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Abstract. We present a novel approach that jointly reconstructs the
geometry of a human head and semantically segments it into labels
such as skin, hair and eyebrows. In order to get faithful reconstructions
from data captured in uncontrolled environments, we propose to adapt a
recently introduced implicit volumetric surface normal based shape prior
formulation. Shape prior based approaches critically rely on an accurate
alignment between the data and the prior to succeed. To this end, we
propose an automatic alignment procedure for the used shape prior for-
mulation. We evaluate our alignment procedure thoroughly and show
head reconstruction results on challenging datasets.
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1 Introduction

Reconstruction of human faces and heads is an ongoing topic in computer vision
and related areas. There is much interest due to the wide field of applications
and the inherent difficulty of the problem. Use cases are for example content
generation for movie production, computer games, virtual make over, physical
manufacturing of figurines, i.e. 3D printing, and many more. Due to the wide
range of applications many different capturing technologies are utilized in prac-
tice. When generating content for movies, high quality capturing setups that
facilitate a very accurate geometry acquisition are the natural choice [2]. How-
ever, this is expensive and needs expert knowledge during the capturing process.
In this paper we focus on less constrained scenarios, such as a person taking a 3D
selfie [32] or a person capturing a 3D head model of another person by using a
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hand held camera. Therefore, there is little control over the conditions in which
the images are taken. They can be badly exposed, blurry and are generally of
lower quality than with a dedicated capturing setup. A common way to address
these issues is to use shape priors [7,13,23].

For many applications also semantic labels are of interest. In video games the
hair of characters can be physically simulated in real time. Being able to generate
a semantically segmented 3D model would directly facilitate such a simulation
on user generated content. Similarly, for 3D printing different semantic labels
could be manufactured with different materials. For augmented reality the head
could be augmented with a hat which would interact with the hair, but not affect
the shape of the head. For such applications not only the visible surfaces, such
as skin or hair, need to be modeled but also the hidden, invisible surfaces, for
example the surface between skin and hair needs to be estimated convincingly.
In this paper, we show that this can be achieved by posing the reconstruction
of human heads as a volumetric multi-label segmentation problem [15] together
with a multi-label shape prior [14]. When using shape priors one has to establish
the correspondence between the input data and the shape prior and eventually
recover a good alignment between them. To this end, we propose a novel align-
ment procedure that allows us to align the implicit volumetric shape prior of
[14] fully automatically to the input data. In previous work the alignment for
this type of shape prior was done manually.

1.1 Related Work

Using synchronized, high resolution multi-camera systems in controlled environ-
ments with good lighting, high quality face models can be acquired by stereo
matching [2,8]. An extension [3], estimates facial hair as separate layer. A skin
surface is always present underneath the hair, however it is only a pseudo surface
which is not meant to be a plausible reconstruction of the unobserved surface.

In uncontrolled environments where data is captured with lower resolution,
face reconstruction is often achieved by fitting a blend shape to the images. A
classical way is to generate a statistical shape model (of faces) [4,23,26], which
is fitted into the input data. First, facial landmarks [10,17,27,28] are extracted,
which are then used to register the input images to the shape model. Using such
a blend shape model with additional refinements, [12,16] focus on reconstructing
dynamic face models. Even though realistic reconstructions are obtained using a
low-dimensional statistical shape model, they generally do not capture instance
specific shape variations, such as big moles. Also for 3D reconstruction of hair
methods that exploit the specific structure of hair were proposed [22,34]. Most of
the methods focus on reconstructing either the face or the hair. In this work, we
reconstruct complete, printable, 3D models of human heads similar to [8]. While
[8] uses a similar capturing setup as [2], we tackle the challenging problem of
working with images captured using a hand-held camera, e.g. a mobile phone or
a compact camera. We achieve this with volumetric multi-label formulation.



