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Abstract

Symmetries and repetitions are common and valuable
features in urban scenes. We propose to leverage such reg-
ularity information in an efficient optimization scheme in
order to segment a rectified image of a facade into semantic
categories. Our method retrieves a parsing which respects
common architectural constraints as well as detected repet-
itive structures and edge information. Additionally, the use
of symmetry information allows us to efficiently deal with
large occluded areas and to recover plausible facade im-
ages with a minimum of occlusions. Our approach yields
state-of-the-art accuracy on datasets with challenging oc-
clusions. Competitive works either fully fail to deal with
large occlusions or they are an order of magnitude slower
than our approach.

1. Introduction

Facade parsing is the process of segmenting rectified im-
ages of facades into semantic categories corresponding to
architectural structures like windows, doors or balconies.
It is an important task for visual reconstruction and scene
understanding. For example, knowing the position and
size of the windows reduces wrong feature matches while
knowledge about the repetitive structure and its symmetries
is beneficial for structure from motion. Facade parsing is
also a key step for applications such as procedural model-
ing of buildings (e.g. for video games, virtual reality), ar-
chitectural design, city surveillance, or accurate large scale
3D reconstruction of geometry and texture for entire cities.
Therefore, the task of parsing rectified images of facades
as the one illustrated in Fig. 1 has hence gained increasing
attention in recent years [4, 20, 12, 1, 17].

After image rectification, the first step of most facade
parsing approaches consists of a per-pixel labeling via se-
mantic classifiers. However, such per-pixel labels are usu-
ally imperfect since building fagades typically exhibit a set
of structural rules that should be respected in order to ensure
semantic plausibility of the classification. Another charac-
teristic of this task that could be taken into account is the
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Figure 1. Our approach analyzes repeating structures to recover
plausible information in occluded areas. The image of an occluded
facade (a) gets semantically labeled (c) and the occluded area in-
painted (d). Ground truth labels are shown for reference in (b).

fact that most man-made structures often present symme-
tries and repetitive structures. Therefore, we aim to lever-
age all these information sources to obtain semantic seg-
mentations of building fagade such as the one illustrated in
Fig. 1(a) into structured regions (Fig. 1(b)) that respect the
regularities of the scene (as those shown in Fig. 2).

Inspired by the work of [1], we present a greedy dy-
namic programming-based algorithm that imposes very few
but common constraints on the parsing, while also respect-
ing detected symmetries and repetitions, as well as image
edges. We will first show how to extract symmetries and
lattices on facade images and how to use these detections to
cope with large occluded areas. Then, these regularities are
used as soft constraints during the parsing which allows for
stronger vertical alignment. With the detected symmetries
and repetitions at hand, we are often able to recover large
occluded image portions via inpainting with repetitive con-
tent. Finally, we illustrate the efficiency and efficacy of our
method on 4 standard datasets.

Contributions. We propose an efficient method for seman-
tic facade parsing that leverages symmetry and regularity
information in order to deal with occluded parts in the im-
ages as well as softly enforce vertical alignment of architec-
tural structures. Our approach yields state-of-the-art results
on common benchmark datasets. Existing fagade parsing
methods are either not able to deal with occlusions or are by
an order of magnitude slower than the proposed approach.



2. Related Work

Segmenting a rectified fagcade image into structured re-
gions has been the focus of many works in the last years.

Facade Parsing. Teboul ef al. [21, 20] solve the parsing
problem by the use of split grammars. The parsing is ob-
tained by sampling from the space defined by a specific
grammar. Split grammars are simple and powerful, since
they allow to express many parsing rules. However, they
are not flexible enough to allow for deviations from these
set of rules, and they also have to be user defined. This
sampling-based approach also has no optimality guarantees
and cannot be relied to produce repeatable results while also
being very slow (~ 30 minutes processing time per image).
Riemenschneider et al. [17] extended the use of grammars
in order to take into account symmetry in their set of rules.
This method also faces the problem of high complexity and
very slow running times and therefore relies on image sub-
sampling, therefore losing a lot of information that comes
with higher image resolution.

