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Abstract

In this paper, we aim to solve the pose estimation prob-

lem of calibrated pinhole and generalized cameras w.r.t. a

Structure-from-Motion (SfM) model by leveraging both 2D-

3D correspondences as well as 2D-2D correspondences.

Traditional approaches either focus on the use of 2D-

3D matches, known as structure-based pose estimation

or solely on 2D-2D matches (structure-less pose estima-

tion). Absolute pose approaches are limited in their per-

formance by the quality of the 3D point triangulations as

well as the completeness of the 3D model. Relative pose

approaches, on the other hand, while being more accu-

rate, also tend to be far more computationally costly and

often return dozens of possible solutions. This work aims to

bridge the gap between these two paradigms. We propose

a new RANSAC-based approach that automatically chooses

the best type of solver to use at each iteration in a data-

driven way. The solvers chosen by our RANSAC can range

from pure structure-based or structure-less solvers, to any

possible combination of hybrid solvers (i.e. using both types

of matches) in between. A number of these new hybrid min-

imal solvers are also presented in this paper. Both synthetic

and real data experiments show our approach to be as ac-

curate as structure-less approaches, while staying close to

the efficiency of structure-based methods.

1. Introduction

Camera pose estimation, i.e., estimating the position and

orientation of a given image, is a central step in 3D com-

puter vision approaches such as SfM [1, 11, 25], Simulta-

neous Localization and Mapping (SLAM) [7], and visual

localization [4,18,22,27,35]. In addition, camera pose esti-

mation plays an important role in applications such as self-

driving cars [9] and augmented reality [19].

The traditional approach to camera pose estimation is

to estimate the pose from a set of 2D-3D matches be-

tween pixels in a query image and 3D points in a scene

model [10]. The pose is typically computed by applying a

structure-based minimal pose solver inside a RANSAC [8]

Figure 1. Visualization of 2D-2D matches (pink) and 2D-3D

matches (blue) used by one of our hybrid pose solvers. The query

camera is represented in red and SfM cameras in green.

loop. There is a large body of work on absolute pose

estimation from n 2D-3D matches, a problem typically

referred to as n-point perspective pose (PnP). Solutions

to this problem exist for calibrated [8, 10], partially cali-

brated [31, 34], and uncalibrated cameras [12]. When the

3D model is obtained via SfM, as is typical for visual lo-

calization [4, 18, 22, 27, 35], not all 3D points will be ac-

curately triangulated, leading to potentially inaccurate pose

estimates. An alternative to pose estimation from 2D-3D

matches is structure-less pose resectioning [36]: The pose

of a query image is estimated from a set of 2D-2D corre-

spondences between the query and two or more images in

the reconstruction. While this approach avoids the prob-

lem of inaccurately triangulated points and incompleteness

of the model, structure-less pose solvers are significantly

less computationally efficient (up to orders of magnitude

slower).

The availability of both structure-based and structure-

less camera pose estimation techniques leads to a set of in-

teresting questions: Are they mutually exclusive, i.e., is one

always preferable over the other, or is there value in using

both 2D-3D and 2D-2D matches for pose estimation? Is it

best to use ”pure” solvers, i.e., solvers that use either 2D-

3D or 2D-2D correspondences, or do hybrid solvers (c.f .

Fig. 1) using both type of matches improve pose estimation

performance? Should one decide prior to RANSAC which
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solver to use, or is it best to select solvers in a data-driven

way during RANSAC-based pose estimation?

The goal of this paper is to answer these questions.

To this end, we propose nine novel hybrid camera pose

solvers, differing by the number of 2D-3D and 2D-2D

matches each one uses and whether they deal with a cen-

tral or a generalized camera (or both). In order to use

structure-based, structure-less, and hybrid solvers side by

side, we propose a new hybrid RANSAC-variant that first

samples a pose solver according to its probability of suc-

cess and next selects a suitable minimal sample for this

solver. Through extensive tests on both synthetic and real

data, we analyze our new solvers and demonstrate that our

hybrid RANSAC scheme consistently outperforms purely

structure-based and structure-less approaches.

2. Background

Structure-based pose estimation. The classical procedure

followed in structure-based pose estimation consists on first

obtaining a set of putative 2D-3D matches. These putative

matches are usually obtained from matching keypoints in

a query image (or image sequence) against mean descrip-

tors associated to each 3D point in the model. Given these

matches, the camera pose is robustly inferred by employing

a minimal solver inside a Hypothesize-and-Verify scheme

(e.g. RANSAC [8]).

Different minimal solvers have been proposed in the lit-

erature, depending on whether the camera to localize is cen-

tral or generalized (i.e., with multiple centers of projection).

For the case of central cameras, [8, 14] require a minimal

sample of 3 matches as they deal with a fully calibrated set-

ting, while [34] requires 3.5 matches as a focal length is

also estimated. [31] also seeks to estimate the center of pro-

jection, and thus requires 5 matches. [12] assumes unknown

radial distortion, and uses a minimal set of 4 matches. [16]

uses 3 matches to estimate the pose of a calibrated general-

ized camera, assuming that its scale w.r.t. to the 3D model

is known. [28] additionally assumes a known vertical direc-

tion, requiring only 2 matches in order to compute a pose.