Semantic 3D Reconstruction of Heads 669

Appearance Learning Reconstruction Shape Learning
-~ - Shape Training Data
%ﬂﬁ Scmantlc ‘ k P II I Align to Prior
~al ﬁﬂ Input Tmages  Class Likelihoods N =
= B ] g 5 e |
Classifiers (2D) g 2 Landmark o -
A Detections SRR . &
Reconstruct using Prior 7
Multi-label Ei
Skin [lHair [lEyebrows [l Beard f Reconstruction Vol ,,t .
Eyes [l Clothin, Background ense Stereo olumetric
WEyes W s M s Matching Raw Depth Maps Shape Prior

Fig. 1. Overview of our method.

Volumetric 3D reconstruction dates back to [6]. A voxel space is labeled into
free space and occupied space. Regularizing the input data by penalizing the sur-
face area was proposed in [20,36] for the discrete graph-based and the spatially
continuous (variational) formulation, respectively. Continuous formulations for
multi-label segmentation have been proposed in [5,37,38]. Instead of using a
single occupied space label, [15] proposed to use multiple semantic classes to
segment the occupied space. This continuously inspired method, penalizes tran-
sitions between different labels anisotropically and can therefore include priors
on the direction of the surfaces. The idea of using anisotropic surface area penal-
ization in the continuous setting [15], was extended in [14] to describe 3D object
shape priors, learned from training data, in form of an implicit normal direction
based shape prior. This leads to a very powerful object shape prior, however the
alignment between the prior and the input data is assumed to be given as input.

1.2 Contributions
Our main contributions are the following:

— We present a system which reconstructs and semantically segments human
heads from images captured with standard hand-held cameras in uncontrolled
environments. In contrast to previous systems we do not only reconstruct the
geometry of the head but also acquire a semantic segmentation into classes
such as skin, hair, beard and eyebrows. This includes a plausible reconstruction
of the unobserved surfaces (e.g. skin underneath hair). Moreover, our system
is able to recover instance specific shape details which are typically lost when
using a low-dimensional statistical shape model.

— We propose an automatic alignment procedure for the implicit shape prior
formulation of [14], which was considered as an input in the original publica-
tion and hence done manually. Our key insight is that despite the volumetric
nature of the shape prior we can formulate the alignment as an optimization
over the surface. We propose an optimization scheme which alternates between
optimizing for the geometry and the alignment. Despite the non-convexity of
the optimization we can robustly infer the geometry and the alignment. This
part is detailed in Sect. 4.1.
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Moreover, we propose generalizations and modifications to the used formulations:

— In Sect. 3.2 we present a data term which allows for thin layers of semantic
classes without the additional complexity of ray potentials [29,30]. The idea
is to represent parts of the input data in the regularization term, instead of
fully representing the data cost as unary terms as proposed in [15].

— The implicit normal direction based shape prior, discretizes the normals regu-
larly over all directions. However, often the training data locally suggest just
one single or very few predominant directions with little variation. We pro-
pose to detect and exploit this for a more efficient formulation, as explained
in Sect. 3.3.

1.3 Overview

Figure 1 illustrates our reconstruction pipeline. In the training part of the
method, we train an image based semantic classifier and the volumetric shape
prior. From the input images camera poses and depth maps are computed
through structure from motion and subsequent dense matching. For each of
the images pixel-wise semantic likelihoods are obtained by running the trained
semantic classifier. An approximate alignment of the input data to the shape
prior is based on detecting landmarks around the eyes, nose and mouth in the
input data. The core of our method is an optimization with respect to both the
geometry and the alignment.

2 Optimization Problem

Our method is based on a volumetric multi-label problem, formulated as a convex
optimization that does usually not include an alignment. We propose to include
the alignment into the formulation leading to an energy which is convex with
respect to the labeling and non-convex with respect to the alignment. The actual
choices for the unary cost and the regularization term will be detailed in Sect. 3,
they are based on pixel-wise semantic classifications and depth maps.

Mathematically, we have a voxel space (2, understood as discretization of
a subset of R3. Each voxel gets assigned a label ¢ € L. Indicator variables
x! € [0,1], indicate if label i is assigned at voxel s. In addition to the original
formulation, we propose to include a similarity transform 7 into the optimization
problem. The transform 7 : R? — R3, is defined as y — Ry +t, with a positive
scaling factor o > 0, a rotation matrix R and a translation vector t.