Martinovic et al. [12] proposed an approach based on
Recursive Neural Networks that aims to incorporate the ar-
chitectural constraints on top of a general classifier’s results.
They introduce a three-layer approach that relies on a reg-
ularization scheme posed as a pairwise multi-label Markov
Random Field (MRF). However, the resulting labeling is
tied to the super-pixels used for the classifier, which do
not always respect the structural constraints of a man-made
scene. The third layer corrects this problem to some extent
by applying some local corrections, but the obtained seg-
mentation does not always respect the basic architectural
rules. In a later work [11], a bayesian grammar is learned
from labeled ground truth images and shown to work for
parsing of facades with similar structure.

Kozinski et al. [5] present a binary linear program to en-
force horizontal and vertical alignment of facade elements.
However, this global alignment is very restrictive since it is
not guaranteed that a scene will present this kind of regular-
ity. They try to cope with this problem by adding exceptions
which are very complex to solve, resulting in a running time
of 4 minutes per image. In subsequent work [4], the authors
cope with this lack of flexibility by returning to the use of
split grammars in order to encode two-dimensional align-
ment of elements as well as occlusions. The task is for-
mulated as a MAP-MRF problem over a 4-connected pixel
grid and is solved efficiently in about 30 seconds per image.
However, the use of a grammar (in the form of hierarchical
adjacency patterns) requires careful definition by the user.
We argue that most of the alignments can be discovered au-
tomatically from data by symmetry and regularity detection,
and then automatically enforced in the parsing without user
interaction for each dataset.

Only remotely related, [14] proposes a system for multi-

view facade image editing for removing occluding objects.
In a semi-automatic process a clean facade image is com-
puted by selecting and blending image parts from different
views.

Symmetries. The detection and use of symmetries and re-
peating structures is a very challenging and important prob-
lem in urban scene analysis. See [7] and [13] for a broad
overview. Zhang et al. [26] focus on irregular facades and
strive for a high-level understanding of facade structures by
introducing a hierarchical description of facade elements
with multiple layers. These structured elements are found
as symmetric parts of the facade via symmetry maximiza-
tion at all levels of the hierarchy. Musialski et al. [15] aim
to repair partially occluded facade images, e.g. by street
signs, cables, traffic lights, etc. After the detection of reflec-
tive and translational symmetries, they are used to identify
and subsequently fill occlusions. The algorithm does not
consider any semantics and requires a user provided coarse
region mask of the symmetric image part.

Wu et al. [24] detect repetitive structures on facade im-
ages via the analysis of feature point repetitions and local
reflective symmetries. Previously detected candidates of
repetitive image parts are then evaluated by their match-
ing quality to either reject, or identify and refine differ-
ent types of repetitions. Xiao et al. [25] present a semi-
automatic image-based facade modeling pipeline that aims
for 3D model of a facade or entire building using mostly
planar structures within an orthogonal alignment. In this
work reflective symmetries are exploited to simplify the
top-down subdivision process of facade parts, but it does
not handle occlusions or compute semantic labels. Related
to our symmetry-based inpainting approach is the work by
Liu ef al. [8] who also leverage symmetries to remove ob-
structions in images.

Relation to our Work. Our work is inspired by the algo-
rithm introduced by Cohen et al. [1]. They propose a greedy
sequential application of dynamic programs that can very
efficiently recover a structured parsing of a facade. Even
though the imposed structural constraints are hard-coded,
these are very few, as they consist mainly of rectangular re-
gions for each detected element, the location of doors are
expected in the bottom of the image, while the roof, chim-
ney and sky classes should appear on the top, with sky being
above roof which is above the main facade. However, this
algorithm does not take into account column alignment or
any other sort of higher order clique. In this work, we pro-
pose to detect a-priori the symmetries and regularities of the
buildings. On a second stage, we regularize the results of a
general purpose classifier in order to respect the symmetry
constraints. These results can readily be used by the simple
parser of [1] to implicitly encode alignment on different di-
mensions. We also introduce the concept of binary costs in
the parsing in order to further improve results.



3. Approach

As a common pre-processing step we first rectify all
input images since it is an inexpensive method which
drastically simplifies all further processing. Note that
this step in no way limits the applicability of the al-
gorithm and it is shared by all facade parsing meth-
ods. Given an image of a rectified fronto-parallel facade,
the goal is to assign a semantic label corresponding
to an architectural element to each pixel, under certain
constraints. The set of possible labels, depending on
the dataset, is usually a subset of the label set £L =
{sky, chimney, roof, window, balcony, wall, door, shop}.