In [16, 28], the scale of the generalized cameras w.r.t. the

SfM to be known. This is not always the case in many Com-

puter Vision scenarios, where often the 3D models available

are up to scale. Addressing this, [32] deals with the case

of unknown scale and unknown vertical direction, thus re-

quiring 4 points. Since we will focus on a calibrated sce-

nario in this paper, we will make use of some of this solvers

(namely, [14, 28, 32]) alongside both structure-less and hy-

brid solvers in a novel RANSAC-based approach.

Structure-less pose estimation. The pose accuracy ob-

tained by structure-based methods is limited by the qual-

ity of the 3D points that the camera observes. Addition-

ally, the number of inlier matches a query camera can have

is bounded by the number of 3D points the camera sees.

Tackling these issues has been the focus of recent research.

Rather than explicitly representing the scene by its 3D struc-

ture, 2D-2D correspondences between the query image (or

images) against multiple images are used for pose estima-

tion. In these cases, the query is usually matched against

the most similar images (2 or more [36]) present in the SfM

model, which are found using an image retrieval approach.

Alternatively, 2D-2D matches can also be obtained by

following the same procedure described for structure-based

pose estimation. Once the a set of 2D-3D matches is ob-

tained, the 3D counterpart of each match can be replaced

by one of the SfM camera rays used to reconstruct this 3D

point. Next, a minimal solver is used inside a RANSAC

loop in order to robustly estimate a camera pose. [36] pro-

poses a minimal solver that can deal with both calibrated

central cameras, using 6 matches, as well as uncalibrated

ones (using 7 matches). For the problem of localizing a

generalized camera, [26] proposes a 6 point solution that

requires prior knowledge on the relative scale of the cam-

era. If the vertical direction is known, only 4 matches are

needed [29]. [30] estimates the scale while also assuming a

known vertical direction, thus requiring 5 matches. All of

these solvers share the property of being more accurate than

their structure-based counterparts. However, they can be up

to orders of magnitude slower, which is further aggravated

by the fact that RANSAC needs to run exponentially longer

due to the larger size of the minimal samples. In Sec. 3, we

introduce a solver-selection step that allows the use of these

type of solvers only when the current state of the problem

suggests that they have a high chance of success, thus re-

ducing the total running time of robust pose estimation.

Hybrid pose estimation. Somewhere in-between there are

solvers that simultaneously use different types of matches,

referred to as hybrid solvers, although they have not gained

much attention in the past. [5] uses two 2D-3D matches and

one 3D-3D match in order to estimate the pose and scale

of a generalized camera. [6] uses one 3D-3D match and 3
2D-2D matches in order to find the relative pose of a stereo

pair. These two approaches, however, can be twice affected

by the inaccuracy of point triangulation due to the use of a

3D-3D match. Most related to the type of solvers that we

explore in this work, is [13], where 2 2D-2D and 2 2D-3D

matches are used to find the pose of a central camera. In

section Sec. 4 we propose a number of solvers that can also

deal with generalized cameras, as well as different mixtures

of 2D-2D and 2D-3D matches, and show how their combi-

nation can be valuable for pose estimation.

Adapted RANSAC schemes. Since we are looking to

deal with different types of matches, RANSAC needs to be

adapted to sample from two different sets with potentially

different inlier ratios. [5, 6] deal with this problem by keep-
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ing track of the two (or more) inlier ratios and modifying the

RANSAC termination criterion to take them into account.

In this work, we adopt the same termination criterion, as

we also face the same issue. However, we also need to de-

vise a strategy to choose a suitable solver for RANSAC. The

choice of solver should be driven by the data and the current

estimate. This task is akin to model selection, where mod-

els are selected on the fly according to a probability criterion

based on the current state of the problem.

3. Hybrid RANSAC for Pose Estimation

Let Mp be a set of putative 2D-3D matches and Mr

be the set of putative 2D-2D matches. Traditionally, only

one of these sets is used to robustly estimate the pose of

a query camera using RANSAC combined with a minimal

solver such as P3P or a 2D-2D structure-less pose solver

such as [36]. However, we would like to exploit all of the

available information, e.g. by using hybrid minimal solvers

that use a combination of both 2D-3D and 2D-2D matches.

In order to use such solvers, RANSAC would need to sam-

ple from both Mr and Mp. Consequently, its termination

criterion should be adapted to work with two separate inlier

ratios, which we will call εr and εp, as presented in [5, 6].

Nevertheless, depending on the quality of the matches, e.g.

noise in the 3D or 2D points, different number of outliers

contaminating the matching sets, etc., as well as the quality

of the solver itself, different solvers may yield better results

than others. Therefore, given a set of minimal solvers S that

require different mixtures of 2D-2D and 2D-3D matches,

we would like RANSAC to be able to automatically choose

a solver depending on the quality of the data. This choice

may change from one iteration to the next based on an im-

proved estimate of the inlier sets, e.g., relative inlier ratios

may change when a better model is found which should af-

fect our choice of solver.

