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ABSTRACT

We propose a novel adversarial speaker adaptation (ASA)
scheme, in which adversarial learning is applied to regularize the dis-
tribution of deep hidden features in a speaker-dependent (SD) deep
neural network (DNN) acoustic model to be close to that of a fixed
speaker-independent (SI) DNN acoustic model during adaptation.
An additional discriminator network is introduced to distinguish
the deep features generated by the SD model from those produced
by the SI model. In ASA, with a fixed SI model as the reference,
an SD model is jointly optimized with the discriminator network
to minimize the senone classification loss, and simultaneously to
mini-maximize the SI/SD discrimination loss on the adaptation data.
With ASA, a senone-discriminative deep feature is learned in the SD
model with a similar distribution to that of the SI model. With such a
regularized and adapted deep feature, the SD model can perform im-
proved automatic speech recognition on the target speaker’s speech.
Evaluated on the Microsoft short message dictation dataset, ASA
achieves 14.4% and 7.9% relative word error rate improvements for
supervised and unsupervised adaptation, respectively, over an SI
model trained from 2600 hours data, with 200 adaptation utterances
per speaker.

Index Terms— adversarial learning, speaker adaptation, neural
network, automatic speech recognition

1. INTRODUCTION

With the advent of deep learning, the performance of automatic
speech recognition (ASR) has greatly improved [1, 2]. However,
the ASR performance is not optimal when acoustic mismatch exists
between training and testing [3]. Acoustic model adaptation is a
natural solution to compensate for this mismatch. For speaker adap-
tation, we are given a speaker-independent (SI) acoustic model that
performs reasonably well on the speech of almost all speakers in
general. Our goal is to learn a personalized speaker-dependent (SD)
acoustic model for each target speaker that achieves optimal ASR
performance on his/her own speech. This is achieved by adapting
the SI model to the speech of each target speaker.

The speaker adaptation task is more challenging than the other
types of domain adaptation tasks in that it has only access to very
limited adaptation data from the target speaker and has no access to
the source domain data, e.g. speech from other general speakers.
Moreover, a deep neural network (DNN) based SI model, usually
with a large number of parameters, can easily get overfitted to the
limited adaptation data. To address this issue, transformation-based
approaches are introduced in [4, 5] to reduce the number of learn-
able parameters by inserting a linear network to the input, output
or hidden layers of the SI model. In [6, 7], the trainable parame-
ters are further reduced by singular value decomposition (SVD) of
weight matrices of a neural network and perform adaptation on an

inserted square matrix between the two low-rank matrices. More-
over, i-vector [8] and speaker-code [9, 10] are widely used as aux-
iliary features to a neural network for speaker adaptation. Further,
regularization-based approaches are proposed in [11, 12, 13, 14] to
regularize the neuron output distributions or the model parameters
of the SD model such that it does not stray too far away from the SI
model.

In this work, we propose a novel regularization-based approach
for speaker adaptation, in which we use adversarial multi-task learn-
ing (MTL) to regularize the distribution of the deep features (i.e.,
hidden representations) in an SD DNN acoustic model such that it
does not deviate too much from the deep feature distribution in the
SI DNN acoustic model. We call this method adversarial speaker
adaptation (ASA). Recently, adversarial training has achieved great
success in learning generative models [15]. In speech area, it has
been applied to acoustic model adaptation [16, 17], noise-robust
[18, 19, 20], speaker-invariant [21, 22, 23] ASR, speech enhance-
ment [24, 25, 26] and speaker verification [27, 28] using gradient re-
versal layer [29] or domain separation network [30]. In these works,
adversarial MTL assists in learning a deep intermediate feature that
is both senone-discriminative and domain-invariant.

