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ABSTRACT

The teacher-student (T/S) learning has been shown to be effec-
tive for a variety of problems such as domain adaptation and model
compression. One shortcoming of the T/S learning is that a teacher
model, not always perfect, sporadically produces wrong guidance in
form of posterior probabilities that misleads the student model to-
wards a suboptimal performance. To overcome this problem, we
propose a conditional T/S learning scheme, in which a “smart” stu-
dent model selectively chooses to learn from either the teacher model
or the ground truth labels conditioned on whether the teacher can
correctly predict the ground truth. Unlike a naive linear combination
of the two knowledge sources, the conditional learning is exclusively
engaged with the teacher model when the teacher model’s prediction
is correct, and otherwise backs off to the ground truth. Thus, the stu-
dent model is able to learn effectively from the teacher and even
potentially surpass the teacher. We examine the proposed learn-
ing scheme on two tasks: domain adaptation on CHiME-3 dataset
and speaker adaptation on Microsoft short message dictation dataset.
The proposed method achieves 9.8% and 12.8% relative word er-
ror rate reductions, respectively, over T/S learning for environment
adaptation and speaker-independent model for speaker adaptation.

Index Terms— teacher-student learning, domain adaptation,
speaker adaptation

1. INTRODUCTION

Teacher-student (T/S) learning [1, 2] has been widely applied to a va-
riety of deep learning tasks in speech, language and image process-
ing including model compression [1, 2], domain adaptation [3, 4, 5],
small-footprint natural machine translation (NMT) [6], low-resource
NMT [7], far-field automatic speech recognition (ASR) [8, 9], low-
resource language ASR [10] and neural network pre-training [11].
T/S learning falls in the category of transfer learning, where the net-
work of interest, as a student, is trained by mimicking the behavior
of a well-trained network, as a teacher, in the presence of the same or
stereo training samples. Formally, the T/S learning works by min-
imizing the Kullback-Leibler (KL) divergence between the output
distribution of the student and teacher models, other than from the
hard labels derived from the transcriptions.

Compared to using conventional one-hot hard label as the train-
ing target, the transfer of soft posteriors [1] well preserves the prob-
abilistic relationships among different classes encoded at the output
of the teacher model. Because soft labels provide more information
than hard labels for the model training, the T/S learning results in
better performance as reported in [1, 2, 8]. The largest benefits of
using pure soft labels is learning without any hard labels, enabling
the use of much larger amount of unlabeled data to improve the stu-
dent model performance [1, 8].

One shortcoming of the T/S learning is that a teacher model,
not always perfect, sporadically makes the incorrect predictions that

mislead the student model towards a suboptimal performance. In
such a case, it may be beneficial to utilize hard labels of the training
data to alleviate this effect. Hinton et. al. [2] later proposed an
interpolated T/S learning called knowledge distillation, in which a
weighted sum of the soft posteriors and the one-hot hard label is
used to train the student model. One issue is that the simple linear
combination with one-hot vectors destroys the relationships among
different classes embedded naturally in the soft posteriors produced
by the teacher model. Moreover, proper setting of the interpolation
weight with a fixed value is known to be critical and it varies with
the adaptation scenarios and the qualities of the teacher and ground
truth labels.

In this paper, we propose a conditional T/S learning scheme,
where the student model becomes smart so that it can criticize the
knowledge imparted by the teacher model to make better use of the
teacher and the ground truth. At the initial stage, when the student
model is very weak, it blindly follows whatever knowledge infused
by the teacher model and uses the soft posteriors as the solely train-
ing targets. As the student model grows stronger, it begins to selec-
tively choose the learning source from either the teacher model or the
ground truth labels conditioned on whether the teacher’s prediction
coincides with the ground truth. That is, the student model would
learn exclusively from the teacher when the teacher makes correct
prediction on training samples, and otherwise from the ground truth
when the teacher is wrong. With conditional T/S learning, the stu-
dent makes good use of rich and correct knowledge encompassed by
the teacher, while avoids receiving inaccurate knowledge generated
by the teacher. Another advantage of the conditional T/S learning
over the conventional T/S learning is that it forgoes tuning the inter-
polation weight between two knowledge sources.

