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Abstract. Estimating the poses of a moving camera with respect to
a known 3D map is a key problem in robotics and Augmented Reality
applications. Instead of solving for each pose individually, the trajec-
tory can be considered as a generalized camera. Thus, all poses can be
jointly estimated by solving a generalized PnP (gPnP) problem. In this
paper, we show that the gPnP problem for camera trajectories permits
an extremely efficient minimal solution when exploiting the fact that pose
tracking allows us to locally triangulate 3D points. We present a problem
formulation based on one point-point and two point-ray correspondences
that encompasses both the case where the scale of the trajectory is known
and where it is unknown. Our formulation leads to closed-form solutions
that are orders of magnitude faster to compute than the current state-
of-the-art, while resulting in a similar or better pose accuracy.
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1 Introduction

Estimating the absolute pose of a camera, i.e., the position and orientation from
which an image was taken, with respect to a given 3D map is a fundamental
building block in many 3D computer vision applications such as Structure-from-
Motion (SfM) [27], simultaneous localization and mapping (SLAM) [5], image-
based localization [18,26,29,35], Augmented Reality (AR) [21,22], and visual
navigation for autonomous vehicles [34]. Traditionally, research on camera pose
estimation has mainly focused on individual cameras [8], potentially estimating
the extrinsic parameters of the camera pose together with the parameters of
its intrinsic calibration [2,10]. In the context of robotics applications such as
autonomous drones and vehicles, it is desirable to use multi-camera systems
that cover the full field-of-view around the robots. Multi-camera systems can be
modelled as a generalized camera [25], i.e., a camera for which not all viewing rays
intersect in a single center of projection. Accordingly, camera pose estimation for
generalized cameras has started to receive attention lately [3,11,15,17,24,30,33].
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In this paper, we consider a problem typically arising in AR or video reg-
istration against SfM models [14], where visual-inertial odometry (VIO) [9] or
visual odometry (VO) [23] is used to track the pose of the camera over time
while registering the trajectory against a previously build 3D map acting as a
reference coordinate system for the virtual objects [21]. In this scenario, both the
local pose tracking and the pose estimation with respect to the map need to be
highly accurate. Instead of estimating the absolute pose w.r.t. the map for each
image in the trajectory, the movement of the camera defines a generalized cam-
era that can be used to obtain a more accurate and reliable pose estimate due to
its larger field-of-view [1]. VIO, VO and SfM compute the trajectory by tracking
features across views, which naturally leads to estimates of the corresponding
3D point coordinates in the local coordinate system of the trajectory.

The fact that 3D point positions are available for some features in the images
has not been widely used—except for point registration techniques—by pose
solvers for generalized cameras. Instead, state-of-the-art methods estimate the
pose from three or more standard 2D-3D matches between 3D points in the
map and corresponding 2D image features. In this paper, we show that using
one known local 3D point coordinate significantly simplifies the pose estimation
problem and leads to more efficient minimal solvers with a similar or better pose
accuracy.

The above scenario leads to two variants of the generalized absolute pose
problem: The scale of the local trajectory w.r.t. the map is either known or
unknown. The former variant arises when the absolute scale can be estimated
accurately, e.g., from inertial data in a VIO system. The latter variant is most
relevant for purely visual odometry (VO) [5,6,23] systems, or for SfIM methods
that rely on building sub-reconstructions and merging them afterwards [31].

In this paper, we show that knowing the local 3D point position for one of
the 2D-3D matches leads to a formulation that covers both problem variants,
i.e., the know-scale variant is a special case and permits an even more efficient
solution. In detail, this paper makes the following contributions. (i) we derive
a joint formulation of the generalized absolute pose problem based on a known
3D point position and two matches between 3D points in the map and image
observations. (ii) we develop two novel pose solvers for both cases; known and
unknown scale. Whereas state-of-the-art approaches need to solve polynomials
of degree 8 or higher, both our methods are solvable by radicals, requiring us
to only solve polynomials of degree 2 or a polynomial of degree 4, respectively.
As a result, both our solvers are significantly more efficient and also generate
fewer solutions. (iii) we show through extensive experiments on both synthetic
and real data that our solver is not only more efficient to compute, but also at
least as stable and accurate as the current state-of-the-art.