As introduced in [ 1], we will follow a set of very general
constraints that are present in most urban buildings which
we will refer to as C. This set consists of the following con-
straints: all building elements (door, windows, roof, bal-
conies) have a rectangular form, all window/balcony com-
binations lying on the same floor have the same height, bal-
conies are required to be located below windows, the shops
and doors are located on the bottom, chimneys originate
from the top of the roof and the facade and the roof cover
the entire width of the image. We would also like to incor-
porate column alignment, i.e. alignment of windows across
different floors, as well as horizontal symmetry (windows
located at equal distance of a vertical symmetry axes should
be similar). Non-architectural elements such as vegetation,
car, road, etc., have no constraints and are taken directly as
the maximum label per-pixel from a general purpose classi-
fier.

Finding the best possible parsing z comes down to find-
ing the set of labels z,; for each pixel ¢ such that the fol-
lowing score is maximized under the constraints previously

described:
S(z)= >
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Where the score s; of pixel 7 for label z; is the likelihood
output of a pre-trained classifier.

Overview. Our approach consists of the following steps:
on a first stage, we detect a global symmetry, as well as
repetitions (in the form of lattices) on the original facade
images, as explained in Section 3.1. In Section 3.2, we show
how to use the detected regularities in order to improve the
per-pixel classification, as well as large occlusion handling.
Finally, in Sec. 3.3 we apply a variation on the simple facade
parsing from [!] in order to obtain a structured parsing of
the facade that implicitly takes into account both occlusions
and vertical alignment and symmetries. We also show, as
an additional application of the regularity detection, how to
do facade inpainting for large occluded areas (Section 3.4).

Figure 2. Detected global symmetry in yellow, and detected lattice
(taking occlusion label into account) in pink.

3.1. Symmetry and Regularity Detection

In this section, we will explain the methods used to ex-
tract two different types of regularity on a given rectified
facade image: global bilateral symmetry and translational
repetitions i.e. lattices.

Global Symmetry Detection. In order to detect global re-
flective symmetries on the fagade, we use a variation on the
method described by Loy et al. [10].

On a first stage, a set of key-points are extracted on the
image using SIFT [9], as well as a descriptor for each key-
point. Next, mirrored descriptors are computed for each
key-point. These symmetric descriptors are obtained by
mirroring the image around the y axis and recomputing the
descriptors for the mirrored key-point position. As opposed
to the original method, we are only interested in finding
symmetries with vertical axis, which are the most common
in urban scenes, therefore only y-mirrored descriptors are
used. Next, pairs of matching key-points are found by look-
ing for their closest neighbor in feature space. Notice that
the matching is done between original descriptor and mir-
rored descriptor. Only matches whose descriptor scale is
close enough (up to a threshold) are taken into account.
Each pair of matching points defines a potential symme-
try axis. Since we are only interested in y-aligned axes,
we only keep the pairs that fall under this category. Each
pair is assigned a symmetry magnitude or score depending
on their difference of scale as well as relative orientation
and location. Next, all the symmetries defined by the re-
maining pairs are accumulated in a voting space in order to
determine the dominant y aligned symmetries. The Hough
transform for lines is used to find these symmetries where
each matching pair casts a vote that is weighted by their
symmetry magnitude. The maxima of the resulting Hough
space are taken as the dominant symmetry axes. The bound-
ing box of the population of pairs that voted for each axis is
taken as the spatial extend of each symmetry. We choose the
symmetry with the largest bounding box out of the top 10
dominant symmetries as the global symmetry that we will



use in the subsequent steps of our method. The result of
this detection is, therefore, a y aligned symmetry axis (de-
fined by its x coordinate) as well as a bounding box for its
area of influence. An example of the results obtained by this
method can be seen on Figure 2.

Lattice Detection. We are interested in extracting axis-
aligned lattices such that each lattice cell represents a repet-
itive element in the facade. In order to achieve this goal, we
use a variation of the robust and efficient algorithm intro-
duced by Wu et al. [24]. Since we are looking for lattices
in fronto-parallel images, we do not need to find and refine
vanishing points as described in their work.