We applied the proposed approach to two tasks, domain adapta-
tion and speaker adaptation. In domain adaptation, the student model
is trained using the noise corrupted data in the target domain as in-
put and the soft target obtained from the teacher posterior computed
on the corresponding clean data. We demonstrate the effectiveness
of the proposed approach using CHiME-3 dataset. In speaker adap-
tation, it can be shown that the conventional T/S learning is equiv-
alent to the KLD adaptation [12], where the speaker-independent
model acts as a teacher and the speaker dependent model acts as a
student. Similarly, we apply the conditional T/S learning to further
boost the performance of the KL divergence (KLD) adaptation. We
demonstrate the improvement over the KLD adaptation for super-
vised and unsupervised adaptation on the Microsoft Windows Phone
short message dictation task.

2. TEACHER-STUDENT LEARNING

In T/S learning, a well-trained teacher network takes in an sequence
of training samples XT = {xT

1 , . . . ,x
T
N},xT

i ∈ RDT and predicts
a sequence of class labels. Here, each class is represented by an in-
teger c ∈ {1, 2, . . . , DC} and DC is the total number of classes in



the classification task. The goal is to learn a student network that
can accurately predict the class labels for each of the its input sam-
ples XS = {xS

1 , . . . ,x
S
N},xS

i ∈ R
DS by using the knowledge

transferred from the teacher network. To ensure effective knowledge
transfer, the input sample sequences XT and XS need to be parallel
to each other, i.e, each pair of train samples xT

i and xS
i share the

same ground truth class label ci ∈ {1, 2, . . . , DC}.

2.1. T/S Learning with Soft Labels

T/S learning minimizes the Kullback-Leibler (KL) divergence be-
tween the output distributions of the teacher network and the stu-
dent network given parallel data XT and XS are at the input to the
networks [1]. The KL divergence between the teacher and student
output distributions p(c|xT

i ; θT ) and p(c|xS
i ; θS) is formulated as:

KL
[
p(c|xT

i ; θT )||p(c|xS
i ; θS)

]
=

N∑
i=1

DC∑
c=1

p(c|xT
i ; θT ) log

[
p(c|xT

i ; θT )

p(c|xS
i ; θS)

]
, (1)

i is the sample index, θT and θS are the parameters of the teacher
and student networks, respectively, p(c|xT

i ; θT ) and p(c|xS
i ; θS) are

the posteriors of class c predicted by the teacher and student network
given the input samples xT

i and xS
i , respectively. To learn a student

network that approximates the given teacher network, we minimize
the KL divergence with respect to only the parameters of the student
network while keeping the parameters of the teacher network fixed,
equivalent to minimizing the loss function below:1

LTS(θS) = −
1

N

N∑
i=1

DC∑
c=1

p(c|xT
i ; θT ) log p(c|xS

i ; θS). (2)

2.2. T/S Learning with Interpolated Labels

However, in T/S learning, the knowledge from the teacher is not
accurate when the teacher’s classification decision is incorrect. To
deal with this, Hinton et. al. [2] later suggested an interpolated T/S
method which uses a weighted sum of the soft posteriors and the
one-hot hard label to train the student model. Assuming that the
sequence of one-hot ground truth class labels that both XT and XS

are aligned with is C = {c1, . . . , cN}, The interpolated T/S learning
aims to minimizing the loss function below:

LITS(θS) = −
1

N

N∑
i=1

DC∑
c=1

[
(1− λ)1[c = ci] + λp(c|xT

i ; θT )
]

log p(c|xS
i ; θS), (3)

where 0 ≤ λ ≤ 1 is the weight for the class posteriors and 1[·]
is the indicator function which equals to 1 if the condition in the
squared bracket is satisfied and 0 otherwise. Note that the interpo-
lated T/S learning becomes soft T/S when λ = 1.0 and becomes
standard cross-entropy training with hard labels when λ = 0.0. Al-
though interpolated T/S compensates for the imperfection in knowl-
edge transfer, the linear combination of soft and hard labels destroys
the correct relationships among different classes embedded naturally
in the soft class posteriors and deviates the student model parameters
from the optimal direction. Moreover, the search for the best student
model is subject to the heuristic tuning of λ between 0 and 1.

1In some cases, the senone posteriors generated by the teacher network
are flattened by a temperature T > 1 before serving as the soft labels [2].
But in speech area, T is normally fixed at 1 [9, 13, 14]. We obtain the best
performance when T = 1 and the same conclusion is also reported in [15, 6].

3. CONDITIONAL TEACHER-STUDENT LEARNING

Instead of blindly combining the soft and hard labels, the student
network needs to be critical about the knowledge infused by the
teacher network, i.e., to judge whether the class posteriors are ac-
curate or not before learning from them. One natural judgment is
that the teacher’s knowledge is deemed accurate when it correctly
predicts the ground truth given the input samples, and deemed inac-
curate otherwise. Therefore, the training target for the student model
should be conditioned on the correctness of the teacher’s prediction,
i.e., the student network exclusively uses the soft posteriors from the
teacher as the training target when the teacher is correct and uses the
hard label instead when the teacher is wrong as shown in Fig. 1.

Fig. 1. The framework of conditional T/S learning learning.

In other words, assuming Y = {y1, . . . ,yN},yi ∈ RDC to be
the sequence of conditional class label vectors used as the target to
train the student network, the cth element of yi becomes

yi,c =

{
p(c|xT

i ; θT ), argmaxk∈{1,...,DC} p(k|xT
i ; θT ) = ci

1[c = ci], otherwise,
(4)

under conditional T/S learning. That is to say, the conditional class
label yi is a soft vector of class posteriors if the teacher is correct
and a hard one-hot vector if the teacher is wrong. The loss function
to be minimized is formulated as the cross-entropy between the con-
ditional class labels and the class posteriors generated by the student
network as follows:

LCTS(θS) = −
1

N

N∑
i=1

DC∑
c=1

yi,c log p(c|xS
i ; θS)

= − 1

N

N∑
i=1

{[
DC∑
c=1

p(c|xT
i ; θT ) log p(c|xS

i ; θS)

]
1[ argmax

k∈{1,...,DC}
p(k|xT

i ; θT ) = ci]

+ log p(ci|xS
i ; θS)1[ argmax

k∈{1,...,DC}
p(k|xT

i ; θT ) 6= ci]

}
. (5)

The student network parameters are optimized through standard
back propagation with stochastic gradient decent. With conditional
T/S learning, the student can learn from only the selected accu-
rate knowledge generated by the teacher while simultaneously take



advantage of the well-preserved probabilistic relationships among
different classes and is thus expected to achieve improved perfor-
mance in classification tasks.

4. CONDITIONAL T/S LEARNING FOR ACOUSTIC
MODEL ADAPTATION

With the advent of deep acoustic models, the performance of ASR
has been greatly improved [16, 17, 18].A deep acoustic model takes
the speech frames as the input and predicts the corresponding senone
posteriors at the output layer. To achieve robust ASR over different
domains and speakers, we apply conditional T/S learning to the do-
main and speaker adaptation of deep acoustic models. In these tasks,
both teacher and student networks represent deep acoustic models,
XT and XS are sequences of input speech frames, and c denotes
one senone in the set of all possible senones {1, . . . , DC} predicted
by the teacher and student acoustic models.