In ASA, we introduce an auxiliary discriminator network to
classify whether an input deep feature is generated by an SD or
SI acoustic model. By using a fixed SI acoustic model as the ref-
erence, the discriminator network is jointly trained with the SD
acoustic model to simultaneously optimize the primary task of min-
imizing the senone classification loss and the secondary task of
mini-maximizing the SD/SI discrimination loss on the adaptation
data. Through this adversarial MTL, senone-discriminative deep
features are learned in the SD model with a distribution that is simi-
lar to that of the SI model. With such a regularized and adapted deep
feature, the SD model is expected to achieve improved ASR perfor-
mance on the test speech from the target speaker. As an extension,
ASA can also be performed on the senone posteriors (ASA-SP) to
regularize the output distribution of the SD model.

We perform speaker adaptation experiments on Microsoft short
message (SMD) dictation dataset with 2600 hours of live US En-
glish data for training. ASA achieves up to 14.4% and 7.9% rela-
tive word error rate (WER) improvements for supervised and unsu-
pervised adaptation, respectively, over an SI model trained on 2600
hours of speech.

2. ADVERSARIAL SPEAKER ADAPTATION

In speaker adaptation task, for a target speaker, we are given a
sequence of adaptation speech frames X = {x1, . . . ,xT },xt ∈
R
rx , t = 1, . . . , T from the target speaker and a sequence of senone

labels Y = {y1, . . . , yT }, yt ∈ R aligned with X. For supervised
adaptation, Y is generated by aligning the adaptation data against
the transcription using SI acoustic model while for unsupervised



adaptation, the adaptation data is first decoded using the SI acoustic
model and the one-best path of the decoding lattice is used as Y.

As shown in Fig. 1, we view the first few layers of a well-trained
SI DNN acoustic model as an SI feature extractor network MSI

f with
parameters θSI

f and the the upper layers of the SI model as an SI
senone classifier network MSI

y with parameters θSI
y . MSI

f maps input
adaptation speech frames X to intermediate SI deep hidden features
FSI = {f SI

1 , . . . , f
SI
T }, f SI

t ∈ Rrf , i.e.,

f SI
t =MSI

f (xt),
1 (1)

andMSI
y with parameters θSI

y maps FSI to the posteriors p(s|f SI
t ; θ

SI
y )

of a set of senones in S as follows:

MSI
y (f

SI
t ) = p(s|xt; θSI

f , θ
SI
y ). (2)

Fig. 1. The framework of ASA. Only the optimized SD acoustic
model consisting of MSD

f and MSD
y are used for ASR on test data.

MSI
f is fixed during ASA. MSI

f and Md are discarded after ASA.

An SD DNN acoustic model to be trained using speech from the
target speaker is initialized from the SI acoustic model. Specifically,
MSI
f is used to initialize SD feature extractor MSD

f with parameters
θSD
f and MSI

y is used to initialize SD senone classifier MSD
y with

parameters θSD
y . Similarly, in an SD model, MSD

f maps xt to SD
deep features f SD

t and MSD
y further transforms f SD

t to the same set of
senone posteriors p(s|f SD

t ; θSD
y ), s ∈ S as follows

MSD
y (f SD

t ) =MSD
y (MSD

f (xt)) = p(s|xt; θSD
f , θ

SD
y ). (3)

To adapt the SI model to target speech X, we re-train the SD model
by minimizing the cross-entropy senone classification loss between
the predicted senone posteriors and the senone labels Y below

Lsenone(θ
SD
f , θ

SD
y ) = − 1

T

T∑
t=1

log p(yt|xt; θSD
f , θ

SD
y )

= − 1

T

T∑
t=1

∑
s∈S

1[s = yt] logMy(M
SD
f (xt)), (4)

1For recurrent DNN, fSI
t also defends on {x1, . . . ,xt−1} in addition to

xt and we here simplify the notation to include only the current input. This
abbreviation also applies to all the notations afterwards.

where 1[·] is the indicator function which equals to 1 if the condition
in the squared bracket is satisfied and 0 otherwise.

