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be regarded as initial values. We can also reformulate the
reconstruction loss in terms of probabilistic representations,
which can be given by

L
rec
hum =

X

hi2H

�Ez⇠p(z|hi)

⇥
log q(hi|z)

⇤
, (6)

in which p(·) and q(·) are the corresponding encoder and
decoder, h := (t,⇡, ✓,�)T and z denotes the concatenation
of zh and zs.

(b) A Kullback-Leibler (KL) divergence loss is given by

L
KL
hum = KL-Div ( p(z|h)||p0(z) ) , (7)

in which the latent variable prior p0(·) is set to the normal
distribution N(0, I).

(c) A projection loss is proposed to learn trec and ⇡rec.
With the 3D human mesh Mi := M(�i, ✓i), the projection
loss is given by

L
proj
hum = Ei2|H|

⇥
k⇡̃rec

i � J (Mi + treci )� J3d,ik1

⇤
, (8)

in which ⇡̃rec
i := (srecxy,i, s

rec
xy,i, s

rec
z,i )

T , � denotes the
element-wise product and J (·) denotes the function of
extracting 3D keypoints from the 3D human body mesh.
Therefore, minimizing such projection loss can unify the
coordinate systems of the SMPL model, the image coordi-
nate and the depth.

Combining (a), (b) and (c), the loss for the human body
net is given by

Lhum = L
rec
hum + �KLL

KL
hum + �projL

proj
hum, (9)

in which �KL and �proj are positive hyper-parameters.
Given a set of human-centric images, via our decoupling

process we can obtain a tuple of feature sets (S,H) :=
{(si, hi)}Ni=1. The training process is two-stage. We first
train the environment net to obtain a low dimensional rep-
resentation of scene, and then we train the CVAE to obtain
a generative human-scene interaction model.

We use the Adam algorithm [14] for optimization and
train the environment net and the human body net in an al-
ternating manner. Specifically, we first train the environ-
ment net with one epoch and then use the scene latent vari-
able to train the human body net by the second epoch. The
initial learning rate is set to 0.001, and begins to decay after
100 epochs.

3.4. Synthesis
Based on the trained generative model we aim to derive

various human body configurations (various shapes, poses
and positions) in the same scene with interaction manners
from the training data. To obtain a human body configu-
ration, we randomly draw a sample from the standard nor-
mal distribution, concatenate it with the environment latent
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Figure 4. For the SittingOnSofa dataset, the first two rows show
training images and the third row shows testing images. For the
other two datasets, only the associated depth maps with images
are shown.

variable and feed to the human body net decoder to derive
a sample of h := (t,⇡, ✓,�)T . Consequently, with the syn-
thesized body shape � and joint rotations ✓ we can obtain a
3D body mesh M(�, ✓) with the pelvis location at the ori-
gin. Then we shift the body mesh by t, rescale the spatial
coordinate of the depth map by dividing by sxy , and rescale
the depth value with division by sz .

Besides reasonable global location and body pose, the
human body is expected to be supported by the scene sur-
face correctly. Based on the 3D point cloud, we define the
human-object contacting points as the vertices on the hu-
man body mesh corresponding to the top 50 closest points
of the scene. Then each contacting point gives a vote to
the associated body part 1, and then we can obtain a his-
togram of contacting body parts of each sample. If we draw
multiple samples, then the votes of contacting parts are ac-
cumulated.

4. Experiments
4.1. Datasets

For all the datasets, we estimate the dense semantic map
via the Xception model [3] pre-trained on ADE20K [35],
which contains 150 object categories. To improve consis-

1The human body is divided to 20 body parts, which are right calf, head,
right hand, neck, spine lower, pelvis, right foot, left foot, spine middle,
spine top, right thigh, left upper arm, left shoulder, left thigh, left forearm,
right shoulder, left hand, right upper arm, right forearm and left calf.
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Sit on TV

?
Sit on table, chair, floor, …

watch, carry, turn on, … TV

(a) (b) (c)

Fig. 1. (a-b) many of our daily actions are compositional . These actions can be
described by motion (verbs) and the objects (nouns). We build on this composition
for zero shot recognition of human-object interactions. Our method encodes motion
and object cues as visual embeddings of verbs (e.g., sit) and nouns (e.g., TV), uses
external knowledge for learning to assemble these embeddings into actions. We demon-
strate that our method can generalize to unseen action categories (e.g., sit on a TV). (c)
a graph representation of interactions: pairs of verb-noun nodes are linked via action
nodes (circle), and verb-verb/noun-noun pairs can be connected.

nail, we can also use a hard-cover book for the same. We can thus leverage this
unique composition to help recognizing novel actions. To this end, we address the
problem of zero shot action recognition. And we specifically focus on the com-
positional learning of daily human object interactions, which can be described
by a pair of verb and noun (e.g., “wash a mirror” or “hold a laptop”).

