Medical Augmented Reality State Of the Art, Requirements and Challenges

Nassir Navab Chair for Computer Aided Medical Procedures Technical University Munich (TUM), Germany

Chair for Computer Aided Medical Procedures

AR: Early concpets ... 1960s!

[1] Sutherland, Ivan E., "The Ultimate Display," *Proceedings of the IFIP Congress*, pp. 506-508, 1965. [2] Video: http://www.youtube.com/watch?v=7B8aq_rsZao

Medical AR: Challenges faced through decades

- Fuchs et al. 1993
 - » Main challenges:
 - Computational power!
 - Tracking and synchronization
- Edwards et al. 1995:
 - » Main Challenges:
 - Depth Perception
 - Workflow Integration
- Kikinis et al. 1996:
 - » Main Challenges:
 - Depth Perception
 - Workflow Integration

Medical AR: Challenges faced through decades

- Navab et al. 1998:
 - Main Challenges:
 - 3D Relevance based Perception

- Main Challenges:
 - 3D Relevance based Perception

- Main Challenges:
 - Workflow Integration

■ DiGioia et al. 1998:bbb

- » Main Challenges:
 - Tracking
 - Workflow Integration

- » Main Challenges:
 - Tracking
 - Workflow Integration

- » Main challenges:
 - Depth Perception
 - Workflow Integration
- Nicolau et al. 2004
 - » Main challenges:
 - Precision
 - Depth Perception
 - Workflow Integration

IMAGING AND VISUALIZATION IN OPERTATING ROOMS

How could we bring AR into OR?

OR Specific Domain Model

1. Decompose the domain into its sources of complexity modeled as distinct views

2. Select a proper modeling technique to represent each view and drive its elements

3. Establish a clear connection between the defined views by mapping their elements

1. Decompose the domain into its sources of complexity modeled as distinct views

2. Select a proper modeling technique to represent each view and driving its elements

Screenshot

Surgical Workflo

Next Generation Intraoperative Imaging

Primary Goals

- Relevant
- Patient- and process- specific

Next Generation Intraoperative Imaging

Primary Goals

- Relevant
- Patient- and process- specific

C. Hennersperger - Computer Aided Medical Procedures - Technical University of Munich

- Fast
- Easy to Use

CATHLIANDASSITTANTHEARTSINNE SALETSYBROCURE

Courtesy: C. Strother

Next Generation Intraoperative Imaging

Primary Goals

- Relevant
- Patient- and process- specific
- Fast
- Easy to Use
- Flexible
- Reproducible
- Safe
- Reliable
- Cost-effective

From Classic to Flexible Imaging - SPECT Imaging

Conventional diagnostic SPECT

Intra-op freehand SPECT

Reproducible & reliable

Fast & flexible

DeclipseSPECT: Clinical Application

Using the laparoscopic gamma probe to generate a 3D image

Video: Courtesy of F. W.B. van Leeuwen

• in-patient SPECT: drop-in gar

SurgicEye's DeclipseSPECT: First AR solutions in ORs

SurgicEye's DeclipseSPECT: First AR solutions in ORs

Patient Registration and Trajectory Transfer

Automatic 3D Robotic Ultrasound Acquisitions

01.10.2019_•

Collaborative Robotic Imaging: Freehand Punch Biopsy

IROS 2019

AR in OR
Relevance
&
Workflow
Integration

First uses of AR in Trauma Surgeries ...

Machine Learning for Relevance based Imaging

Machine Learning for Relevance based Imaging

Machine Learning for Relevance based Imaging

The gaze is used as the mechanism to select an X-ray image.

The voice command *Hide* allows the user to hide the image along with the frustum.

Surgical replay

- > Reviewing all acquisitions with their spatial and temporal information
- > Surgical education

Dr. Alex Johnson, Johns Hopkins University

Technician-in-the-loop AR

Interventional problem

- > Achieving and re-producing views
- Non-robotic scanner with redundant DoFs
- > Fluoro hunting
- > Trial-and-error
- Increased surgical time and radiation

Interventional solution

> AR-based assistance of X-ray technicians to reproduce desired views

Intra-operative planning: projection onto X-ray images

- > Simultaneous projection of virtual implants into multiple viewing frustums
- > Projection of non-straight implants and plates

Application: Intra-operative annotation

- > 3D anatomical targets
 - Rendering corresponding rays
 - Selection on two images results in 3D targets

Sonified Video Sequence from a Surgery

HMZ

JOPKINS RSITY

JOHNS HOPK

MU see

Universitätsklinik Balgrist

Thanks

More information: http://medicalaugmentedreality.org

