i - the first 30 years and fundamentals. IEEE
Robotics And Automation Magazine (RAM), 18(4):80–
92, 2011.

[20] P. Tanskanen, T. Ngeli, M. Pollefeys, and O. Hilliges.
Semi-Direct EKF-based Monocular Visual-Inertial
Odometry. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015.

https://youtu.be/NOiIVO0jzuc

-20 -10 0 10 20 30 40
-10

0

10

20

30

40

50

x (meters)

y
(m

et
er

s)
 Ground Truth
 Odometry-ours
 Odometry-Heng

Fig. 5: Red, green, and blue lines represent
the trajectories estimated by the GPS/INS
system, our implementation, and [13] re-
spectively in the vegetated environment.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Distance (meters)

Po
si

tio
n

D
rif

t (
m

et
er

s)

 xy-drift-ours
 xy-drift-Heng

Fig. 6: Red and green lines represent the
x � y position drift of the pose estimates
output by our implementation and [13] in
the vegetated environment.

0 50 100 150 200 250 300
0

1

2

3

4

5

Distance (meters)

At
tit

ud
e

D
rif

t (
de

gr
ee

s)

 Yaw-drift-ours
 Yaw-drift-Heng

Fig. 7: Red and green lines represent the
yaw drift of the pose estimates output by
our implementation and [13] in the vegetated
environment.

-60 -40 -20 0 20 40 60
-80

-60

-40

-20

0

20

x (meters)

y
(m

et
er

s)

 Ground Truth
 Odometry-ours
 Odometry-Heng

Fig. 8: Red, green, and blue lines represent
the trajectories estimated by the GPS/INS
system, our implementation, and [13] re-
spectively in the urban environment.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

Distance (meters)

Po
si

tio
n

D
rif

t (
m

et
er

s)
 xy-drift-ours
 xy-drift-Heng

Fig. 9: Red and green lines represent the x�
y position drift of the pose estimates output
by our implementation and [13] in the urban
environment.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Distance (meters)

At
tit

ud
e

D
rif

t (
de

gr
ee

s)

 Yaw-drift-ours
 Yaw-drift-Heng

Fig. 10: Red and green lines represent the
yaw drift of the pose estimates output by
our implementation and [13] in the urban
environment.

Fig. 11: Each subfigure shows a reconstructed point cloud from our VO pipeline and the corresponding image as well as estimated
semi-dense depth maps.

	INTRODUCTION
	Related Work
	Monocular vs. Stereo
	Pinhole vs. Fisheye

	CONTRIBUTIONS
	NOTATION
	ALGORITHM
	Semi-Dense Image Alignment
	Plane-Sweeping Stereo
	Temporal Motion Stereo

	EXPERIMENTS AND RESULTS
	Testbed Platform
	Experiments

	CONCLUSIONS