ExT)=>Y_ [>Tzl + pel > (T, 2 — a2l (1)
SEN i i,5:i<j

s.t.xl = Z(gcij)k, zh = Z(xff,ek)k , Zwé =1, x>0, 29 >0.
i

J J
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Next, we intuitively explain the meaning of the formulation. A thorough deriva-
tion of the basic formulation without the alignment is given in [38]. The first
line defines the objective of the minimization problem. It is split into two parts:
the unary term and the regularization term. The values p%(7) define the cost for
assigning a label 7 to a voxel s. The second part is a spatially varying anisotropic
regularization term ¢%(-,-) — RT, which is derived in the continuum and dis-
cretized afterwards [9]. It assigns a cost to a surface between labels ¢ and j in
voxel s with a surface normal pointing into the direction of % — 2% € [—1,1]3.
The functions ¢¥(-,-) need to be convex and positively 1-homogeneous in their
second argument. The variables %/ € [0, 1]* describe how much the assignment
of label i changes to label j in the direction in which they point. In order to
allow for arbitrary convex non-metric smoothness terms the 2%/ need to be non-
negative, which limits the possible directions they can point to. This is resolved
by using 2% — 27!, which allows for arbitrary directions, for details see [38]. The
first two constraints, are called marginalization constraints. They connect the 2%
and z% variables. k indexes the components of the vector and ey, denotes the k-th
canonical basis vector, i.e. e; = (1,0,0)7. Intuitively, these constraints describe
that if label 7 is assigned to voxel s and label j in a neighboring voxel then the
2% variables need to reflect such a transition. Next, the normalization constraint
enforces that one label is assigned. Finally, all the x5 need to be non-negative.

As mentioned above we included the similarity transform 7 into the original
convex multi-label formulation. 7 transforms the input data into the coordinate
frame of the shape prior. The smoothness term is dependent on the transfor-
mation 7 because it includes parts of the data cost. The normalization of the
smoothness term with respect to o ensures that a change in scaling does not
change the cost of the surface. This is crucial for the optimization of the align-
ment as we will see in Sect. 4.1.

3 Choices for p and ¢

The key difficulty that needs to be tackled, when defining the unary cost and the
regularization term, is thin layers of semantic classes such as eyebrows in front
of the skin. It has already been pointed out in [29,30] that this is problematic
when using the data term of [15] (c.f. Fig.2). The solution given in [29,30] is a
formulation which represents the dataterm as a potential over viewing rays. They
propose a purely discrete graph-based scheme [30] and a continuous (variational)
formulation [29]. Both versions introduce the additional complexity that also the
assignment to additional per-voxel variables for each viewing ray that crosses a
specific voxel needs to be determined during the optimization, which makes the
optimization problem much more complex. This can be resolved using a coarse-
to fine scheme in the discrete setting but remains a problem for the continuous
setting. To this end, we propose an alternative representation in the continuous
setting which does not add any additional variables. Our solution can be seen as
an alternative to ray potentials in cases where the only feature that is needed is
the representation of thin layers of semantic classes.
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Fig. 2. Unary term for a ray going through the eyebrow next to the skin layer of an
example reconstruction (Left) data term of [15]. (Right) our proposed data term. Both
sides illustrate the weight added to the voxels along the ray for the class eyebrow by
the unary term. (Left) The per-pixel semantic cost o, is entered into the last voxel
of the uncertainty region. In this case eyebrow is visible in the image but the weight
ends up inside the skin layer due to the very little thickness of the semantic class
eyebrow, which leads to artifacts in the reconstruction. (Right) in our proposed data
term the weight ¢ is moved to the regularization term. The unary term only captures
the geometric information about free and occupied space. This resolves the artifacts in
the reconstruction.