Three questions arise when designing a RANSAC vari-

ant that can cope with two different sets of matches and in-

lier ratios, as well as a number of different minimal solvers:

1. How do we score a hypothesized model, i.e. how do

we choose the best model so far?

2. Given the estimated inlier ratios ε̂r and ε̂p, as well as

our past choices of solver, which is the best solver to

use for the next iteration?

3. When should we terminate?

For the first question, we adopt a classical RANSAC ap-

proach, and choose the best model as the one with the

highest inlier count overall, taking into account both sets

of matches. Notice that one may choose a different inlier

threshold for each set of matches.

The issue of choosing a solver for the next iteration is

tackled using a probability-guided sampling strategy. At

each iteration, a solver is chosen according to its proba-

bility of succeeding (estimating a model from an all-inlier

minimal sample) at this iteration for the first time. The intu-

ition behind using this probability is that we want our solver

to be as exploratory as possible as long as the data allows

it. Therefore, we would like to select a solver with a high

chance of success which has not been used enough to have

found a valid solution yet. This means that its chances of

finding a good solution for the first time should be high. We

will refer to this probability as success probability, or Ps.

Let s be a solver that requires a minimal set of n matches

from Mr and m matches from Mp. Let εr and εp be the

true inlier ratios of the sets Mr and Mp, respectively. The

probability of sampling an all-inlier minimal set for solver

s at any iteration is given by εnr ε
m
p . The probability of the

solver not having seen an all-inlier set by iteration ks is

given by (1 − εnr ε
m
p )ks−1. It follows then that the proba-

bility Ps of choosing a good sample at iteration ks of model

s for the first time is given by

Ps = εnr ε
m
p (1− εnr ε

m
p )ks−1 . (1)

Since the true inlier ratios are unknown, they can be re-

placed by the estimated inlier ratios ε̂r and ε̂p of the best

model found so far. In order to compute Ps, RANSAC

needs to keep track of how many times each solver has been

chosen in the past. Therefore, for each solver s, a number

of iterations ks has to be stored. Notice that the more a

solver is used, the less likely it is to be chosen in later iter-

ations, therefore allowing RANSAC to eventually explore

previously unused solvers.

Another factor that should affect the choice of solver is

the quality of the solver itself, i.e. how accurate is the solu-

tion estimated given an all-inlier sample. Consequently, we

will weight the computed success probability with a prior

on the quality of the solver. This quality prior, referred to

as Pp, is empirically chosen based on the solver’s numerical

stability and the size of its minimal set. The intuition behind

this being that the more matches a solver requires, the more

it will be affected by their noise. Therefore, we rank the

solvers according to their minimal set size and their numeri-

cal stability (which is analyzed in Sec. 5.1) and assign them

a normalized prior according to this ranking. Notice that

this prior does not need to be recomputed during RANSAC

and does not depend on the data. Finally, the solver is cho-

sen according to this prior multiplied by its probability of

success. Once the solver is picked, we then randomly sam-

ple n and m matches from Mr and Mp, respectively (c.f .

the supplementary material for additional details).

The last question to answer involves the termination cri-

terion. For each solver s, the minimum number of iterations

Ks that guarantees that it will find a good solution with

probability P (usually set to 0.99) is given by:

Ks =
log(1− P )

log(1− εnr ε
m
p )

. (2)
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Algorithm 1 Hybrid RANSAC

Require: S,Mr ,Mp, inlier thresholds σr , σp

Require: ∀s ∈ S, minimal set sizes ns, ms, prior Pp(s)
1: ∀s ∈ S, initialize success probability Ps(s) = 1,
2: while TRUE do

3: Choose s ∈ S with probability Ps(s)Pp(s)
4: ks ← ks + 1
5: Randomly choose Sr ⊂Mr , |Sr| = ns

6: Randomly choose Sp ⊂Mp, |Sp| = ms

7: Compute pose θ = s(Sp ∪ Sr)
8: Ir = inlier count(θ,Mr, σr)
9: Ip = inlier count(θ,Mp, σp)

10: Inliers(θ)← Ir + Ip
11: ε̂r ← Ir/|Mr|, ε̂p ← Ip/|Mp|
12: if Inliers(θ) > Inliers(θ∗) then

13: θ∗ ← θ
14: for all s ∈ S do

15: Update Ps(s, ε̂r, ε̂p) using (1)
16: Update Ks using (2)
17: if ks ≥ Ks then

18: return best model θ∗

Thus, our RANSAC variant stops when at least one solver

s has been chosen Ks times, as this means that a good so-

lution for the current inlier ratios has been found with prob-

ability P . Note that at every iteration, the number of it-

erations ks for the last chosen solver s has to be updated,

and, if the model found is better than the best model found

so far, the maximum number of iterations Ks′ is updated

for all solvers s′ ∈ S . The chosen termination criterion is

optimistic in the sense that it stops as soon as one solver

is finished. Its pessimist counterpart would have RANSAC

run for as long as necessary for each solver to complete its

iterations. We argue that this is unnecessary, as this would

require RANSAC to wait for the most unsuited solvers to

finish even though their chances of finding a valid model

are very low (therefore needing more iterations). Indeed,

when a solver is called very few times, it is usually because

it relies on the set of matches with the lowest inlier ratio,

therefore it is unsuited for this particular data. In practice,

the optimistic criterion allows for a good trade-off between

accuracy and run-time, as will be shown in Sec. 5. Our

RANSAC variant is presented in Alg. 1.