However, the adaptation data X is usually very limited for the
target speaker and the SI model with a large number of parameters
can easily get overfitted to the adaptation data. Therefore, we need
to force the distribution of deep hidden features FSD in the SD model
to be close to that of the deep features FSI in SI model while mini-
mizing Lsenone as follows

p(FSD|X, θSD
f )→ p(FSI|X, θSI

f ), (5)

min
θSD
f
,θSD

y

Lsenone(θ
SD
f , θ

SD
y ). (6)

In KLD adaptation [11], the senone distribution estimated from the
SD model is forced to be close to that estimated from an SI model
by adding KLD regularization to the adaptation criterion. How-
ever, KLD is a distribution-wise asymmetric measure which does not
serve as a perfect distance metric between distributions [31]. For ex-
ample, in [11], the minimization ofKL(pSI||pSD) does not guarantee
KL(pSD||pSI) is also minimized. In some cases, KL(pSD||pSI) even
increases as KL(pSI||pSD) becomes smaller [32, 33]. In ASA, we
use adversarial MTL instead to push the distribution of FSD towards
that of FSI while being adapted to the target speech since the adver-
sarial learning can guarantee that the global optimum is achieved if
and only if FSD and FSI share exactly the same distribution [15].

To achieve Eq. (5), we introduce an additional discriminator
network Md with parameters θd which takes FSD and FSI as the
input and outputs the posterior probability that an input deep feature
is generated by the SD model, i.e.,

Md(f
SD
t ) = p(f SD

t ∈ DSD|xt; θSD
f , θd), (7)

Md(f
SI
t ) = 1− p(f SI

t ∈ DSI|xt; θSI
f , θd), (8)

where DSD and DSI denote the sets of SD and SI deep features, re-
spectively. The discrimination loss Ldisc(θf , θd) for Md is formu-
lated below using cross-entropy:

Ldisc(θ
SD
f , θ

SI
f , θd) = −

1

T

T∑
t=1

[
log p(f SD

t ∈ DSD|xt; θSD
f , θd)

+ log p(f SI
t ∈ DSI|xt; θSI

f , θd)
]

= − 1

T

T∑
t=1

{
logMd(M

SD
f (xt)) + log

[
1−Md(M

SI
f (xt))

]}
(9)

To make the distribution of FSD similar to that of FSI, we perform
adversarial training of MSD

f and Md, i.e, we minimize Ldisc with re-
spect to θd and maximize Ldisc with respect to θSD

f . This minimax
competition will first increase the capability ofMSD

f to generate FSD

with a distribution similar to that of FSI and increase the discrimina-
tion capability of Md. It will eventually converge to the point where
MSD
f generates extremely confusing FSD thatMd is unable to distin-

guish whether it is generated by MSD
f or MSI

f . At this point, we have
successfully regularized the SD model such that it does not deviate
too much from the SI model and generalizes well to the test speech
from target speaker.

With ASA, we want to learn a senone-discriminative SD deep
feature with a similar distribution to the SI deep features as in Eq. (5)
and (6). To achieve this, we perform adversarial MTL, in which the
SD model and Md are trained to jointly optimize the primary task of



senone classification and the secondary task of SD/SI discrimination
with an adversarial objective function as follows

(θ̂SD
f , θ̂

SD
y ) = argmin

θSD
f
,θSD

y

Lsenone(θ
SD
f , θ

SD
y )− λLdisc(θ

SD
f , θ

SI
f , θ̂d), (10)

(θ̂d) = argmin
θd

Ldisc(θ̂
SD
f , θ

SI
f , θd), (11)

where λ controls the trade-off betweenLsenone andLdisc, and θ̂SD
y , θ̂

SD
f

and θ̂d are the optimized parameters. Note that the SI model serves
only as a reference in ASA and its parameters θSI

y , θ
SI
f are fixed

throughout the optimization procedure.
The parameters are updated as follows via back propagation with

stochastic gradient descent:

θSD
f ← θSD

f − µ

[
∂Lsenone

∂θSD
f

− λ∂Ldisc

∂θSD
f

]
, (12)

θd ← θd − µ
∂Ldisc

∂θd
, (13)

θSD
y ← θSD

y − µ
∂Lsenone

∂θSD
y

, (14)

where µ is the learning rate. For easy implementation, gradient re-
versal layer is introduced in [29], which acts as an identity transform
in the forward propagation and multiplies the gradient by−λ during
the backward propagation. Note that only the optimized SD DNN
acoustic model consisting of MSD

f and MSD
y is used for ASR on test

data. Md and SI model are discarded after ASA.
The procedure of ASA can be summarized in the steps below:

1. Divide a well-trained and fixed SI model into a feature extrac-
tor MSI

f followed by a senone classifier MSI
y .