3.1 Unary Term

We only include the information from the depth maps in the per voxel unary term
and represent the likelihood of the semantic class in the surface regularization
term. The rationale behind this is the following. The semantic classifier only gives
a likelihood for which semantic label should be closest to the camera along the
ray, but not where along the ray this transition from free space to occupied space
happens. The depth measurement roughly tells us the region where we expect
the transition. If we now decrease the smoothness cost of a transition from free
space to the desired semantic label in that region, then our formulation prefers
to place the observed semantic class as the transition from free to occupied space
but does not affect a potential additional transition from one semantic label to
another one just behind it (c.f. Fig. 2).

The unary cost p%(7) contains the information from the depth maps. There
is one free space label ¢ = 0 and several occupied space labels i > 0. Therefore,
we have p'(7):=ps(T), Vi > 0 and p2(7):=0. We denote the non-zero unary
cost that a single depth map contributes to voxel s by ps(7)’, the complete
unary cost is formed by summing over all the depth maps. Further, z, is the
depth of voxel s and 2,(7) is the depth at the depth map position to which the
voxel s projects to with the alignment transformation 7. Using the assumption
that in front of an observed depth we expect free space in a region v and behind
the observed depth occupied space, we set the unary cost to

{B if 2z, — 25(T) € [Oa,Y]

ps(T), = (2)

_/6 if Rs — 28 (T) € [_77 O)
3.2 Data Dependent Regularization Term

The regularization term ¢% (7, n) describes the cost of a transition between label
i and j with normal direction n. We derive our novel regularization term based
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on the underlying probabilities. <-4 denotes that there is a surface at location s,
% denotes the existence of a surface between label i and j at location s and
n¥ indicates that a surface with normal n between label i and j is present at
location s. Finally, we denote the per pixel knowledge about the semantic labels
as I' and also need a dependency on the alignment transformation 7. We start
by stating the probability of a surface element as

P(n|T,T) = P(n|=d)P(={<sT,I)P(=s). 3)

The probability is modeled as a Bayesian network and factored into three parts.
The rightmost term P(«) captures the probability of observing a surface at
voxel s. P(«% ], T, I') is the probability to have a surface between two specific
labels ¢ and j given there is a surface. This part includes the knowledge about
the per pixel semantic labels I' in the input images and hence is dependent
on the alignment 7. P(n%|<¥) takes into account the surface orientation and
is essentially capturing the implicit normal direction based shape prior. In the
following we will explain how we approximate the above model in our energy
formulation. To simplify the notation for the rest of this section we will consider
the alignment 7 to be fixed and drop it from the equations. The mathematical
formulation [38] allows any convex positively 1-homogeneous function as function
¢ (-). To find a function which fulfills these properties and approximates the
above model well, we rewrite it in its dual form in terms of a Wulff shape [9].
Every convex positively 1-homogeneous function can be written as

¢ (w) = max {p"z}. (4)
peWy’

WU is the Wulff shape. It defines the regularizer and can be any closed convex
shape which contains the origin. Any convex shape can be written as intersection
of half spaces. [14] proposes to use a discrete set of normal directions n € S C S?
to form a discretized Wulff shape W,,i; by intersecting the half spaces h" €
H%. The distance of the half space boundary to the origin at voxel s with
normal n for the boundary between i and j is denoted as d™%/. Looking at the
probabilistic meaning of the energy formulation and assuming all the half spaces
HZ share a boundary with W, i;, it follows that

P(ny|I) = exp (=¢Y (n)))) = exp (= max (p"nd)) = exp (=) (5)
p i
and hence using the model of Eq. 3 leads to
= —log(P(nf|=7)) —log(P(=¥ |y, I) — log(P(=)).  (6)

The resulting Wulff shape is a convex approximation to the original probabil-
ity model. In cases where the assumption that all the half spaces H¥ share
a boundary with W, i does not hold, the cost of unlikely transitions can be
underestimated. However for the most likely directions and hence most relevant
directions the approximation will model the true likelihood exactly (c.f. [14]).
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In order to use Eq.6 we also need to approximate the probabilities.
P(n¥|<%) is estimated from training data, given as a collection of surface
meshes, by building a histogram over the training data’s normals [14]. The term
P(<|e4,T,I') is dependent on the input data and hence changes with the
per image classifications I" and the alignment 7. Computing the convex shape
as the intersection of the half spaces is computationally demanding (compu-
tation of a 3D convex hull on the dual points using point plane duality [25]).
Directly inserting the above term would require such a computation whenever
the alignment changes. Hence, we want to only do this during the training of
the shape prior. To achieve this, we follow the often used approach of weighting
the regularization term by the input data.