4. Hybrid Minimal Solvers

In this section we detail the derivation of all new solvers

which are required for our RANSAC variant (c.f . Alg. 1).

Given a combination of n 2D-2D matches and m 2D-3D

matches, we have 2m+n constraints: A 2D-2D match will

provide 1 algebraic constraint on the pose while a 2D-3D

match will provide 2 constraints. If d is the number of de-

grees of freedom of the camera pose, we are interested in

the cases where 2m + n = d, i.e., minimal problems. In

this paper we will focus on 4 different pose problems, de-

pending on what is assumed as prior knowledge regarding

the pose (c.f . Table 1). The first problem, referred here as

PROBLEM 6-DOF, is the case of a generalized camera where

only its rotation and translation are unknown, and so d = 6.

Notice that the problem of single central camera pose esti-

mation is a specific case of this problem. PROBLEM 4-DOF

has d = 4 and refers to the upright case of a known-scale

camera, i.e., where the vertical direction is known. PROB-

LEM 7-DOF is the problem where we do not know the scale

of the generalized camera w.r.t. to the map. Thus, for this

problem d = 7. Finally with d = 5, PROBLEM 5-DOF is

the upright version of PROBLEM 7-DOF, i.e., we know the

vertical direction but not the scale.

U S
# Matches

Name Reference
Num.
Sols.2D 3D

P
R

O
B

L
E

M

6
-D

O
F

0 3 (g)P3P [14, 16] 4/81

2 2 H22 Sec. 4.2 16
4 1 H41 Sec. 4.2 32

6 0 Strless [26, 36] 642

P
R

O
B

.

4
-D

O
F • 0 2 (g)P2P [28] 2

• 2 1 uH21 Sec. 4.2 4
• 4 0 QEP [29] 6

P
R

O
B

L
E

M

7
-D

O
F

• 0 4 P4P+s [32] 8
• 1 3 H13+s Sec. 4.1 16
• 3 2 H32+s Sec. 4.1 56
• 5 1 H51+s Sec. 4.1 803

• 7 0 SevenPt [30] 1403

P
R

O
B

L
E

M

5
-D

O
F

• • 0 3 uP3P+s Sec. 4.1 1
• • 1 2 uH12+s Sec. 4.1 4
• • 3 1 uH31+s Sec. 4.1 6
• • 5 0 FivePt [30] 10

Table 1. Summary of Minimal Solvers. U and S stand for upright

(i.e., known vertical) and unknown scale, respectively. The solvers

presented in this paper are in boldface.

As detailed in Table 1, most of the “pure” solvers al-

ready exist in the literature (e.g., P3P), with the exception

of uP3P+s. Conversely, most of the hybrid solvers are yet

to be derived. This with the exception of H22 and H41,

which have been previously explored in [13]. However, the

versions there are only meant for central cameras, thus here

we offer a more general derivation. In total, there are 7 min-

imal solvers which our hybrid RANSAC requires and that,

to the best of our knowledge, have not yet been investigated

in the literature. We also offer a novel, more general deriva-

tion for 2 existing solvers. We note, however, that two of

the solvers required for PROBLEM 7-DOF are of very high

polynomial degree and have been deemed too unstable for

practical use [30]. As such, we do not investigate a full Hy-

brid RANSAC solution for PROBLEM 7-DOF. Nevertheless,

we offer derivations and synthetic precision evaluations for

the more tractable cases: H13+s and H32+s.

Rotation Parameterization. Let R and t be the rota-

tion and translation that transform elements in the global

frame of reference {G} to the camera frame of reference

{C}. For the unkonwn vertical cases (PROBLEM 6-DOF and

PROBLEM 7-DOF), we parameterize the rotation using a unit

quaternion [u1u2u3w]
⊺, setting w = 1, i.e., R = R(u).

Even though setting w = 1 eliminates the possibility of

1For the generalized gP3P we have 8 solutions. 4 for P3P the case.
2If the query camera is central, we may have 20, 40, 56 and 64 solutions

depending on the SfM cameras’ configuration [36].
3Solvers are too numerically unstable to be useful c.f . Sec. 4.2 and [30].
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finding a rotation with w = 0, this has a negligible impact

on the solver’s performance for real data and has been used

widely in previous work [26, 29, 36].

For upright cases (PROBLEM 4-DOF and PROB-

LEM 5-DOF), i.e., where the vertical direction in the cam-

era frame is known, we are dealing with a rotation around

a known axis. Without loss of generality we assume the

vertical direction in {C} to be [0 0 1]⊺, which can always

be achieved using a pre-processing step (details of this are

given in the supplemental material). This results in a rota-

tion around the Z axis, which we choose to parameterize as

R(a, b) =
[

a −b 0
b a 0
0 0 1

]

, (3)

where we must enforce that a2 + b2 = 1.