This compositional learning faces a major question: How can a model learn
to compose a novel action within the context? For example, “Sitting on a TV”
looks very different from “Sitting on a chair” since the underlying body motion
and body poses are quite different. Even if the model has learned to recognize
individual concepts like “TV” and “Sitting”, it will still fail to generalize. Indeed,
many of our seemly effortless interactions with novel objects build on our prior
knowledge. If the model knows that people also sit on floor, vase are put on
floor, and vase can be put on TV. It might be able to assemble the visual
concepts of “Sitting” and “TV” to recognize the rare action of “Sitting on a
TV”. Moreover, what if model knows “sitting” is similar to “lean” and “TV” is
similar to “Jukebox”, can model also recognize “lean into Jukebox”? Thus, we
propose to explore using external knowledge to bridge the gap of contextuality,
and to help the modeling of compositionality for human object interactions.

Specifically, we extract Subject, Verb and Object (SVO) triplets from knowl-
edge bases [8, 30] to build an external knowledge graph. These triplets capture
a large range of human object interactions, and encode our knowledge about
actions. Each verb (motion) or noun (object) is a node in the graph with its
word embedding as the node’s feature. Each SVO-triplet defines an action node
and a path between the corresponding verb and noun nodes via the action node
(See Fig 1(c)). These action nodes start with all zero features, and must learn
its representation by propagating information along the graph during training.
This information passing is achieved by using a multi-layer graph convolutional
network [29]. Our method jointly trains a projection of visual features and the
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Figure 1: Pose estimation results on the MPII Human Pose dataset.

and pairwise terms c⇠ and c⌧. As there might be up to two
million nodes for a direct mapping of pixel scores to the
graph, we report performance on different down-sampled
versions to reduce overall computation time and reduce the
impact of noise in high resolutions. Results on KITTI were
achieved on half of the input resolution, for Cityscapes we
down-sample the FCN scores by a factor of eight before the
graph optimization.

3.1. Cut Costs Details

To define cut costs between connected pixels in the graph,
we use an equally weighted sum of the three following com-
ponents:

The probability of fusing two pixels v and w of different
semantic classes is 1� p(�(v) = a,�(w) = b), the proba-
bility of confusing label class a and b, which was computed
from the training set.
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How to see people in images without people? From left to right: Input scene image. Averaged mask of 100 synthesized
human bodies. Inferred 3D structure. Some samples of synthesized 3D human bodies.

More examples are shown in Fig. 5-9

Abstract

Given an image of a scene without people, we can easily

imagine how people could interact with this scene and the

objects in it. Our goal is to train a neural network to take

a single image without people and generate plausible hu-

man bodies conditioned on the scene. Training a computer

to take an image and do the same is a challenge because

we lack ground truth training data of 3D people in scenes.

We can, however, get images of people in scenes and esti-

mate the 3D human pose using existing methods. We then

remove the person from the scene, fill in the missing data,

and train an autoencoder to represent the scene in a low-

dimensional latent space. We then train a conditional vari-

ational autoencoder to predict 3D human pose conditioned

on the latent scene representation. Then given an image of

a scene without any person present, we can sample humans

interacting with the scene in realistic poses.

1. Introduction

Inside of an environment, usually a person knows how to
interact with the surrounding objects in a natural manner
based on prior knowledge. For example, the person sits on
the sofa when feeling tired, since the sofa can comfortably
support the body. Or the person stands on a wooden chair
to reach the ceiling, because the chair is considered to be

stable. It is reported that the structure and semantic infor-
mation of a scene can heavily influence the manner of how
a person interacts with it [33]. Considering the structure
and the semantics of the scene, people are able to interact
with the environment in a natural or even spontaneous man-
ner. Thus, we aim to unsupervisedly create a computational
model to synthesize interactions, simulating how a natu-
ral human-scene interaction occurs without external instruc-
tion. Rather than direct modelling the complex perception-
motor functions of human beings, we learn a probabilistic
distribution from a set of natural images, so that one can
sample various human bodies provided the structural and
semantic information of the scene. One can see the teaser
figure for some generated human bodies.