We fix the structure of the Wulff shape at the training stage by dropping the
dependence on the input data. To bring the lost information back to the model
we scale the Wulff shape with a weight w!/, giving an approximation of Eq. 6:

di = wd (T, I)(—log(P(n¥|=7)) —log(P(=7] <)) —log(P(<))). (7)

This is in analogy to, image segmentation, where often the regularization term
is weighted by the input image gradient magnitude.

3.3 Training Data Dependent Parametrization of the Wulff Shapes

A disadvantage of the discretized Wulff shape approach is that a complex Wulff
shape composed of the intersection of many half spaces needs to be stored for all
the voxels which contained training data (for the other voxels a strong isotropic
cost is used). However, often most of the training data normals point in a very
similar direction and therefore it is not necessary to store such a complex Wulff
shape. To this end, we propose to cluster the input training data and when-
ever all the training normals lie in up to three clusters we replace them with
a surrogate Wulff shape which serves as a faithful approximation (c.f. Fig.3).
For multiple clusters the intersection of multiple surrogate Wulff shapes is used.
Using a soft clustering where 95 % of the normals closest to the cluster center
with a maximal deviation of 10° are considered, we obtained 74.6 % of voxels
with 1 cluster, 10.6 % with 2 clusters and 6.3 % with 3 clusters. Note, that in
these cases we do not need to compute a Wulff shape based on half spaces and

1 cluster
B 2 clusters
Il 3 clusters
Bl General Wulff shape

L
*
&

«

Fig. 3. (Left) 2D illustration of a discretized Wulff shape, where all the training data
lies close to a single direction. (Middle) our approximation of the general shape with a
surrogate parametric Wulff shape composed out of a spherical sector with an attached
spherical cap. (Right) Slice through the volumetric shape prior that indicates the type
of Wulff shape used at each place.
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hence can directly fit the surrogate Wulff shape into the original training data,
which circumvents the discretization of the directions (see supplementary mate-
rial for more details). Furthermore, when using the prosed clustering approach
the memory requirements are reduced by a factor of 3.75 in our implementation.

4 Optimization

The critical part in most algorithms exploiting shape priors is to establish the
correspondence between the input data and the shape prior. One of our main
contributions is to equip [14] with an automatic alignment procedure. Our opti-
mization strategy alternates between optimizing for the geometry and optimizing
for the alignment. The geometry is optimized first, therefore an initialization for
the alignment needs to be determined beforehand. We follow the often used strat-
egy of detecting landmark positions, such as points around the eyes and nose.
Determining these positions in multiple images allows us to get an estimate of
the head pose [7,10]. There is no direct correspondence between the triangulated
landmark positions and the implicit volumetric shape prior, as the shape prior
is based on many training shapes, and hence the landmark positions end up at
slightly different positions in the volume. Our shape prior is trained from shapes
that are sampled from a statistical shape model. Therefore, we register the tri-
angulated landmark positions to the ones of the mean shape of the statistical
model.

4.1 Optimization with Respect to the Alignment

The energy from Eq. 1 is convex in the variables x, which describe the geometry
and labeling, but it is non-convex in the alignment 7. It is important to note
that for the alignment, only the observed geometry can be used. This means
surfaces which are purely filled in by the prior should ideally not be taken into
account for the alignment. This can be surfaces which are simply not observable
in the input data such as a transition between hair and skin or areas which
are filled in by the prior where data is missing. Taking all this into account is
important to get a good alignment that can be robustly inferred.