2D-3D Constraints. Given i = 1 . . .m 2D-3D matches,

we may write
αivi + s ci = Rpi + t , (4)

where αi is the depth of the i-th point in {C}, vi is a ray

of unit length, s is the scale of the generalized camera, ci
is the center of projection for the generalized measurement

and pi is the 3D point in {G}. In many cases it is useful to

eliminate the unknown depths, thus one may rewrite (4) as

⌊vi⌋x (Rpi + t− s ci) = 0 , (5)

where ⌊a⌋x ∈ R
3×3, such that ⌊a⌋xb = a× b. Only 2 of

the 3 equations in (5) are linearly independent, thus only the

first two are taken into account. For the case where scale is

known, we simply set s = 1, whereas for central cameras

we may always set ci = 0. Notice that (5) is linear in t

and s, two of the potential unknowns. Depending on how

many 2D-3D matches are available, we manipulate (5) in

two different ways.

2 2D-3D matches or more: In this case, t and s may be

eliminated. For known scale problems we need only 3 of

the 4 equations provided by 2 2D-3D matches to get

At = B(r) , (6)

where A ∈ R
3×3 is a coefficient matrix obtained from the

inputs, and B(r) ∈ R
3 is a function of the rotation param-

eters r, which can be (a, b) or u as explained above. In the

case of unknown scale, we must use all of the 4 constraints

available in the 2 2D-3D matches to isolate the linear un-

knowns. For this case we have

As [t⊺ s]
⊺
= Bs(r) , (7)

where we now have As ∈ R
4×4 and Bs ∈ R

4. We can then

invert either A or As in order to obtain the linear unknowns

in terms of the rotation only.

1 2D-3D match: in this case we instead transform the

point in {G} and the corresponding camera frame. We do

this s.t. c1 = 0, v1 = [0 k1 k2] and p1 = 0 (details of

this transformation are offered in the supplemental mate-

rial). Doing this allows us to then rewrite (4) as α1v1 = t,

and eliminating α1 leads to

t =

[

0

tz
k1

k2

tz

]

, (8)

where tz is the last element of the unknown translation.

2D-2D Constraints. A 3D line can be represented using

Plücker coordinates [21] as L = [q⊺ q′
⊺
]⊺ ∈ R

6. Here q is

the unit direction of the line, and q′ = q×p where p is any

point on the line. A given pair of lines, aL and bL, intersect

in space iff aq ·bq′ +aq′ ·bq = 0. In order for the j-th line

(with j = 1 . . . n) in the camera frame CLj to intersect with

its matched line in the global frame GLj we must have that

Cq
⊺

j R
Gq′j +

Cq′
⊺

j R
Gqj =

Cq
⊺

j ⌊t⌋xR
Gqj , (9)

Notice that, as opposed to (5), (9) is homogeneous in R, and

so the scale of the rotation is irrelevant. This is important

in the case of the quaternion-based rotation, since every el-

ement of R(u) has a common factor of 1/(|u|2+1) in order

for R to be a proper rotation. For (9) this nonlinear common

term can be safely factored out.

Gröbner Basis Solution. For any given solver, we adopt

a Gröbner basis approach to solve the resulting polynomial

system. For this, we employ a Gröbner basis Solver Gen-

erator [15, 17]. The solution of the polynomial system is

then given by the Gauss-Jordan reduction of an elimination

template, and the eigen-decomposition of an action matrix

with entries resulting from the elimination template. Thus,

the speed and numerical stability of the resulting solver will

depend on the size of the elimination template and the size

of the action matrix (which also dictates the number of so-

lutions). A more detailed discussion of this method is out

of the scope of this paper, for more details see [3].

4.1. Unknown Scale Solvers

H13+s First we obtain t(u) and s(u) using the first 2 2D-

3D points (c.f . (7)). Then, we are left with one more 2D-3D

match (2 constraints) and one 2D-2D match (1 equation).

We substitute t(u) and s(u) into (4) and into (9), leaving

us with 3 equations in u. We input these equations into the

generator in [17], obtaining a solver with a 66×82 elimina-

tion template and 16 solutions.

H32+s Here, we follow the same procedure as for H13+s,

with the difference that we substitute t and s into 3 2D-2D

constraint equations, instead of 2 2D-3D and only 1 2D-2D.

Given that the 2D-2D constraints are of higher degree than

the 2D-3D, we end up with a much more complex solver

compared to H13+s. In this case, the elimination template

is of size 212×276 and the system has 56 solutions.
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H51+s In this case, we cannot directly use (7), and thus we

use (8) with our only 2D-3D constraint in order to eliminate

the first two elements of the translation. We then substitute

t as per (8) into (9) with j = 1 . . . 5, which yields a very

complex solver. For this derivation, we obtain a 549×781
elimination template with 80 solutions. According to our

experiments, this is not an acceptable size of elimination

template to deal with in 64-bit floating point precision, and

thus this solver is deemed impractical.

uP3P+s For this solver we are given 3 2D-3D matches, as

in (5) and a known vertical direction. Since we are able to

parameterize R(a, b) as in (3), then (5) is purely linear. As

with the solver in [32], we actually have one excess con-

straint. Thus, we may solve the system of 6 linear equations

given by 3 2D-3D constraints for the 6 unknowns t, â, b̂,
s. This solution in general will not fulfill the nonlinear con-

straint â2+ b̂2 = 1. To enforce this, we simply divide â and

b̂ by â2 + b̂2. This is only an approximate solution, but in

practice it yields good results (c.f . Sec. 5.1).

uH12+s For this solver we again employ the elimination of

(7). We are then left with inserting the expression for t and

s in terms of a and b into the remaining 2D-2D equation.