2. Initialize the SD model with the SI model, i.e., clone MSD
f

and MSD
y from MSI

f and MSI
y , respectively.

3. Add an auxiliary discriminator network Md taking SD and
SI deep features, FSD and FSI, as the input and predict the
posterior that the input is generated by MSD

f .

4. Jointly optimize MSD
f , MSD

y and Md with adaptation data of
a target speaker via adversarial MTL as in Eq. (10) to (14).

5. Use the optimized SD model consisting of MSD
f , MSD

y for
ASR decoding on test data of this target speaker.

3. ADVERSARIAL SPEAKER ADAPTATION ON SENONE
POSTERIORS

As shown in Fig. 2, in ASA-SP, adversarial learning is applied to
regularize the vectors of senone posteriors ySD

t =
[
p(s|xt; θSD

AM)
]
s∈S

predicted by the SD model to be close to that of a well-trained and
fixed SI model, i.e., ySI

t =
[
p(s|xt; θSI

AM)
]
s∈S while simultaneously

minimizing the senone loss Lsenone(θ
SD
AM), where θSD

AM = {θSD
f , θ

SD
y }

and θSI
AM = {θSI

f , θ
SI
y } are SI and SD model parameters, respectively.

In this case, the discriminator Md takes p(s|xt; θSD
AM) and

p(s|xt; θSI
AM) as the input and predicts the posterior that the input is

generated by the SD model. The discrimination loss Ldisc(θf , θd)
for Md is formulated below using cross-entropy:

Ldisc(θ
SD
AM, θd) = −

1

T

T∑
t=1

[
log p(ySD

t ∈ ESD|xt; θSD
AM, θd)

+ log p(ySI
t ∈ ESI|xt; θSI

AM, θd)
]
, (15)

Fig. 2. The framework of ASA-SP. The SI acoustic model is fixed
during ASA-SP. Only the SD acoustic model is used in ASR.

where ESD and ESI denote the sets of senone posterior vectors gen-
erated by SD and SI models, respectively. Similar adversarial MTL
is performed to make the distributions of YSD = {ySD

1 , . . . ,ySD
T }

similar to that of YSI = {ySI
1 , . . . ,y

SI
T } below:

(θ̂SD
AM) = argmin

θSD
AM

Lsenone(θ
SD
AM)− λLdisc(θ

SD
AM, θ

SI
AM, θ̂d), (16)

(θ̂d) = argmin
θd

Ldisc(θ̂
SD
AM, θ

SI
AM, θd). (17)

θSI
AM is optimized by back propagation below, θd is optimized via Eq.

(13) and θSI
AM remain unchanged during the optimization.

θSD
AM ← θSD

AM − µ

[
∂Lsenone

∂θSD
f

− λ∂Ldisc

∂θSD
AM

]
. (18)

ASA-SP is an extension of ASA where the deep hidden fea-
ture moves up to the output layer and becomes the senone posteriors
vector. In this case, the senone classifier disappears and the feature
extractor becomes the entire acoustic model.

4. EXPERIMENTS

We perform speaker adaptation on a Microsoft Windows Phone
SMD task. The training data consists of 2600 hours of Microsoft
internal live US English data collected through a number of de-
ployed speech services including voice search and SMD. The test
set consists of 7 speakers with a total number of 20,203 words.
Four adaptation sets of 20, 50, 100 and 200 utterances per speaker
are used for acoustic model adaptation, respectively, to explore the
impact of adaptation data duration. Any adaptation set with smaller
number of utterances is a subset of a larger one.