The remainder of the paper is structured as follows. Section 2 reviews related
work. Section 3 discusses the geometry of the absolute pose problem for general-
ized cameras with and without known scale. Section 4 derives our solvers, which
are then evaluated in Sect. 5.
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2 Related Work

The problem of estimating the pose of a calibrated camera from n known 2D-
3D correspondences is known as the n-Point-Pose or Perspective n Point (PnP)
problem. The problem is typically solved by relating 3D map points to the view-
ing rays of their corresponding image measurements, i.e., the pose is estimated
from point-ray correspondences. A computationally inexpensive, numerically sta-
ble and minimal solver is very desirable for RANSAC schemes, since it allows
for a solution to be found fast and accurately. The P3P problem is the minimal
case of the PnP problem, where only three point-ray correspondences are used
to solve for the pose of the camera [8]. The solutions by Fischler and Bolles [7]
and by Kneip et al. [13] are notable solvers of the P3P problem, where a quartic
equation needs to be solved as part of the algorithm. Quartic equations can be
solved by radicals non-iteratively, resulting in fast solvers that only require a 2
to 4 s on a modern PC.

Solutions to the PnP problem only cover cameras whose viewing rays inter-
sect in a single center of projection. The generalized PnP (gPnP) problem is
the corresponding pose estimation problem for generalized cameras, i.e., cam-
eras whose viewing rays do not intersect in a single center of projection. Minimal
solvers for this problem require three point-ray correspondences (gP3P) and have
been proposed by Nister and Stéwenius [24], Kneip et al. [11] and Lee et al. [17].
The resulting solvers are noticeably more complex and require solving an octic
polynomial, which cannot be solved non-iteratively by radicals. Consequently,
gP3P solvers are significantly slower than P3P solvers. An iterative approach
was proposed by Chen and Chang [3] as a special case of their gPnP solution.

Little work exists on the gPnP problem with unknown scale, referred to as
the gPnP+s problem. The solver proposed by Ventura et al. [33] requires at least
four point-ray correspondences (gP4P+s) and again leads to an octic polynomial.
While mainly used as a minimal solver inside a RANSAC framework [7], their
method can also use more correspondences to obtain a least squares solution.
Kukelova et al. [15] recently proposed a gP4P+s solver that finds the coefficient
to the octic very efficiently by circumventing any Grobner basis computation.
Compared to Ventura et al., Kukelova’s et al. speedup is 18.5, while ours is 47.
Also, Kukelova’s et al. method has a slightly worse accuracy than Ventura’s et
al., while our solver has better accuracy w.r.t. Ventura’s et al. Finally, in [30,31]
Sweeney et al. proposed a more efficient scalable solution for n points that can
also handle the so-called minimal case!. This is an O(n) solution to the gPnP+s
problem, minimizing an approximation of the reprojection error. While providing
more accurate poses than [33], the solver from Sweeney et al. is also significantly
slower.

In this work, we use two point-ray correspondences and one point-point match
(obtained by triangulating points in the local frame of the camera trajectory)
to simplify both the gPnP and the gPnP+s problem. Similar approaches have

! Estimating a similarity transformation with 7° of freedom (DOF) provides a solution
to the gPnP+s problem while four point-ray correspondences provide 8 constraints.
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been proposed in the context of relative generalized pose solvers [28], since the
complexity of such problem is very high (64-degree polynomial). For example,
Lee et al. [16] use the Ackermann motion constraint and shared observations
between the cameras in a multi-camera system to reduce the problem to a six-
degree polynomial. More related to our approach, Clipp et al. [4] simplify the
relative generalized motion problem by triangulating one 4-view point, deriving
a solution which requires the solution of 16-th degree polynomial. In contrast,
our solver requires triangulating a point from two or more views and results in
quadratic and quartic equations for the gPnP and gPnP+s problems.