We first extract upright SIFT features on the image,
which are then matched along the horizontal and vertical di-
rection. Matching pairs define possible repetitions intervals
for which a histogram can be computed. Next, local max-
ima are extracted from this histogram to get a set of repeti-
tion intervals. Very small repetition intervals are skipped in
order to detect big repetitive structures, as opposed to, e.g.,
each individual window pane. The bounding box of features
that voted for a specific interval can be seen as rough regions
for the repetition. These candidate repetitions are then eval-
uated using a measurement that takes into account descrip-
tor distance between corresponding pixels in the repeating
regions, as well as “uniqueness” of the descriptors. A de-
scriptor is unique if it is different enough from its neighbors,
thus favoring repeating elements or motifs that are well tex-
tured and structured as opposed to large homogeneous or
noisy areas. The repeating regions that have enough match-
ing pixels (those whose similarity distance is smaller than a
threshold) are kept and refined. We refer the reader to [24]
for a more detailed description of this algorithm.

We perform an additional lattice extension step that is
meant to take into account occluded areas. The aim is to
extend the lattice both horizontally and vertically, as long
as there are enough matching pixels in the new added lat-
tice cells. We take the measurement described above, and
a lattice column or row is added as long as each cell in the
candidate column/row has enough matching pixels to a cell
in the original lattice. However, for datasets with occluding
labels (such as vegetation), we count occluded pixels as in-
liers. Therefore, if a cell is mostly occluded and is adjacent
to the lattice, it will most likely be included in the extended
lattice, unless there are enough unoccluded pixels that do
not match the motif. Therefore, we can assume that, un-
less there is evidence on the contrary, the lattice structure is
repeated behind the occlusion. The obtained grid for a par-
tially occluded image can be seen on Figure 2. This addi-
tional steps allows us to hallucinate the facade structure be-
hind large occluded areas during the parsing (Section 3.3).
It is also a key component for large region inpainting as de-
scribed in Section 3.4.

(b)

Figure 3. (a) shows the maximum label per pixel obtained by the
classifier while (b) shows the labels corrected using the detected
global symmetry.
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Figure 4. (a) shows the maximum label per pixel obtained by the
classifier while (b) shows the labels corrected using the detected
lattices.

3.2. Pixel Scores Modification and Occlusion Han-
dling

The detected symmetries and lattices are used in order to
modify the per-pixel likelihoods in order to improve classi-
fication accuracy.

The global symmetry detected in Section 3.1 is very
valuable in order to recover from missing detections in
the presence of large occluded areas, as symmetric areas
might be occluded only on one side of the image. If the
set of labels taken into account during per-pixel classifica-
tion includes occlusion classes such as vegetation, then we
can consider those pixels labeled as occluded as unknown.
Therefore, we can search for all the pixels inside the area
of the detected global symmetry and check for its symmet-
ric counterpart. If its reflected pixel is not occluded, then
one can simply replace the class likelihoods at that pixel
with those of its non-occluded reflected counterpart. Fig-
ure 3 shows the maximum scoring label per-pixel for such
an image, and how the modified classification looks like.
This step allows us to get rid of an important part of occlu-
sions, as most facades exhibit global symmetry and occlu-
sion classes are not necessarily symmetric.

Repetitive Structures (Lattices). As described in Sec-
tion 3.1, repetitive structures are detected as axis-aligned
lattices or grids, which are extended over areas labeled as
occluded as long as there is no evidence against the repeti-
tion. In order to further be able to infer what lies behind an
occluded area, one can rely on the information of the lattice



Figure 5. Illustration of how DP2 works: there are 4 possible states
per column. The possible transitions from a chosen state to the
next are highlighted in green, while the highlighted red ones are
the chosen ones that maximize the total score sum over the row.

cells that are not occluded. Therefore, a median cell is com-
puted from the non-occluded cells of a given grid, and their
median class likelihoods are copied over the corresponding
pixels that are labeled as occluded in all cells of the lattice.
The result of this step is illustrated in Figure 4.
Additionally, in order to implicitly enforce alignment
across repetitive elements, the class likelihoods of the non-
occluded pixels of the lattice will be averaged with those
of the median cell. Since the detection is subject to noise
and errors, we perform a weighted average. More specifi-
cally: for a given pixel z;, and its corresponding pixel in the
median cell 2}, its class likelihoods are computed as:

Vie L: sp(z;)" = (1= Nsi(x;) + Asi(2]") , (2)

where [ € L represents all the labels from the label set. In
our experiments, we set A to 0.3.