4.1. Conditional T/S Learning for Domain Adaptation

ASR suffers from performance degradation when a well-trained
acoustic model is applied in a new domain [19]. T/S learning
[3, 8, 9] and adversarial learning [20, 21, 22, 23, 24] are two effec-
tive approaches that can suppress this domain mismatch by adapting
a source-domain acoustic model to target-domain speech. T/S learn-
ing is more suited for the situation where unlabeled parallel data
is available for adaptation,2 in which a sequence of source-domain
speech features is fed as the input to a source-domain teacher model
and a parallel sequence of target-domain features is at the input
to the target-domain student model to optimize the student model
parameters by minimizing the T/S loss in Eq. (2).

To further improve T/S learning, we introduce the conditional
T/S learning by using the ground truth hard labels C of the adapta-
tion data and propose the following steps for domain adaptation.

1. Use a well-trained source-domain acoustic model as the
teacher network and initialize the student network with the
parameters of the teacher.

2. Use paralleled source and target domain adaptation data as
XT and XS , respectively. All pairs of xT

i and xS
i , ∀i ∈

{1, . . . , N} are frame-by-frame synchronized.

3. Perform T/S learning [1] to train the student network by min-
imizing LTS(θS) in Eq. (2).

4. After Step 3, the student network has performed reasonably
well on target-domain data. Conduct conditional T/S learning
with conditional senone labels Y defined in Eq. (4) to train
the student network by minimizing LCTS(θS) in Eq. (5).

5. Use the optimized student network as the adapted acoustic
model for decoding test utterances in the target domain.

4.2. Conditional T/S Learning for Speaker Adaptation

Speaker adaptation aims at learning a set of speaker-dependent (SD)
acoustic models by adapting an speaker-independent (SI) acoustic
model to the speech of target speakers. Different from domain adap-
tation, speaker adaptation has only access to limited adaptation data
from target speakers and has no access to the source-domain data.

Many techniques have been proposed for speaker adaptation
of deep acoustic models, such as regularization-based [25, 26, 27],
transformation-based [28, 29], singular value decomposition-based

2The parallel data can be either recorded or simulated as in [3].

[30, 31], subspace-based [32, 33] and adversarial learning-based
[34, 35] approaches. Among these, KL divergence (KLD) regu-
larization [25] is one of the most popular methods to prevent the
adapted model from overfitting the limited speaker data. This reg-
ularization is realized by augmenting the training criterion with the
KLD between the output distributions of the SD and SI models.

Apparently, the KLD adaptation is a special case of the inter-
polated T/S learning [12], in which the SI model acts as a teacher,
the SD model acts as a student, and both take the adaptation data as
input. The teacher network is more like a regularizer that constrains
the student network from straying too far away from the teacher net-
work. However, the linear combination between soft posteriors and
hard labels does not make full use of two knowledge sources, and
the best regularization weight λ is subject to heuristic tuning. We
apply the conditional T/S learning to further improve the KLD adap-
tation. That is, when the SI model makes the right predictions, the
SD model exclusively learns from the SI model; when the SI model
is wrong, the adaptation target backs off to the hard labels.

Note that since the SD model grows from the SI model, the adap-
tation can be interpreted as a self-taught learning process. In the step
of learning from the SI model, the SD model basically reviews what
it has already known once again, which sounds not quite informa-
tive. However, if we remove this step, i.e., adapt the SD model only
when the SI model makes a mistake, the performance degrades. This
is because using partial training set leads to catastrophic forgetting
and skews the estimation of the senone distributions for the target
speaker towards those samples the teacher model makes mistakes on
and there is no guarantee that the student model can work well on
those samples the teacher model is good at.

The conditional T/S learning for speaker adaptation consists of
the following steps.

1. Use a well-trained SI acoustic model as the teacher network
and initialize the student network with the parameters of the
teacher.

2. Use adaptation data from a target speaker as both XT and
XS .

3. Perform conditional T/S learning with conditional senone la-
bels Y defined in Eq. (4) to train the student network by
minimizing LCTS(θS) in Eq. (5).