3 Problem Statement

Consider the following problem: Given a 3D model, e.g., generated from SfM or
SLAM, a trajectory of poses for a single camera or a multi-camera system, and
n point-ray matches between features found in images from the trajectory and
3D points in the model, compute the position and orientation of the trajectory
in the coordinate system of the model. The cameras in the trajectory form a
generalized camera [25] and so this is an instance of the gPnP problem.

As mentioned in Sect. 2, a variant of the gPnP problem is the gPnP+s prob-
lem, where the internal scale of the generalized camera does not match the scale
of the world points. In such cases it is required that the scale of the trajectory
is estimated together with the pose. In this paper, we are interested in develop-
ing efficient minimal solvers for both problems, i.e., algorithms that compute a
solution for the problems where the number of constraints matches the number
of degrees of freedom (DOF) or unknowns. Such solvers are typically employed
inside a RANSAC [7] loop, where using a minimal solver maximizes the proba-
bility of picking an all-inlier sample and thus reduces the number of necessary
iterations. For solving the gPnP and gPnP+s problems, we assume that a 3D
point position is known for at least one feature in the n-point sample drawn
in each RANSAC step. Notice that this assumption is not restrictive: We are
considering a camera trajectory generated from tracking features. These feature
tracks can be triangulated to obtain 3D point positions in the local coordinate
system of the trajectory. Triangulatable points are also easily available in multi-
camera systems with visual overlap, where our solvers may be used even if there
is no trajectory available.

In the following we discuss a mathematical representation of a generalized
camera, and then describe the two versions of the generalized absolute pose
problem.

3.1 Generalized Cameras

In its most general definition, a generalized camera is a set of viewing rays
which do not necessarily intersect in a single center of projection. Given a base
frame {B} for the generalized camera with origin 0 € R?, all viewing rays
can be expressed using Pliicker line coordinates [25] defined in the base frame.
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Fig.1. The pose and scale problem for a generalized camera system. The origin of
all rays q; defined in base frame {B}. Notice that the point Sp1 can be triangulated
from qi,1 and qi,2, highlighted in green. Note that for the known-scale scenario s = 1.
(Color figure online)

A Pliicker line is a pair of 3-vectors q and q’, where q is a vector of any magnitude
that points in the direction of the line and q' = qx p, where p is any point on the
line (cf. Fig. 1). This definition implies that q - q' = 0. Furthermore we enforce
that q - q = 1, which simplifies the terms that appear in our derivations. A 3D
point Bp; in the base frame {B} of the generalized camera can be written as

Ppi = qi x df + N, (1)
where q; is the (unit-length) ray defined in {B} that points towards Zp; and
Ai € R+ is the depth of the point along the Pliicker line.

3.2 Generalized Pose Estimation with Unknown Scale (gPnP+s)

In the more general case, we aim to compute the similarity transform (pose and
scale) between a generalized camera defined in the base frame { B} and the global
frame of reference {G} based on n point-ray matches. This scenario arises more
often in vision-only pipelines, e.g., during loop-closure or localization of a local
SLAM or SfM trajectory—modeled as a generalized camera—against a known
map of 3D landmarks [31]. As illustrated in Fig. 1, the transformation (s, R, t)
maps the i-th point “p; from the global frame {G} into the base frame via

sREp; +t = Pp, = q; x ] + N, (2)

where q; is the (unit-length) ray defined in {B} that points towards Zp; and \;
is the depth of the point along the Pliicker line.