3.3. Facade Parsing

In order to maximize the score given Eq. (1) subject
to the architectural constraints C, we apply the dynamic
programming-based algorithm presented in [!] which we
briefly describe in this section, as well as a variation that
takes into account edge information and column alignment.

The basic algorithm consists of a series of steps: first, all
pixels are initially assigned the label for wall. The next and
most important step involves finding the best scoring floors
recursively, where each floor consists of window/balcony
combinations of the same height. The detection of the
single best-scoring floor within a height range is achieved
through successive calls to an efficient dynamic program
whose complexity is linear in the width of the image. The
third step involves a variation of this dynamic program that
finds the best combination of door and shop with the condi-
tion that the shop needs to start at the bottom of the image
(note that this is easily modified for the case where there
are no shop labels). The last step consists of an exhaustive
search on the top part of the image for the best combination
for the labels roof, sky and chimney.

Single Floor Parsing. Given the vertical boundaries of a
floor (window and balcony heights), which we will refer to
as Y1, y2 and ys, [1] introduces a linear time dynamic pro-
gram that finds the horizontal boundaries of the windows
and balconies that maximize the sum of scores across this
floor. This dynamic program, referred to as DP2 in [1], is a
version of Viterbi’s algorithm [23], with 3 basic states: pres-
ence of balcony, presence of balcony with window on top,
or absence of both elements. For each one-pixel wide col-
umn bounded by y1, y2 and y3, DP2 explores which state is
best (the highest scoring with respect to the pixel-wise like-
lihoods) depending on the previous column. In practice, the
minimum number of states for a plausible parsing is 4, since
two different states are needed to represent the presence of
balcony (without window on top) such that no balcony can
start and finish without having had a window appear on top
at some point. The transition between these states are lim-
ited so that these conditions are met. DP2 is illustrated in
Fig. 5.

In order to automatically find the best scoring floor,
one would need to run DP2 on all possible height triplets
y1 < y2 < ys. Given N, the width/height of the image, this
would run in O(N*). However, [1] proposes an algorithm
that relies on an efficient computation of upper bounds that
allows for very few calls of DP2, therefore running in al-
most cubic time. Thus, the best scoring floors are found
automatically in a very efficient way without the need of a-
prioir knowledge of the height of the floors or the number
of floors. The description of this algorithm is outside the
scope of this paper, as we did not modify it.

Addition of Pairwise Costs. In addition to the per pixel
class likelihoods, additional information can be extracted
from an image, such as vertical and horizontal edges (x-
gradient and y-gradient). In an optimization/maximization
setting, these edges can be seen as pairwise-costs (or
scores in the maximization case) where a transition between
classes should be preferred at the locations where the gradi-
ent magnitude is high. In our rectified setting, we will only
care about vertical and horizontal image gradients. As ex-
plained previously, a window/balcony row can be detected
by calling DP2 for different (y1, y2, y3) combinations in or-
der to find the best vertical parsing of such a row. In order
to explain how to add the edge costs to this stage, we first
explain DP2 in more detail.

Given a triplet of vertical coordinates, (y1,y2,ys), and

n, the width of the image to be parsed, the input to DP2 is
the following:

e The sum of balcony minus wall scores for all pixel-
wide columns delimited by (y2, y3), referred to as B =
{b1,b2,...,b,}.

e The sum of window minus wall scores for all pixel-
wide columns delimited by (yi,y2), referred to as
W = {wy,wa, ..., wy}.



e The set of states a column can take, referred to a
S = {s1,892,83,84}. s1 is the absence of elements
(the column will be left with a wall label), sy repre-
sents a balcony state (before having seen a window),
s3 is a window and balcony state, and s4 is again, just
balcony (seen after a window and balcony state).

e The set of possible transitions between states: Tr =
{s1 = (51,52, 83), 52 — (52,83), 53 — (51,53, 54),
S4 — (84,51)}.