Before we further discuss the optimization we detail the rationale behind the
way the alignment transformation is introduced into the formulation. Generally,
there are two different ways for defining the alignment, either the input data is
at a fixed position and the shape prior gets transformed or the shape prior is at
a fixed position and the input data gets transformed. The former one has the
disadvantage that the shape prior would not be fixed and hence would need to be
adapted for different alignments, by either recomputing or interpolating. Both of
these choices add additional computational effort. Therefore, we keep the shape
prior at a fixed position and align the input data into the volume of the prior.
In this way only the unary cost of the energy and the scaling factors of the data
dependent regularization need to be adjusted when the alignment changes. This
can be done very efficiently on the GPU in a few seconds by re-evaluating the per
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voxel data costs using the new alignment transformation. For the alignment with
respect to the scaling factor a we need to ensure that a rescaling does not change
the energy proportionally to the surface area. Otherwise, the optimization would
just try to shrink the object to a reconstruction with 0 surface area and hence no
regularization cost. Therefore we normalize the smoothness term with respect
to the scaling factor «. In the following derivation we will see that this factor
cancels out from the optimization with respect to the alignment.

Given that the convex optimization algorithm which is commonly used to
optimize the continuously inspired multi-label assignment problems, the first
order primal-dual algorithm [24], essentially executes gradient descent and ascent
steps with subsequent proximity operations, it would be tempting to include
additional gradient steps in each iteration that account for the alignment. How-
ever, this comes with problems and disadvantages. The optimization of the align-
ment would be an additional update over the volume, we argue that the align-
ment can be optimized on a surface level and hence more efficiently. Besides
the gradient steps that would need to be executed over the volume, a change in
alignment also means that the data cost changes due to the dependence on the
alignment transformation 7" and hence would need to be re-evaluated for the
whole volume in each iteration. Additionally, including the alignment update in
this straight forward manner would mean that the convergence guarantees that
the convex optimization algorithm offers are lost. Therefore, we propose an opti-
mization strategy that addresses these issues by alternating between optimizing
for the geometry and aligning the reconstructed surface to the prior.

For the alignment we only take into account the meaningful surfaces, namely
the ones which are visible and hence originate from a transition between free
space and occupied space. To avoid bad local minima, we execute the alignment
before full convergence and only take into account surfaces which are already
present by thresholding the magnitude of the transition gradient x%. We ran
an experiment where we optimize for the alignment every 25, 50, 100, 250 and
500 iterations and then measure the distance to the mean shape of the statis-
tical model to evaluate the alignment quality. As shown in Fig. 4 the alignment
converges quickly when the alignment is performed often, the longer the interval
between the alignments the slower the convergence. If the alignment is performed
after many iterations the optimization gets stuck in a bad extremal point. Please
note that the geometry at every alignment step is different and therefore the
average distance for a better alignment can be higher when more geometry is
reconstructed. With these points in mind, we propose to already run the align-
ment as soon as some geometry is reconstructed and only let the reconstruction
converge once the alignment does not change any more. To additionally make
the alignment more robust we start the reconstruction with a weak shape prior
which only captures the strongest features of the shape and gradually change
the prior after each alternation to the desired one for the reconstruction. When
directly starting with the final shape prior the experiment given in Fig.4(a)
does not manage to find the right alignment in 3 out of the 5 runs. Taking into
account all this leads to an algorithm which robustly finds an accurate alignment
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Fig.4. (a) Plot of average distance from mean face for different alignment intervals
during the optimization. The optimized model is aligned every 25, 50, 100, 250 and 500
iterations for a total of 1000 iterations. (b) Alignment to the shape prior as described
in Sect. 4.1. Top: Visualization of signed alignment error in centimetres. From left to
right: face before alignment, error visualization on mean face before alignment, aligned
face, error visualization on mean face after alignment. Bottom: Energy function plot
of translation, rotation and scale components of seven degree of freedom alignment.

between the input data and the shape prior fully automatically starting from
an initial rough estimate of the alignment. Next, we detail our alignment with
respect to the surface.