If we directly use Eq. (2) to solve for the similarity transformation, at least 4
point-ray correspondences are required to find a solution [30,33]. However, this
yields an overdetermined solution since 4 point-ray correspondences provide 8
constraints, while a similarity transformation has only 7° of freedom (DOF'). This
results in having to find the roots of an 8-th degree polynomial and obtaining
up to 8 solutions.
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Thus, we aim to derive a minimal solution to reduce the complexity of an
overdetermined, least-square solution. If we instead consider the case where two
of the 4 rays intersect in space, i.e., if we can triangulate the 3D position of one
point in the base frame { B}, the gPnP+s problem can be solved by determining
the similarity transformation from one point-point correspondence (fixing the
three DOF of the translation) and two point-ray correspondences (fixing the
remaining 4 DOF). Thus the DOF of the transformation match the number of
constraints exactly. We will show in Sect.4 that this minimal parametrization
of the problem can be solved by finding the roots of a quartic, which can be
obtained non-iteratively by radicals and yields up to 4 solutions. As a result, our
solver is less computationally expensive as state-of-the-art solvers [30,33] and
also exhibits fewer solutions. Notice that, in practice, the point we triangulate
for the solution might already be known as part of a SLAM trajectory or a local
SfM solution. In the case of multi-camera pose estimation however, we might
need to explicitly triangulate for this point (e.g. using observations q; 1 and qy 2
as shown in Fig. 1). If so, we employ the method by [19], which is a very efficient
(88 floating point operations) approximation to the Lo-optimal triangulation.

3.3 Generalized Pose Estimation with Known Scale (gPnP)

The second scenario assumes that the scale of the preexisting map and the
internal scale of the generalized camera are consistent, a situation that usually
arises with multi-camera setups and VIO systems, where the scale of the map
and the trajectory can be recovered. In this problem variant, the alignment from
points in {B} to points in {G} is defined by a 6 DOF Euclidean transformation.
Mathematically, this case is defined similar to Eq. (2), setting s = 1 instead of
allowing an arbitrary scaling factor.

As discussed in Sect. 2, in the minimal instance this is known as the General-
ized P3P problem, or gP3P [11], as we need at least 3 point-ray correspondences
to get a finite number of solutions. Compared to the unknown-scale scenario, this
has received more attention recently [3,11,12,17,24] due to its applicability in
robotic systems, such as VIO trajectories and pre-calibrated multi-camera rigs.
The gP3P problem has up to 8 solutions and can be solved by finding the roots
of an 8-th degree polynomial.

In our setup, we assume a geometric situation similar to the general sce-
nario (cf. Fig. 1), where one point is known in the base frame, and we aim to
find the location of the two remaining points along their Pliicker lines. In this
case our solution is an overdetermined one—solving a 6 DOF problem with 7
constraints—and our solution is minimal only in the number of points used.
Still, our solution to the gPnP problem is highly relevant for practical applica-
tions since it can be computed extremely efficiently by finding the roots of two
quadratics. At the same time, our approach can outperform the minimal solu-
tions in terms of accuracy and efficiency in the cases where the triangulation is
accurate—which can easily be gauged by looking at the subtended angle of the
two viewing rays.



208 F. Camposeco et al.

4 Solution Methodology

Here we present our two solvers to address the problems presented in the previous
section. For both solvers, we use the fact that we know the location of one point
in the base frame of the generalized camera {B}, let us denote this point as
Bp;. To simplify the expressions that will appear in both solvers, we translate
the base frame {B} to coincide with ®py, such that in the new intermediate
frame {B’} points become B'p,=Bp,—Bpy, i=1,2,3.

For each problem we now have one point-point correspondence and two point-
ray correspondences

B/pl = SRGpl +t (3)

q; X qg + Niq; = SRGpi +t fori=2,3.
For the pose and scale case, gPnP+s, we chose a scale-invariant constraint to
get a set of equations that do not depend explicitly on s. If we regard the triplet
of points in {B’} and their counterparts in {G} as triangles, we may use the
notion of triangular similarity, which states that two triangles are similar if two
of their angles are congruent or they have the same side-length ratio (cf. Fig. 2a).
If the scale of the points is known (gP3P) then our correspondences in Eq. (3)
are simplified by setting s = 1. In this case there is no need to use the ratio
of lengths, instead we can directly enforce that the distances between points in
{B’} match the known distances in {G} (cf. Fig. 2b).