The first step of DP2 is a forward pass through the image
x-coordinates in which two tables 71 and T5 of size (|.S], n)
are constructed. For each z-coordinate, and for each possi-
ble state s, the tables are built as:

Ti(s,x) = max (Ty(k,2—1) 4 by|wy+bs]0) : k—s€Tr
Ts(s,z) = argmax (Ty(k, x — 1) + by|w,|0)
k
3)

Here the vertical bars represent or-operations whose mean-
ing is explained in the following. The next step is a back-
wards pass that recovers the best scoring states per column
by doing back-tracking on 75.

In Eq. (3), each entry of the table T (s, x) is filled af-
ter examining the scores of all states from the previous z-
coordinate that allow to transition to state s. The addition of
either b;, b, + w, or 0 depends on the state s. If s is a bal-
cony state, b, is added, otherwise, if it’s a window/balcony
state, b, +w, is added, which is the score obtained by label-
ing column z with the corresponding labels. It is during this
forward pass that edge information can be added depending
on the chosen transitions. As an example, consider that for a
given coordinate x, we are constructing the entry 77 (s3, x),
which means that we have to choose the maximum among
the following quantities:

Tl(Sl,l'—l) + b:r + Wy + Oé(gy(%yl
Y3

+9y(2,y2) + gy (7, y3) + 2 ga(
Y=y

T1(s2,2—1) + by + wa + a(gy(

Y2
+gy(z,y2) + gy (2, y3) + X 92(2,9)),
Y=y1

Ti(s3,2—1) + by + wa + a(gy(z, 11
+9y(@, y2) + gy4(, y3))

T (s3, ) = max

“)
Where g, (z,y) is the magnitude of the x-gradient at pixel
(x,y) and g, (z,y) the y-gradient. Notice that all three pos-
sible transitions share the unary score given by b, + w,
as well as the vertical gradients taken into account when
adding a column of balcony/window. However, the first
possible transition involves going from a wall label to a
window/balcony label, therefore adding the x-gradient for
the whole column. The second transition, which involves

changing a balcony-only label to a balcony/wall one, takes
into account only the x-gradient between y; and yo. All
gradients are added using a weight « that needs to be tuned
so that the class likelihoods and the gradient magnitudes are
on a similar scale. These transitions can be extended simi-
larly to all other 3 states in this simple and logical manner,
without increasing the complexity nor the running time of
the algorithm.

3.4. Facade Occlusion Repairing

The previously identified symmetries are helpful to iden-
tify and repair occlusions of the facade images [15]. In con-
trast to [15] which uses pixel-wise independent occlusion
reasoning and inpainting which can lead to ghosting arti-
facts, we employ an approach that is more robust to image
misalignments and distortions. Furthermore, we are able
to exploit multiple types of symmetries to recover occluded
facade areas: We first make use of the global bilateral sym-
metries and subsequently use the translational repetitions to
inpaint as many occluded areas as possible.

Global Symmetry Occlusion Inpainting. The global in-
painting is especially useful to recover large occluded areas,
which are mostly due to vegetation. We therefore use the
global reflection to copy pixels from one side to the other
when only one side is labeled as vegetation. In order to
avoid artifacts due to copying image parts, we perform im-
age blending as described in the following.

Image Blending. In order to obtain a visual appealing im-
age composition when copying image parts, we use Poisson
image editing [16] to blend the copied patch with the origi-
nal image. That is, we compute the newly composed image
1. from the original image I, and the image patch I, as the
minimizer of the following energy:

. 2 :
Ic = argIICan/HVIvacHQ dz  with IC’BQI,:I()‘BQP :
Q

»

&)
Here, Q,, denotes the image domain of the patch and 0€,
its boundary. Visually explained, the patch I, is copied into
the composed image I, in a way that image values along the
patch boundary are identical to the original image I, and
the image gradients of composed image I, shall be as close
as possible to the ones of the patch I,,. The composed im-
age can thus be computed by solving the resulting poisson
equation with a standard linear solver.