Recall that label 0 denotes free space and labels ¢ > 0 occupied space labels
(skin, hair, beard, eyebrows and clothing, respectively). The goal is to minimize
energy Eq.1 with respect to the alignment 7 but only taking into account vis-
ible surfaces, e.g. occupied space < free space transitions. We observe that as
soon as we keep the reconstruction fixed, meaning the function that maps given
input data to the reconstruction, a change in the alignment transformation 7°
transforms the input data and hence also the solution for the z% and 2% with
the same transformation. To make this dependency explicit in the notation we
write 74 (7)) and 7% (T), to denote the assignments for the 2% and 2% that we
get for a fixed reconstruction under the alignment transformation 7. In terms of
energy this means that the unary term is constant under a change of the align-
ment transformation 7 (note that here we ignore the effects of the discretization,
which also agrees with the continuous origin of the formulation). The remaining
energy for the alignment optimization step reads as

BT)= Y e (T,300(T) - #°(T)) (5)
s€0,i>0

Besides the dependency of the fixed reconstruction on 7 also the smoothness
term ¢%* is dependent on 7. This is due to the semantic part of the data cost
which is included in the smoothness term. For the alignment this is not of big
importance as its influence is minimal and it does not add significant complexity
to the optimization. In the following we will transform the above energy as
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an energy over the surface. Besides the smaller complexity this also directly
addresses issues with the discretization.
First, we state the relation between the gradient of % and =% (c.f. [38]):

Val = Z xlt — g, (9)
J

Only taking into account the transitions between occupied space and free space,
and ignoring discretization and relaxation, we have zJ* = 2% = 0, Vj > 0 and
we arrive at Vz? = 2%¢ — 240, Considering the original continuous formulation
and again ignoring the relaxation, meaning the x’ are binary, we can rewrite the
integral over the volume as an integral over the surface [9]

BT = [ ST vaEms = [ Sl Tai@myaa 0

oFi &

with n¢ a unit length normal direction on the boundary between free space and
label i (OF% = {s : 29% — 249 > 0}) at position s. This relation enables us to
define the surface regularization in terms of the volume on the left hand side
and in terms of an integral over the surface on the right hand side.

Before we explain the alignment over the discrete surface we need to make a
remark on how to extract it from the volume. The surface cannot be extracted
through thresholding the x because the entire information about the surface
normal direction would get lost. To preserve the surface orientation accurately
it is common to extract the surface using marching cubes [21] directly on the
non-thresholded z* variables. The output of marching cubes is a triangular mesh
representing the surface. We denote the set of all triangles of occupied label 4
by T?. The triangle normal and surface area are denoted by ni(7) and AL(T),
respectively. The transformation 7 also maps the triangle ¢ to a position s in
the volume. In the continuous setting this would mean the smoothness term
varies at different positions on the triangle. However in practice the smoothness
term is only defined on a discrete voxel grid, therefore we use a single constant
smoothness term for each triangle which is extracted from the volumetric shape
prior by trilinearly interpolating the smoothness cost of the neighboring voxels
to the centroid of the triangle. We denote this term by ¢i(7,n(7)). Finally, we
state the regularization term in its surface formulation over the triangle mesh:

BT = Y AT ni@) D = S gr A, ay

i:>0,t€T? i:i>0,t€T?

In the second equation we used that a transformation 7 changes the surface area
with the square of the scaling factor «. By inserting the identity transformation
Z, the term o cancels out from the fraction. Leading to the desired property
that the alignement part of the energy is independent from the surface area.
For minimizing Eq. 11, we use the gradient descent based, L-BFGS line search
approach, implemented in the Ceres solver [1]. In order to start with a weak shape
prior which gradually gets stronger, the prior is weakened by increasing — log P (<)
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by aconstant and scaling the data term. This corresponds to adding non-informative
random training data to all voxels.

We present a qualitative and quantitative evaluation of the alignment in
Fig.4(b). The first part shows the signed distance to the mean face before and
after refinement of the initial coarse alignment. We recover translation, rotation
and scale parameters that lead to a very satisfactory alignment. The mean face
used as a reference for the evaluation is close to the location of the best alignment
due to the fact that all head models in the shape prior have been aligned to the
mean shape. The second part shows plots of our alignment energy. To this end, we
took a fixed geometry and plot the energy with respect to the seven dimensions of
the similarity transform. We observe that for each of the dimensions the energy
has one single local minimum and looks very smooth. It is important to note
that we can easily handle translations of 2.5 cm, rotations of 10 degrees in yaw,
pitch and roll and scale variations of 20 %. Typical errors of landmark detectors
lie well within those bounds [10].