This leads to a system of two polynomials: one of degree 2
resulting from the previous substitution, and the constraint

of the rotation parameterization (3). The solver obtained

has a 6×10 template, with an action matrix of size 4.

uH31+s Similarly to H51+s, we start by eliminating the

first two elements of t using (8). Then, we substitute this

expression into (9) with j = 1, 2, 3, leading to a system of 3
polynomials in terms of a, b, tz and s. Adding the rotation

parameterization constraint leads to an elimination template

of size 30×36 and an eigen-decomposition of size 6.

4.2. Known Scale Solvers

H22 We begin by eliminating t using 3 equations out of

the 4 given by our 2 2D-3D matches. Afterwards we simply

substitute this into the remaining 2D-3D constraint plus the

two 2D-2D constraints. This yields a system of 3 polyno-

mials in u. We get an elimination template of size 23×39
and 16 solutions.

H41 For this solver we use (8) with only 2D-3D constraint

to eliminate two translation parameters. We then substitute

back into 4 (9) constraints. Since, as mentioned, all of this

equations are homogeneous, we multiply out the resulting

polynomial system in u and tz by the scale of the rotation.

This simplifies the algebraic representation of the problem,

however we are still left with a rather large elimination tem-

plate of size 244×277 and an action matrix with up to 32

valid solutions.

uH21 As in the previous solver, we eliminate the last two

elements of the translation. We arrive at two 2D-2D con-

straints in tz , a and b plus one constraint on the rotation

parameterization. We solve this system of three polynomi-

als using a 8×12 template yielding an action matrix with up

to 4 solutions.

5. Results

First, we evaluate the numerical stability of the solvers.

This is used not only to validate our derivations, but to

guide our prior Pp(s) (c.f . Sec. 3). Afterwards, we perform

two different real-data evaluations for instances of PROB-

LEM 6-DOF and PROBLEM 5-DOF.

5.1. Numerical Stability of the Minimal Solvers

For each solver we generated 106 random synthetic

scenes and compared the obtained best pose against ground

truth. For each synthetic scene we generated 3D points in

the [−1, 1]× [−1, 1] × [2, 10] cube. Each synthetic cam-

era was placed with a random center of projection in the

range [−1, 1]× [−1, 1]× [−1, 1]. We then generated a ran-

dom rotation and translation (and if applicable a random

scale ∈ [1, 10]) and transformed the generated camera cen-

ters and 3D points. For each trial, we use enough matches to

cover the requirements of each solver. For 2D-3D matches,

we projected each transformed 3D point to the transformed

frame and associated it with the original 3D generated point.

For 2D-2D matches, we also project the 3D points to ob-

tain 2D measurements in the query frame, while keeping the

original camera and its projected observation in the global

frame. In Fig. 2 we report the precision with which we

were able to obtain the camera poses. We can see that all

proposed solvers are stable enough to be used in practical

applications (e.g., within RANSAC). In order to asses the

computational cost for our solvers, we also recorded the ex-

ecution time and number of real-valued solutions (c.f . Ta-

ble 2). For comparison, a typical P3P implementation has

runtimes of about 2µs.

Solver
Time Num. of Sols.

Mean Median Mean Median

Implementations in MATLAB (times in [ms])

uH21 3.2 2.6 3.2 4
H13+s 19.1 17.5 6.2 6
H32+s 2, 693 2, 617 20.9 22

Implementations in C++ (times in [µs])

uP3P+s 3.2 3.1 1 1
H22 7.25 7.2 6.8 6

uH12+s 9.5 9.2 3.3 4
uH31+s 32.6 32.1 4.5 4

H41 756 728 12.7 12
Table 2. Execution times and number of solutions for the minimal

solvers presented in this paper. C++ was used only for the minimal

problems needed for the real-world experiments. H51+s is not

included since no practical implementation was obtained.
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Figure 2. Numerical precision of the nine proposed solvers. Notice the scale changes in the X-axis. For more complex solvers (i.e., larger

elimination templates and more solutions, c.f . Sec. 4), we observe errors with a higher spread. Nevertheless, all our proposed solvers

exhibit enough numerical accuracy to be useful for practical applications.