4. Use the optimized student network as the SD acoustic model
for this target speaker.

For unsupervised speaker adaptation, we use the SI model to
generate the hard labels C to judge the SI model itself. Since the
recognition hypotheses are generated through the cooperation of the
SI acoustic model along with the language model, the derived hard
labels are expected to be more accurate than the senone classification
decisions generated by only the SI model at the frame level.

5. EXPERIMENTS

5.1. Domain Adaptation

As a major category of domain adaptation, we first verify conditional
T/S learning with environment adaptation experiments. Specifically,
we adapt a well-trained clean acoustic model to the noisy train-
ing data of CHiME-3 [36] using different methods. The CHiME-3
dataset incorporates Wall Street Journal (WSJ) corpus sentences spo-
ken in challenging noisy environments, recorded using a 6-channel
tablet. The real far-field noisy speech from the 5th microphone chan-
nel in CHiME-3 development data set is used for testing. A standard
WSJ 5K word 3-gram language model (LM) is used for decoding.



System BUS CAF PED STR Avg.
Unadapted 43.47 45.93 30.43 36.13 38.96
Hard Label 24.92 20.63 15.96 18.01 19.84

Soft T/S 22.46 19.10 14.88 16.47 18.20
IT/S (λ = 0.2) 24.84 19.79 15.55 18.36 19.60
IT/S (λ = 0.5) 22.61 18.94 14.52 18.43 18.59
IT/S (λ = 0.8) 23.51 19.10 14.49 16.56 18.37
Conditional T/S 20.72 17.46 12.52 15.09 16.42

Table 1. The WER (%) performance of environment adaptation us-
ing one-hot hard label, T/S, interpolated T/S (IT/S) and conditional
T/S learning on the real noisy test set of CHiME-3.

As a source-domain acoustic model, a clean long short-term
memory (LSTM)- recurrent neural networks (RNN) [37, 38, 39] is
trained with 9137 clean training utterances of CHiME-3 dataset by
using cross-entropy criterion. The 29-dimensional log Mel filter-
bank features together with 1st and 2nd order delta features (totally
87-dimensional) for both the clean and noisy utterances are extracted
by following the process in [40]. The features are fed as the input
of the LSTM after global mean and variance normalization. The
LSTM has 4 hidden layers with 1024 hidden units for each layer.
A 512-dimensional projection layer is inserted on top each hidden
layer to reduce the number of parameters. The output layer of the
LSTM has 3012 output units corresponding to 3012 senone labels.
There is no frame stacking, and the output HMM senone label is de-
layed by 5 frames. Senone-level forced alignment of the clean data
is generated using a Gaussian mixture model-HMM system. The
clean CHiME-3 LSTM acoustic model achieves 7.43% and 38.96%
WERs on clean and real noisy test data of CHiME-3, respectively.
The clean LSTM acoustic model serves as the teacher network in
the subsequent T/S learning methods. Trained with noisy and clean
data using their one-hot hard labels, the multi-style LSTM acoustic
model achieves 19.84% WER on the noisy test data.

For domain adaptation in [3], parallel data consisting of 9137
pairs of clean and noisy utterances in the CHiME-3 training set are
used as the adaptation data for T/S learning. In order to make the
student model invariant to environments, the training data for stu-
dent model should include both clean and noisy data. Therefore, we
extend the original T/S learning work by also including 9137 pairs
of the clean and clean utterances in CHiME-3 for adaptation as in
[4]. As shown in Table 1, soft T/S learning achieves 18.20% av-
erage WERs after environment adaptation, which is 51.3% relative
improvement over the clean model. To further improve the student
model, we perform conditional T/S learning with the help of hard
labels as described in Section 4.1. As a comparison, we conduct in-
terpolated T/S learning [2] with different weights for soft labels. The
conditional T/S learning achieves 16.42% average WERs with 9.8%
and 11.7% relative improvements over soft T/S learning and the best
performed interpolated T/S (λ = 0.5), respectively.