4.1. Baseline System

We train an SI long short-term memory (LSTM)-hidden Markov
model (HMM) acoustic model [34, 35, 36] with 2600 hours of train-
ing data. This SI model has 4 hidden layers with 1024 units in each
layer and the output size of each hidden layer is reduced to 512 by a
linear projection. 80-dimensional log Mel filterbank features are ex-
tracted from training, adaptation and test data. The output layer has
a dimension of 5980. The LSTM is trained to minimize the frame-
level cross-entropy criterion. There is no frame stacking, and the



output HMM state label is delayed by 5 frames. A trigram LM is
used for decoding with around 8M n-grams. This SI LSTM acoustic
model achieves 13.95% WER on the SMD test set.

We further perform KLD speaker adaptation [11] with different
regularization weights ρ. In Tables 1 and 2, KLD with ρ = 0.5
achieves 12.54% - 13.24% and 13.55% - 13.85% WERs for super-
vised and unsupervised adaption, respectively with 20 - 200 adapta-
tion utterances.

System Number of Adaptation Utterances
20 50 100 200 Avg.

SI 13.95
KLD (ρ = 0.0) 13.68 13.39 13.31 13.21 13.40
KLD (ρ = 0.2) 13.20 13.00 12.71 12.61 12.88
KLD (ρ = 0.5) 13.24 13.08 12.85 12.54 12.93
KLD (ρ = 0.8) 13.55 13.50 13.46 13.17 13.42
ASA (λ = 1.0) 12.99 12.86 12.56 12.05 12.62
ASA (λ = 3.0) 13.03 12.72 12.35 11.94 12.56
ASA (λ = 5.0) 13.14 12.71 12.50 12.06 12.60

ASA-SP (λ = 1.0) 13.04 12.88 12.66 12.17 12.69
ASA-SP (λ = 3.0) 13.05 12.89 12.67 12.18 12.70
ASA-SP (λ = 5.0) 13.05 12.89 12.69 12.18 12.70

Table 1. The WER (%) performance of supervised speaker adapta-
tion using KLD and ASA with different λ on Microsoft SMD task.

System Number of Adaptation Utterances
20 50 100 200 Avg.

SI 13.95
KLD (ρ = 0.0) 14.18 14.01 18.81 13.73 13.93
KLD (ρ = 0.2) 13.86 13.83 13.75 13.65 13.77
KLD (ρ = 0.5) 13.85 13.80 13.73 13.55 13.73
KLD (ρ = 0.8) 13.89 13.86 13.80 13.72 13.82
ASA (λ = 1.0) 13.74 13.70 13.38 12.99 13.45
ASA (λ = 3.0) 13.66 13.61 13.09 12.85 13.30
ASA (λ = 5.0) 13.85 13.69 13.27 13.03 13.46

ASA-SP (λ = 1.0) 13.83 13.72 13.48 13.16 13.55
ASA-SP (λ = 3.0) 13.84 13.74 13.53 13.17 13.57
ASA-SP (λ = 5.0) 13.85 13.74 13.52 13.16 13.57

Table 2. The WER (%) performance of unsupervised speaker adap-
tation using KLD and ASA with different λ on Microsoft SMD task.

4.2. Adversarial Speaker Adaptation

We perform standard ASA as described in Section 4.2. The SI fea-
ture extractor MSI

f is formed as the first Nh layers of the SI LSTM
and the SI senone classifier MSI

y is the rest (4 − Nh) hidden layers
plus the output layer. The SD feature extractor MSD

f and SD senone
classifier MSD

y are cloned from MSI
f and MSI

y , respectively as an ini-
tialization. Nh indicates the position of the deep hidden feature in
the SD and SI LSTMs. Md is a feedforward DNN with 2 hidden
layers and 512 hidden units for each layer. The output layer of Md

has 1 unit predicting the posteriors of input deep feature generated
by the MSD

f . Md has 512-dimensional input layer. MSD
f , MSD

y and
Md are jointly trained with an adversarial MTL objective. Due to
space limitation, we only show the results when Nh = 4. 2

2It has been shown in [17, 16] that the ASR performance increases with
the growth of Nh for adversarial domain adaptation. The same trend is ob-
served for ASA experiments.