5.2. Real­data Experiments

To test our novel hybrid pose estimation framework

along with our newly developed minimal solvers, we focus

on PROBLEM 6-DOF and PROBLEM 5-DOF for the real-data

experiments. We conduct these experiments by comparing

our hybrid approach against the pure approaches for each

problem. These experiments are meant to illustrate two dif-

ferent possible usages of our hybrid method. In the first ex-

periment (c.f . Sec. 5.2.1), we address the issue of inaccurate

pose estimates arising from inaccurately reconstructed 3D

points. To do so, we ignore the badly triangulated 3D points

and instead focus on the 2D measurements that produced

them. In the second experiment (c.f . Sec. 5.2.2), we focus

on increasing the number of correspondences by matching

against all existing 3D points plus all the 2D observations

from the SfM model which were not used to reconstruct

any 3D point. This allows us to utilize information that is

usually ignored (2D measurements in the SfM) when esti-

mating the pose of a given camera.

Bear in mind that these results are meant to demonstrate

that using hybrid matches can improve performance in real-

world scenarios. As such, we do not focus on the matching

procedure and thus we cannot directly compare our results

to many state-of-the-art approaches, e.g., [18, 22]. Never-

theless, our approach is agnostic to the matching procedure

and it can be used as a drop-in replacement in many of these

state-of-the-art methods.

5.2.1 Image-based Camera Localization

We employ the dataset presented in [23] as an instance of

PROBLEM 6-DOF. This dataset consists of an SfM model

with 1.65M points, 4.3K model images and has 824 query

images with ground truth poses. For each query image, we

match all detected SIFT features against the SfM’s 3D fea-

tures using an approximate nearest neighbor search [20].

For the purely 2D-3D method, we simply take all 2D-3D

correspondences to compute the pose of each image. For

the 2D-2D method, for each 3D point we randomly select

a camera in the model that reconstructed that point and use

this camera and its original 2D measurement to recreate a

2D-2D match. Finally, for our hybrid method, we need to

use both 2D-2D and 2D-3D matches. To do so, we select

a subset of the initial 2D-3D matches and instead consider

them as 2D-2D. To decide which 2D-3D matches we will

Figure 3. Top Comparison of the number of correctly estimated

poses for the dataset in [23]. For a given threshold, we count the

number of images with an error equal or below the threshold. Bot-

tom Comparison of the execution time for our hybrid method com-

pared to using either P3P [14] or SixPt [36] alone. All values are

the average of 100 runs.

recast as 2D-2D, we use the covariance of the 3D points

(obtained as part of the Bundle Adjustment procedure as

approximated by the inverse Hessian). As in [2], we score

each 3D point by the roundness of its covariance

rk =
√

λ3

λ1

, (10)

where λi is the i-th singular value of the 3×3 (up-to-scale)

covariance matrix of point k. Using this score, we then sim-

ply take 50% of the matches with highest roundness score

as 2D-3D and consider the rest as 2D-2D. By applying this

procedure we aim to reduce the impact of badly triangulated

3D points in the accuracy of our estimated pose.

In Fig. 3 we show the precision of our method compared

to using each match type separately. For this dataset, we

focus on the registration rate as a function of the retrieved

pose precision. For a given position (or rotation) threshold,

we count the number of images which have a position (or

rotation) error equal or below such threshold. The poses

used to compute the precision against the ground truth were

obtained from the output of RANSAC directly, without per-

forming any pose refinement. Note that, interestingly, our

hybrid approach is able to increase the precision of the re-

trieved poses across all images. Furthermore, in Fig. 3 we

can see that the average runtime of our method does not

significantly differ from the less accurate P3P. Additionally

in order to validate our Hybrid RANSAC solver selection

scheme, we measured how often a particular solver finds
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Using 2D2D Matches Using 2D3D Matches Hybrid

Dataset
Inlier
Ratio

Time
[ms]

Position Error [cm]
Inlier Ratio Time

[ms]

Position Error [cm]
Inlier Ratio Time

[ms]

Position Error [cm]
Quantiles

Mean
Quantiles

Mean
Quantiles

Mean
Name # Images 2D2D 2D3D 25% 50% 75% 2D2D 2D3D 25% 50% 75% 2D3D 2D3D 25% 50% 75%

Office1 9 - - - - - - - 0 0.657 13.1 4.7 5.35 7.4 6.3 0.01 0.66 21.1 4.8 5.21 7.5 6.27

Office2 9 - - - - - - - 0 0.56 13.2 5.2 5.9 6.5 5.6 0.1 0.65 19 5.1 5.9 6.5 5.6

Office3 33 0.54 0 169 3.5 4.4 5.2 4.5 0 0.29 272 3.9 5.3 5.9 5.8 0.46 0.33 110 3.2 3.8 4.5 4.0

Office4 9 0.74 0 25.3 4.1 5.4 7.7 6.3 0 0.51 21 4.3 5.83 7.9 6.6 0.72 0.54 16.4 4.1 5.4 8.0 6.5
Office5 15 0.58 0 115.3 3.5 5.3 7.2 5.5 0 0.31 151 4.1 5.4 6.8 5.54 0.34 0.35 85 3.6 4.2 5.7 4.3

Office6 24 0.07 0 983 4.4 5.3 6.3 5.4 0 0.53 9.68 3.4 3.7 4.0 3.8 0.04 0.54 19.1 3.4 3.5 4.1 3.5

Office7 9 0.70 0 51.4 3.9 4.52 5.57 4.7 0 0.25 125 4.4 5.1 5.8 5.1 0.63 0.27 41.9 4.2 4.7 5.1 4.7