Motif Computation and Occlusion Detection. Lets as-
sume we found a translational repetition and a certain part
of the image is repeated K times. Hence, we identified K
similar looking image parts, called motifs, {I},} | in our
input image  : © C R? — R3 . Due to noise and oc-
clusions these motifs might not directly be suited to inpaint
occluded parts. We therefore look for a motif that is free



of occlusions. Such a motif can be generated by computing
the pixel-wise median of all motifs, i.e. compute

Inea() = med ({I}, (¢)}1S) ®)

for every pixel z, in which the function med(S) returns the
median element of the set S.

Unfortunately, this approach easily leads to ghosting,
thickening or thinning effects of image details due to im-
perfect alignment of the detected symmetry or distortions
of the input image. We therefore identify the motif that is
closest to the pixel-wise median motif:

I, = argmin

112 (@) = Inea()||5 dz . (7)
Ii e{I},... . IK 2

m>

For the case that none of the motifs is free of occlusions
we identify remaining occlusions by thresholding the differ-
ence from the mean and compute the set of occluded pixels
asT = {z € Q| |Ln(z) — Imea(z)|3 > o}. The final
motif image I, is then computed as the combination of the
two previously computed images:

Iy, = f’VVL|Q\F U Imed|r . ®)

This way, we obtain a motif which is free of occlusions as
much as possible while minimizing ghosting artifacts. The
computed motif I,,, is then copied to fill any occlusions us-
ing the same Poisson blending as described above.

4. Experiments

We evaluate our proposed parsing approach quantita-
tively on four standard facade datasets: ECP dataset [19],
eTrims dataset [3], Graz50 dataset [17] and ArtDeco [2].
The overall accuracy that we reach is on par with the best
performing state-of-the art methods for each dataset, while
being an order of magnitude faster in most cases. We would
like to remind the reader that the main contribution of this
paper is the handling of large occluded areas while keep-
ing the speed and accuracy of the fastest and most accurate
methods, as opposed to tuning up the performance of the
parsing on the classical datasets. We also show a few quali-
tative results of the fagade inpainting.

In order to allow for a fair comparison with the state-of-
the-art facade parsing methods, we use the same per-pixel
likelihoods as in [5, 4, 1]. For ECP, Graz50 and ArtDeco,
the likelihoods are obtained using the multi-feature exten-
sion [6] of the TextonBoost algorithm [ 18] with multi-class
boosting [22]. For the eTrims dataset, a Recursive Neural
Network is used for pixel scores computation, as explained
in [12]. Experiments are performed using five-fold cross
validation setup as in previous methods, with 80% of the
images being used for training and the rest for testing. We
did not seek to improve overall classification accuracy by

Method [12] [5] [4] [1] Ours
Time [s] 110 240 30 2.4 3.1

Table 1. Average run-time per image for different approaches.
Note, that [1] cannot deal with occlusions or inter-floor alignment.

using more modern or better classification methods, since
the goal of this section is to demonstrate the performance
and structural correctness of our parsing scheme given the
same basic unary potentials.

For most datasets, we compare w.r.t. to previous ap-
proaches, mainly Kozinski et al. [4] and Cohen et al. [1].
For runtime comparisons, we refer the reader to Table 1.
Our method is an order of magnitude faster than competitive
approaches which can deal with occlusions. [!] is slightly
faster than ours, but cannot handle occlusions.

ECP dataset. The ECP database [19] consists of 104 recti-
fied images of facades with the labels: {sky, chimney, roof,
window, balcony, wall, door, shop}. In Tab. 2, we compare
to the mentioned state-of-the-art methods. As seen on the
table, we slightly improve labeling accuracy w.r.t. [4] which
is the state-of-the-art, while performing almost as fast as the
fastest algorithm [1]. We improve upon [ 1] on both window
and balcony labels, as expected when adding the regularity
information. We also use the chimney label and show that
the obtained accuracy is still better than the state-of-the-art
for these sets of label. The results for the extended set of
labels are presented in the last two columns of the table.