For both problems we end up with a system of equations in A2 and A3, which
when solved give us the location of the remaining points in {B’}. For each of
these solutions we revert the translation offset from the triangulated point to
obtain Bp; = B/pi +Bpy, i=1,2,3. We may then use this points to compute
the rigid transformation between { B} and {G}, for which we use the algorithm
proposed in [32].

4.1 Minimal Solution for gP4P+s

Using the above notation, triangular similarity for our three correspondences
may be written as

AP p1, B p2, P ps) ~ A“p1,“p2, Ops), (4)

which allows us to use either angular or length-ratio preservation between the
two triangles as constraints. Using the ratio of the lengths we may write

2

B’ _ B 2
‘ P2 P1 s HGP2 - GP1H Dy

- — - = 5 = and (5a)
1B'ps — B'pul|”  s2Cps — Epul|”  Dsa

2
B’ B’ 2
’ Ps — " P2 s2||Gp. — G D
_ H P3 p2H _ 3,2 (5b)

2 2
1#'p2 = F'p1]”  s2[|9p2— Fpall”  D2a
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where D; ; is the known squared distance between points Gp; and point Gpj.
Using this results in a very succinct equation system since Z ,pl =0:

2
B’ B’
o= o] =]

Consequently, Eq. (5a) may be then simplified to

B'p.ll for i =2,3. (6)

2 D 2
a2 % a + A2qz|” — 527 llas x a5 + Asqs||” =0, (7)

and since (q; x q}) - q; = 0, we arrive at

D 2 D 2
A3 = o A8+ llaz x ap)l” = 5t las x as)|” = 0. (8)

The constraint from Eq. (5b) has a more general form, and no simplification
occurs. With this, we may write our constraints as

A2+ ki A2+ k=0 (9a)
A2+ ksdods + ka2 + ksha + kAz + kr =0, (9b)

where k;, 1 = 1,..,7 depends only on the measurements and the known loca-
tions of the points in {G}.

Equations (9) are two quadratic equations with real coefficients (i.e. conic
sections) on A2 and Az, which in general can be solved using a quartic univariate
polynomial. In fact, the system is small enough that we can generate a Grobner
basis w.r.t. the lexicographic order symbolically. This yields a triangular system
where we can get A3 as the solution to a quartic and Ay linearly afterwards,

(k2 + k2ky — 2kaky + k3) M+ 2 (kakaks — kike + kakg) A3+
(kok3 + kik? + kg + 2k1ka — 2koky — 2k1 k7 + 2kakr) N3+
(2koksks — 2koke + 2kaky) A3 + k3 + kok? + k% — 2koky =0 (10a)
(ka — k1) A2 + ko3 + Ao (kshs + ks) — ko +k; =0.  (10b)

4.2 Solution for gP3P

Solving for the known-scale scenario is, as noted in Sect. 3.3, an overdetermined
problem. In fact, one can solve for each depth, A\s and A3 independently. Since the
scale is known, we can directly enforce that the distance of the known point Blpl
to either point Z /pi with ¢ = 2, 3, be preserved by the Euclidean transformation.
This results in the constraints

, .2
i) &P pi =" p1H = ||Gpi - Gp1||2 = D; 1 withi = 2,3, (11)

where we have defined f; as the squared distance from point ¢ to the known point.
The constraints from Eq. (11) can be visualized as the intersection of a ray in
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space parametrized by \;, and a sphere centered around ? lpl with radius 1/ D; 1,
for i = 2,3 (cf. Fig.2). However, for some cases the ray will not intersect the
sphere because of noise in the image. If this happens, both solutions to Eq. (11)
will be complex and we will have no solutions. Instead we minimize the error of
the ray to the surface of the sphere. The distance to the sphere surface is

di (M) = (fi (\) — Din)?, (12)
and we may find its critical points by finding \; such that
dl (N
8817;1.) =0, for i = 2,3. (13)