Note that we can get a better student model if we have a better
teacher model. Then, we did a quick experiment by using a 375
hour-trained Cortana model which was used in [3] as the teacher
model to learn the student model with the same CHiME-3 parallel
data. The soft T/S model gets 13.56% WER which is significantly
better the one in Table 1, and the conditional T/S can reach 11.13%
WER, which stands for 17.9% relative improvement over soft T/S.

5.2. Speaker Adaptation

We further perform speaker adaptation on a Microsoft internal Win-
dows Phone short message dictation (SMD) task. The test set con-
sists of 7 speakers with a total number of 20,203 words. A separate

System Supervised Unsupervised
SI 13.95

Hard Label 13.20 13.77
KLD (λ = 0.2) 12.61 13.65
KLD (λ = 0.5) 12.54 13.55
KLD (λ = 0.8) 13.17 13.72
Conditional T/S 12.17 13.21

Table 2. The WER (%) performance of speaker adaptation using
one-hot hard label, KLD and conditional T/S learning on Microsoft
SMD task. The SI LSTM model is trained with 2600 hours Mi-
crosoft live US English data.

adaptation set of 200 sentences per speaker is used for model adap-
tation. We train an SI LSTM acoustic model with 2600 hours of
Microsoft internal live US English data. This SI model has 4 hidden
LSTM layers with 1024 units in each layer and the output size of
each LSTM layer is reduced to 512 by linear projection. The acous-
tic feature is 80-dimensional log Mel filterbank. The output layer
has a dimension of 5980. The LSTM-RNN is trained to minimize
the frame-level cross-entropy criterion. There is no frame stacking,
and the output HMM state label is delayed by 5 frames. A trigram
LM is used for decoding with around 8M n-grams. This SI LSTM
acoustic model achieves 13.95% WER on the SMD test set.

We perform conditional T/S learning as in Section 4.2 to adapt
the SI LSTM with 200 utterances in the adaptation set for each
test speaker. For supervised adaptation, the hard labels come from
the human transcription though forced alignment. For unsupervised
adaptation, we use the SI model to generate the hypothesis. As a
comparison, the standard adaptation with hard labels and KLD adap-
tation [25] with regularization weights λ of 0.2, 0.5 and 0.8 are also
conducted to adapt the SI LSTM. Note that the adaptation with hard
labels is equivalent to KLD adaptation with λ = 0. As in Table 2,
the KLD adaptation produces its best WERs of 12.54% and 13.55%
for supervised and unsupervised adaptation at λ = 0.5, respectively.
The conditional T/S learning outperforms the KLD adaptation. It
achieves 12.17% WER for supervised adaptation, which is 12.8%
and 3.0% relative gain over the SI model and the best performed
KLD adaptation (λ = 0.5). For unsupervised adaptation, the condi-
tional T/S learning achieves 13.21% WER, which is 5.3% and 2.5%
relative gain over the SI acoustic model and KLD adaptation.

6. CONCLUSION

We proposed a conditional T/S learning method, in which the student
network selectively learns from either the soft posteriors generated
by the teacher network or the one-hot hard label conditioned on
whether the teacher makes correct decisions or not. Instead of
blindly following whatever knowledge the teacher infuses as in the
conventional T/S learning, the conditional T/S learning pursues the
most trustworthy knowledge throughout the training, eliminating
the burden tuning interpolation weights. We applied conditional
T/S learning to domain adaptation and obtained 9.8% relative WER
improvement over a strong T/S learning baseline on the CHiME-3
dataset. For speaker adaptation, the conditional T/S learning outper-
formed the KLD adaptation, which is equivalent to the interpolated
T/S learning. It achieved 12.8% and 5.3% relative WER gains
for supervised and unsupervised adaptations, respectively, over a
well-trained SI LSTM model.
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