5 Experimental Evaluation

Our input data are images of faces captured using a mobile phone or a compact
camera. The typical dataset size is between 15 and 100 images, with a resolution
of 640 x 480 pixels. This is depending on whether only frontal images are taken
by the person her- or himself or another person is taking pictures all around.
We use two sets of training data. To train the shape prior we use geometric
models of heads. This data is derived by randomly sampling 100 human heads
from the statistical model of [23]. To train an image based semantic classifier
we labeled 80 training images (labels: skin, hair, eyebrows, eyes, beard, clothing
and background). We only used the beard label for persons wearing a beard.
The eye label is only used to filter the depth maps which are typically unreliable
in the eye region (these are often non-rigid during capture, e.g. tracking the
camera). We trained a per-pixel semantic classifier using the publicly available
code from [19]. The camera poses are estimated using structure-from-motion
[32,35] using SIFT features from [33]. The depth maps are computed with the
publicly available plane-sweeping stereo matching implementation [13]. We use
the landmark detector of [28] and our optimization is implemented in C++.
We present our results in Fig.5. For more datasets and additional com-
parisons (patch-based multi view stereo [11] + Poisson surface reconstruction
[18]) we refer the reader to the supplementary material. We compare our recon-
structions to a state-of-the-art depth map fusion method and a state-of-the-art
method for fitting statistical shape models. In the depth map fusion comparison
we fuse the depth maps with the TV-Flux fusion from [36], which in our imple-
mentation corresponds to regularizing the same unary term that we are using
for our multi-label reconstructions with a total variation (T'V) prior. In the sta-
tistical shape model comparison we fit the model of [23] into our raw input data
(depth maps and semantic labels). This leads to a reconstruction of the skin label
only. Our proposed approach computes a full semantically annotated reconstruc-
tion of the head. Both shape prior formulations manage to overcome the defects
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Fig. 5. From left to right: Input image; Input labels and depth; Depth map fusion
(TV-Flux fusion from [36]); Statistical model of [23] fitted into our raw input data,;
Our semantic reconstruction; Our result skin class; Our model textured.

in the shapes of the observed geometry. The mole (simulated with a raisin) on
the cheek of the person in the last row of Fig.5 cannot be captured with the
low dimensional shape model of [23], therefore it is completely invisible in the
respective result. Using our method the mole gets correctly reconstructed even
tough such shape details are not represented in the shape prior. One of the key
advantages of the implicit shape prior over fitting a low dimensional statistical
shape model, is that a deviation from the prior is possible if the data suggests
it. In terms of semantic segmentation we are able to fuse the per image seman-
tic classifications, which might be inconsistent in different images, to one single
semantic segmentation which is consistent over the whole dataset. Additionally,
the semantic segmentation is directly attached to the geometry. In summary, our
method is able to reconstruct shape details, at the same time utilizes a strong
shape prior for ambiguous input data, recovers hidden surfaces, and extracts one
single consistent semantic segmentation for the whole dataset.

6 Conclusion

In this work we introduced a system that fully automatically computes a seman-
tic 3D reconstruction of heads from images. The key novelty of the system is a
fully automatic alignment of the shape prior to the input data. Our system recon-
structs multiple semantic classes such as skin, hair, beard, clothing, and even
handles thin layers of semantic classes such as eyebrows. We demonstrate the
applicability of our method to challenging real-world data taken in uncontrolled



Semantic 3D Reconstruction of Heads 681

environments. In future work, we plan to include the capability to handle glasses,
potentially using connectivity priors [31]. Further generalizing the alignment to
a non rigid transform to a space closer to the mean shape of a statistical shape
model might lead to stronger implicit shape priors which are able to hallucinate
more complex surfaces than the skin underneath the hair.
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Switzerland and the Swiss National Science Foundation under Project Nr. 143422.
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