The constraints in Eq. (13) are univariate cubic equations in Ay and A3. However,
it can be shown that they are reducible to

i (/\12 + Hqi X q’iHQ — Di,l) =0 fori = 2,3, (14)

which can be solved using only one square root. If the solution of the square root
is real, then the ray intersects the sphere in two places. Otherwise, the closest
point to the sphere is at A; = 0. This results in up to 4 real solutions, however, we
do not need to output all solutions. In order to discard as many (\a, A3) pairs as
possible, we use the remaining distance of the point triplet, D3 5. We discard all

solutions for which the distance (|| f3 (As) — f2 (A2)|| — ||“ps — Gp2||)2 is larger
than a threshold (0.1Dj3 5 in our real-world experiments), leaving out all but one
solution in practically all cases.

"p(h) T

(a) Unknown Scale Constraint (b) Known Scale Constraint

Fig. 2. Illustration of the geometry of the constraints. In (a) we intend to find the
values A2 and Az for which the triangle that we form becomes similar to the triangle
formed by (B/pl7 B/pg, B/pg). In (b), for the given point in the base frame, B/pl, our
goal is to find the depth along the direction q; such that the distance from that point
along the ray to the sphere centered at B/pl with radius 1/D; 1 is minimized. Notice
that g3 has a direction which cannot intersect the sphere and so our results is the
closest point to the sphere (the point where d(A3) is smallest).
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5 Evaluation

To evaluate our methods, we use synthetic data to evaluate their numerical
stability, sensitivity to measurement noise and to triangulation accuracy. Addi-
tionally, our methods’ accuracy was evaluated using 11 sequences of real-world
data [33], where a SLAM camera trajectory is registered to an SfM model. For
both of these evaluation modes, we compared against the following methods:

Absolute Orientation. This method [32] registers two 3D point sets via a sim-
ilarity transform. The method is very simple and requires only linear opera-
tions and returns only one solution, however, it needs at least three points in
the {B} frame, so at least six point-ray correspondences are needed.

gP—+s. Solves the GP4P+s problem as proposed by Ventura in [33] by finding
the roots of an octic polynomial and returns up to 8 solutions.

gDLS. Scalable n point method for the GPnP+s problem proposed in [30].
It is designed to handle cases with several point-ray correspondences and
minimizes the reprojection error globally, returning up to 27 solutions. For
our evaluations, we used it with only 4 point-ray correspondences.

gP3P Chen. Chen’s method [3] is the earliest solution to the gP3P problem.
This solver is iterative in nature and may return up to 16 solutions.

gP3P Lee. One of the latest methods to tackle the GPnP problem presented
n [17]. Similar to ours, this method represents ray-point correspondences as
Pliicker lines and solves for points along those lines. It includes a closed-form
minimal solution the the absolute orientation problem, needed for the last
step of aligning points in {B} and {G}. The solution requires finding the
roots of an octic and may return up to 8 feasible configurations.

gP3P Kneip. A minimal method from [11] that notably solves for the rotation
of {B} directly, and thus requires no last step that aligns two points sets.
Similarly, it requires to solve an octic and returns up to 8 solutions as well.

glP2R+s. Our Generalized 1 Point, 2 Rays plus scale solver (cf. Sect. 4.1). For
our solver we need to find the roots of a quartic and we return up to four
solutions.

glP2R. Our Generalized 1 Point, 2 Rays solver (cf. Sect.4.2). For this solver
we need to compute two square roots and we return only one solution.