For supervised ASA, the same alignment is used as in KLD.
In Table 1, the best ASA setups achieve 12.99%, 12.71%, 12.35%
and 11.94% WERs for 20, 50, 100, 200 adaptation utterances which
improve the WERs by 6.9%, 8.9%, 11.5%, 14.4% relatively over the
SI LSTM, respectively. Supervised ASA (λ = 3.0) also achieves up
to 5.3% relative WER reduction over the best KLD setup (ρ = 0.2).

For unsupervised ASA, the same decoded senone labels are used
as in KLD. In Table 2, the best ASA setups achieve 13.66%, 13.61%,
13.09% and 12.85% WERs for 20, 50, 100, 200 adaptation utter-
ances which improves the WERs by 2.1%, 2.4%, 6.2%, 7.9% rela-
tively over the SI LSTM, respectively. Unsupervised ASA (λ = 3.0)
also achieves up to and 5.2% relatively WER gains over the best
KLD setup (ρ = 0.5). Compared with supervised ASA, the unsu-
pervised one decreases the relative WER gain over the SI LSTM by
about half on the same number of adaptation utterances.

For both supervised and unsupervised ASA, the WER first de-
creases as λ grows larger and then increases when λ becomes too
large. ASA performs consistently better than SI LSTM and KLD
with different number of adaptation utterances for both supervised
and unsupervised adaptation.3 The relative gain increases as the
number of adaptation utterance grows.

4.3. Adversarial Speaker Adaptation on Senone Posteriors

We then perform ASA-SP as described in Section 4.2. The SD
acoustic model is cloned from the SI LSTM as the initialization.
Md shares the same architecture as the one in Section 4.2. In Ta-
ble 1, for supervised adaptation ASA-SP (λ = 1.0) achieves 6.5%,
7.7%, 9.2%, 12.8% relative WER gain over the SI LSTM, respec-
tively and up to 3.5% relative WER reduction over the best KLD
setup (ρ = 0.2). In Table 2, for unsupervised adaptation ASA-SP
(λ = 1.0) achieves 0.9%, 1.6%, 3.4%, 5.7%, 2.9% relative WER
gain over the SI LSTM, respectively and up to 4.8% relative WER
reduction over the best KLD setup (ρ = 0.5).

Although ASA-SP consistently improves over KLD on different
number of adaptation utterances for both supervised and unsuper-
vised adaptation, it performs worse than standard ASA where the
regularization from SI model is performed at the hidden layers. The
reason is that the senone posteriors vectors ySI

t , ySD
t lie in a much

higher-dimensional space than the deep features f SI
t , f SD

t so that the
discriminator is much harder to learn given much sparser-distributed
samples. We also notice that ASA-SP performance is much less sen-
sitive to the variation of λ compared with standard ASA.

5. CONCLUSION

In this work, a novel adversarial speaker adaptation method is pro-
posed, in which the deep hidden features (ASA) or the output senone
posteriors (ASA-SP) of an SD DNN acoustic model are forced by
the adversarial MTL to conform to a similar distribution as those of
a fixed reference SI DNN acoustic model while being trained to be
senone-discriminative with the limited adaptation data.

We evaluate ASA on Microsoft SMD task with 2600 hours of
training data. ASA achieves up to 14.4% and 7.9% relative WER
gain for supervised and unsupervised adaptation, respectively, over
the SI LSTM acoustic model. ASA also improves consistently over
the KLD regularization method. The relative gain grows as the num-
ber of adaption utterances increases. ASA-SP performs consistently
better than KLD but worse than the standard ASA.

3In this work, we only compare ASA with the most popular
regularization-based approach, i.e., KLD, because the other approaches such
as transformation, SVD, auxiliary feature, etc. are orthogonal to ASA and
can be used together with ASA to get additional WER improvement.
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