ArtDeco dataset. The ArtDeco dataset [2] consists of 80
images of rectified facades of very similar style. However,
a large portion of the dataset presents large occluded areas,
mostly due to vegetation. This dataset is ideal for testing
the inference of the architectural elements in the presence
of large occlusions, as it provides hand-annotated ground
truth for the labels behind the vegetation. As presented
by [4], we show results both for the segmentation of only
the visual elements, as well as for the segmentation of the
occluded facade structure, which we infer from symmetry
and regularity. The results of the first task are presented in
the first three columns of Table 4. For the second and more
interesting task, we achieve very similar results as [4] while
being an order of magnitude faster. This dataset validates
the main challenge of our method: keeping the speed of the
fastest method ([1]) and the accuracy of the best perform-
ing one ([4]). The results are presented in the last columns
of Tab. 4. Note that the use of symmetry and regularity
increases window and balcony detection accuracy by over
20% w.r.t. [1] while keeping the same speed. We also show
some qualitative results on Fig. 6.

Graz50 dataset. For this dataset, the overall accuracy
achieved is slightly below the one achieved by [4]. How-
ever, it is important to note that we achieve the best results
for all classes except sky, which skews the overall accuracy.



Figure 6. Results on the ArtDeco dataset, with and without vege-
tation (top and bottom respectively).

Class [121 51 [4] [T Ours | [11° Ours®
Window 75 85 87 85 87 85 87
Wall 88 91 90 90 91 90 91
Balcony 70 90 91 91 92 91 92
Door 67 74 79 79 79 79 79
Roof 74 91 91 90 91 91 91
Sky 97 96 97 97 97 94 94
Shop 93 95 97 9 96 94 96
Chimney - - - - - 85 88
total acc. 84.2 90.8 91.3 90.8 91.8 | 90.3 91.4

Table 2. Results on the ECP dataset [19]. (° = with chimney)

Class [17] [5] [4] [1] Ours
Sky 91 93 93 88 88
‘Window 60 82 84 76 85
Door 41 50 60 52 64
Wall 84 96 96 95 96

total acc. 78.0 91.8 92.5 89.6 91.6

Table 3. Results on the Graz50 dataset.

Figure 7. Example of ambiguities in the ground truth (left) for the
sky class on the Graz50 dataset in comparison to our results (right).

We believe this is due to some ambiguities in the ground
truth labels as can be seen in an example in Fig. 7. Again,
a significant increase in window accuracy can be seen w.r.t.
[1]. The results are presented on Table 3.

The class and overall accuracies for the eTrims datasets
are presented in Table 5. Notice that for this dataset
our method achieves very similar results as [1], since this
dataset presents very little symmetry and grid regularity
compared to the other datasets presented.

Qualitative Evaluation for Inpainting. We show how us-
ing both the global symmetry and the repeating elements
helps clean up the facade images from the ArtDeco dataset.
A few examples for inpainting are shown in Figure 8.

T Wl e

Figure 8. Inpaintint results for the ArtDeco dataset, with and with-
out vegetation (top and bottom respectively).

Class [171°  [41* Ours® [1 4] Ours
Roof 84 82 85 86 81 85
Shop 97 97 97 97 97 97
Balcony 85 87 86 65 82 83
Sky 94 97 95 90 98 90
Window 82 82 82 57 82 78
Door 56 57 65 58 57 65
Wall 88 88 88 94 89 90
Vegetation 90 90 90 - - -
total acc. 88.6 88.8 88.9 | 8.3 88.8 883

Table 4. Results on the ArtDeco dataset. (Y = with vegetation)

Class [12] [4] [1] Ours
Building 87 92 91 91
Car 69 70 70 70
Door 19 20 18 18
Pavement 34 33 33 33
Road 56 57 56 57
Sky 94 96 97 97
Vegetation 88 91 90 90
Window 79 70 71 72
total acc. 81.6 83.5 83.8 83.8

Table 5. Results on the eTRIMS dataset.
5. Conclusion

We presented a novel and efficient approach for facade
parsing with large occluded areas. The proposed method
exploits symmetry and regularity information in multiple
ways. Depending on their existence our approach detects
and exploits global bilateral symmetries and translational
repetitions, which allows our algorithm to enforce vertical
alignment during the parsing when relevant. This informa-
tion also significantly helps to tackle occluded areas and
is useful to obtain plausible occlusion inpainted fagcade im-
ages. We demonstrated the effectiveness of our method in
multiple qualitative and quantitative experimental evalua-
tions and showed that our method is an order of magnitude
faster than the most accurate competitors.
Acknowledgements. This work was funded by the EU Horizon
2020 programme (grant No. 637221) and Google Tango.
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