5.1 Synthetic Data Evaluation

For our synthetic data evaluation we first generate four cameras randomly placed
in the cube [—1, 1] x [-1, 1] x [-1, 1] around the origin. Then, 3D points in { B}
are sampled randomly from the volume [—1, 1] x [—1, 1] X [2, 6]. The point-ray
correspondences are then generated by projecting all points to all cameras. Each
method, however, is given the exact amount of correspondences it requires, e.g.
gP3P only gets the first three point-ray correspondences. After this, a random
rotation and translation is then applied to cameras and observations. Finally,
if evaluating an unknown scale solver, a random scale between 0.5 and 20 is
applied to the world points. The experiments were executed several thousand
times (the exact number depends on the evaluation mode) in order to obtain a
meaningful statistic of the accuracy under varying conditions as explained next.
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Fig. 3. Kernel-smoothed histograms of the numerical stability of the algorithms tested,
gPnP+s algorithms on the left and gPnP on the right. Each algorithm was ran 10°
times under noiseless conditions. Because of the lower computational complexity of our
methods (blue lines), we achieve a very high numerical stability. (Color figure online)

Numerical Stability. One of the benefits of having a less complex solution
to a particular problem is that there is less opportunity for numerical errors
and instabilities to accumulate. This is specially true for the solvers presented
in this paper, since they are both in closed-form. To evaluate this, the point-ray
correspondences are left uncorrupted with noise. As seen in Fig. 3, the numerical
errors are very small, and most often outperform the stability of other methods in
their category. A 32-bit floating point implementation might even prove accurate
enough and might increase performance even further.

Measurement Noise Resilience. To compare the accuracy of our solutions
in the presence of measurement noise, we add Gaussian pixel noise using a focal
length of 800 and an image size of 640 x 480. After each method is executed, we
compare their rotational and translational accuracy with ground-truth. Figure 4
shows the median error of all trials for increasing pixel noise. For the unknown
scale scenario, our method outperforms gP+s in rotational and translational
precision. However, glP2R+s is not as accurate as gDLS for any noise level.
We emphasize here that gDLS optimizes the reprojection error over all four
correspondences, and has a vastly larger computational cost (cf. Table1). gDLS
is better suited as a refinement step and is compared here as a baseline for
accuracy. In the case of glP2R, we manage to get precisions comparable to
other state-of-the-art methods. Notably, we outperform Kneip’s gP3P in most
metrics. This might be due to the fact that other solvers absorb some of the
errors in the point-ray correspondences when they align the obtained points to
the world points as a post-processing step, whereas Kneip’s solver computes the
pose directly.
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Fig. 4. Average (top rows) and median (bottom rows) translational and rotational errors
from 10° trials per pixel noise level. The median subtended angle of the triangulated
point for our algorithms was of 14.5°. Notice that our unknown-scale solver (blue line)
performs better than gP+s for all noise levels. Our known-scale algorithm (blue line)
is not as resilient to noise as other minimal solvers, however it performs comparably
and under higher subtended angles (cf. Fig. 5) it even outperforms them. (Color figure
online)

Sensitivity to the Quality of Triangulation. The main concern with the
algorithms presented here might be their dependency on the quality of the trian-
gulated point in the base frame. To address this and find the point in which the
reliability of our methods might decay due to triangulation errors, we exhaus-
tively tested a wide range of subtended angles for the triangulated point that is
used as a part of our solvers. It is known that the accuracy with which a tri-
angulated point can be obtained largely depends on the subtended angle. Note,
however, that in many of our target applications triangulated points in the local
base frame are already available as part of the VIO/VO/SfM trajectory and
one can safely assume that they will have enough accuracy (this assumption is
validated with real-world data in Sect. 5.2). Figure 5 shows the accuracy of each
method for a constant value of pixel noise (1 pixel standard deviation) while we
vary the point configuration such that the subtended angle of the triangulated
point changes. Using this, we can see that after approximately 30°, our solvers
are likely to yield comparable or better results than other state-of-the-art meth-
ods, while taking only a fraction of the time to compute as it will be shown next.
Notice that, since triangulation errors impact Absolute Orientation more dra-
matically, its performance does not become reliable until a very high subtended
angle.