Office8 11 0.47 0 137 3.8 4.46 5.6 4.7 0 0.41 75 4.1 4.8 5.4 4.9 0.42 0.43 48 4.0 4.5 5.5 4.5

Office9 7 0.21 0 279 5.9 6.2 6.4 7.1 0 0.49 8.3 4.1 5.2 6.5 5.6 0.22 0.51 15.3 4.3 5.3 5.9 5.4

Office10 23 0.39 0 151 5.2 6.0 6.7 6.1 0 0.45 15.7 4.7 5.7 6.1 5.8 0.38 0.45 11.4 4.8 5.5 5.9 5.5

Office11 58 0.78 0 21.3 4.4 5.1 5.5 5.0 0 0.47 9.9 4.3 4.9 5.57 5.1 0.77 0.47 10 3.8 4.3 4.9 4.3

Table 3. Performance on the dataset by [33], consisting of 12 image sequences and a point cloud with SIFT descriptors. As in [5, 30, 32],

the position error is computed using the output of RANSAC without refinement. Notice that our hybrid approach performs better both in

runtime and accuracy than using each of the matches separately. For two sequences (1 and 2), there was not enough visual overlap with

“Office12” in order to localize using only 2D-2D matches.

Method
Inlier Count

Mean
Quantiles

25% 50% 75% 90% 95%

Hybrid 260 74.5 175 372 632 804

P3P 239 72.5 167.5 349 583 690

SixPoint 246 71 174 354 609 724

Table 4. Statistics on the number of inliers for the experiments

on the dataset for [23]. Our hybrid method is able to consistently

achieve a larger number of inliers. Results averaged over 100 runs.

the highest inlier consensus per image. For 824 images,

H22 finds the best model 214 times; H41 finds the best

model 245 times, P3P finds it 197 times and finally SixPt

finds it 168 times. Thus, depending on the image being lo-

calized, one solver is more suited than another. Regarding

the number of inliers obtained by our method, we measured

the mean number of inliers across all images, c.f . Table 4.

5.2.2 SLAM Trajectory Registration

In this experiment we aim to measure the performance of

our framework applied to PROBLEM 5-DOF. This type of

problem is particularly relevant for SfM registration, where

we have two reconstructions (with different scales) which

we aim to merge into one. We used the dataset in [33],

which consists of 12 video sequences of an office indoor

scene, as well as a 3D reconstruction of the scene obtained

using SfM. Additionally, each of the 12 sequences were ran

through a SLAM system, thus relative local poses within

each sequence are known. An optical tracker was used to

obtain accurate positional ground truth of each of the se-

quences in the dataset. Similarly to Sec. 5.2.1, we first ob-

tain 2D-3D matches for each sequence against the model’s

3D points. In contrast to the previous experiment, however,

we cannot use the original reconstruction’s cameras to ob-

tain 2D-2D matches since those camera poses are not avail-

able in the dataset. Instead, we follow a similar procedure

to [30]. We first take one of the sequences, “Office12”, and

use its ground truth pose to align it to the global frame of

reference. We then compute 2D-3D matches for this se-

quence, and non-linearly refine the poses of the sequence

by minimizing the reprojection error of the 2D-3D matches.

This results in an augmented dataset, where in addition to

the original set of 3D points we have a camera sequence

registered to these 3D points. This allows us to then match

against all original 3D points and the 2D observations of

“Office12”. Then, for the purely 2D-2D method, we con-

sider all 2D observations of “Office12” to obtain matches.

For our hybrid method, however, we match against the orig-

inal 3D points to get 2D-3D matches, while we use the un-

matched 2D observations in “Office12” (i.e., the image ob-

servations which are not matched to a 3D point) to obtain

2D-2D matches. Thus, for our solver we use the original 3D

points plus the 2D measurements from “Office12” which

would usually go unused.

In Table 3 we show the results of our method on an

instance of PROBLEM 5-DOF. For most sequences, our

method is able to deliver an accuracy comparable to the

state-of-art method by [30], while maintaining a runtime

very close to the one achieved by the most simple 2D-3D

solver.

6. Conclusions

In this paper, we have posed the question whether cam-

era pose estimation can be improved by using both 2D-

2D and 2D-3D matches. To answer this, we have devel-

oped a novel framework for camera pose estimation that

jointly uses different minimal solvers within a new Hybrid

RANSAC scheme. As needed by our Hybrid RANSAC

scheme, we have derived several new minimal solvers using

both 2D-2D and 2D-3D correspondences, which we evalu-

ated on synthetic data in order to asses their numerical sta-

bility. We have evaluated our framework on two different

real-world datasets, demonstrating that it generates more

accurate poses compared to approaches using either 2D-2D

or 2D-3D matches. One main strength of our approach is its

ability to automatically select a suitable solver, allowing it

to adapt to the quality of the provided matches. Overall, we

have shown that there is a clear benefit in properly combin-

ing different types of matches for camera pose estimation.

For future work, we plan to apply our framework to other

geometric problems, such as uncalibrated camera pose esti-

mation (e.g., by extending [24]) or rolling shutter scenarios.
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