Runtime Analysis. To give an estimate of the computational cost of our algo-
rithms compared to its alternatives, we generated the same random instances of
synthetic scenes with fixed pixel noise of 1 pixel standard deviation. We com-
pared against those methods which have available C++ implementations, adding
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Fig. 5. Median rotational and translational errors for a pixel noise of 1. For each of
the 10° trials, the subtended angle of the triangulated point was varied. The accuracy
of our pose and scale solver is comparable to gP+s [33] throughout. However, glP2R
has an acceptable accuracy only after the triangulated point has a subtended angle of
more than 15°. After 30°, it tends to outperform all other methods.

to those our own C++ implementations of [33] and of [17]. Since our solutions
are solvable by radicals, we vastly outperform all other competing methods by
at least one order of magnitude (cf. Table1).

Table 1. Runtime comparison of the algorithms used for our evaluations. Notice that
both of our solvers are at least one order of magnitude faster than their counterparts.
Timings are reported for C++ implementations running on an Intel i7 at 2.5 GHz.

Method gDLS | gP+s|gP3P Kneip | glP2R+s | glP2R
Microseconds | 432.78 | 98.31 | 41.01 2.07 0.86

5.2 Real Data Comparison

To validate the performance of our method in real-world scenarios, we used the
dataset from [33]. The dataset consists of 12 SLAM sequences of a scene with
local poses of cameras in a trajectory and ground-truth obtained from an ART-2
optical tracker, from which the first 11 sequences were used. Additionally, the
dataset includes a full SfM reconstruction of the scene. This allows us to register
each SLAM sequence against the SfM data via a similarity transform. SIFT [20]
keypoints were used to get a set of putative matches between all frames in a
sequence and the 3D map using exhaustive search and Lowe’s ratio test.

All algorithms we compared against were used within RANSAC. The result-
ing similarity transform from RANSAC with the highest number of inliers was
directly used to transform all the SLAM poses in the sequence. Using these
corrected poses, positional accuracy against ground-truth from the tracker was
extracted (cf. Fig. 6). To get a robust measure of accuracy, we executed RANSAC
1000 times and took the median positional error for all methods. In order to also
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evaluate all the known-scale methods, we computed the true scale using the pro-
vided ground-truth SLAM poses and scaled each trajectory accordingly. Notice
that for our solvers we do not have a simple inlier/outlier partition. Our methods
use two modes of data points, one triangulated point and two point-ray obser-
vations. In order to accommodate this, our RANSAC stopping criteria needs to
be modified, for which we follow the method proposed in [4]. We keep track of
two inlier ratios; one for point-point correspondence ¢, and one four point-ray
correspondences €,. The number of samples used as a stopping criterion becomes

k=1log (1 —mn)/log (1 — eye2) (15)

where 7 is the confidence that we pick one outlier-free sample.

Our known-scale solver, glP2R, outperforms all other minimal methods in
6 occasions (cf. Fig.6). However, it is the least accurate for two trajectories.
Our unknown-scale solver performs very well against the tested methods, out-
performing even gDLS in two sequences and always outperforming gP+s.
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Fig. 6. Left: Comparison of position error (in centimeters) for the unknown-scale (top-
left) and known-scale (bottom-left) algorithms. Right: Top-down view of the SfM used
to register each sequence against. Shown in orange is the ground-truth positions given
by the ART-2 tracker, and in yellow our solution. (Color figure online)

6 Conclusion

In this paper, we have considered the generalized PnP problem for a moving
camera. We have derived closed-form solutions based on one point-point and
two point-ray correspondences for both the known and unknown-scale cases. The
resulting minimal solvers are extremely efficient, resulting in run-times that are
orders of magnitude faster than current state-of-the-art methods that purely rely
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on point-ray correspondences. At the same time, our solvers achieve a similar or
even better pose accuracy. Our formulation vastly simplifies the pose estimation
problem, and our results show that—contrary to what one might expect—this
does not come at the price of reduced accuracy.
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