Such generative model is highly useful in various tasks.
For instance, it can be used as a prior to capture human-
scene interaction from a single image. Or it can be used
to infer scene structure based on human behaviors. Also,
the generative model can raise a number of new applica-
tions, e.g., extending current scene datasets to ones with
humans, reasoning about possible interactions given a new
environment design, identifying abnormal behaviors and
so forth. The questions are how to learn such generative
model, and where to get large-scale training data of diverse
scenes with and without humans to enable the learning of
natural human-scene interaction?

Several solutions have been proposed to address these
questions in recent years. An intuitive way is to use videos
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1 Introduction2

2 Model3

2.1 Unconstrained binary cubic problem4

The minimum cost multicut problem w.r.t. a graph G = (V,E) and a cost funciton c : E ! Z is the5

binary linear program6

min
x2{0,1}E

X

e2E

ce xe (1)

subject to 8C 2 cc(G) 8e 2 C : xe 
X

e02C\{e}

xe0 . (2)

Here, cc(G) denotes the set of all chordless cycles of G.7

This problem can be equivalently stated as an unconstrained binary multilinear program with a large8

enough constant C 2 N.9

min
x2{0,1}E

X

e2E

ce xe + C
X

C2cc(G)

X

e2C

xe

Y

e02C\{e}

(1� xe0) . (3)

In the special case where G is complete, every 3-cycles is chordless. Thus, (3) specializes to the10

binary cubic problem11

min
x2{0,1}E

X

e2E

ce xe + C
X

{u,v,w}2
�V
3

�
(xuvx̄vwx̄uw + x̄uvxvwx̄uw + x̄uvx̄vwxuw) . (4)

Here, x̄vw := 1� xvw.12

Submitted to 31st Conference on Neural Information Processing Systems (NIPS 2017). Do not distribute.
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Figure 3: Visualization of our predictions on the Cityscapes validation dataset [4], where we can compare with corresponding
ground truth (GT) and show respective RGB images.

that

8{v, w} 2 E : yvw  xv (16)
yvw  xw (17)

8C 2 cycles(G) 8e 2 C : 1� ye 
X

f2C\{e}

(1� yf ) (18)

The objective function has the form below with coefficients
↵ and �.

X

v2V

↵vxv +
X

e2E

�eye (19)

We identify the solutions of this problem with the solu-
tions of the NL-LMP w.r.t. the graphs G0 = G, the label set

L = {✏, 1} and the costs c 6⇠ = 0 and

cvl :=

(
↵v if l = 1

0 if l = ✏
(20)

c⇠vw,ll0 :=

8
><

>:

�vw if l = 1 ^ l0 = 1

0 if l = 1 xor l0 = 1

1 if l = l0 = ✏

. (21)

Note that in [14], ydd0 = 1 indicates a join. In our NL-LMP,
ydd0 = 1 indicates a cut.

4.2. Further Results

A complete evaluation of our experimental results in
terms of the Multiple Object Tracking Challenge 2016 can
be found at http://motchallenge.net/tracker/
NLLMPa.

[Tang	et	al.	CVPR	15,	CVPR	2017]

Multiple People Tracking with Lifted Multicut and Person Re-identification

confidential

Abstract

Tracking multiple persons in a monocular video of a
crowded scene is a challenging task. Humans can master it
even if they loose track of a person locally by re-identifying
the same person based on their appearance. Care must be
taken across long distances, as similar-looking persons need
not be identical. In this work, we propose a novel graph-
based formulation that links and clusters person hypotheses
over time by solving an instance of a minimum cost lifted
multicut problem. Our model generalizes previous works by
introducing a mechanism for adding long-range attractive
connections between nodes in the graph without modifying
the original set of feasible solutions. This allows us to re-
ward tracks that assign detections of similar appearance
to the same person in a way that does not introduce im-
plausible solutions. To effectively match hypotheses over
longer temporal gaps we develop new deep architectures for
re-identification of people. They combine holistic represen-
tations extracted with deep networks and body pose layout
obtained with a state-of-the-art pose estimation model. We
demonstrate the effectiveness of our formulation by reporting
a new state-of-the-art for the MOT16 benchmark.

1. Introduction

Multiple people tracking has improved considerably in
the last two years, driven also by the MOT challenges
[21, 23]. One trend in this area of research has been to
develop CNN-based feature representations for people ap-
pearance to effectively model relations between detection
hypotheses [18, 20]. This trend has two advantages: Firstly,
representations of people appearance can be learned for vary-
ing camera position and motion, a goal less easy to achieve
with simple motion models, especially for monocular video
due to the complexity of motion under perspective projection.
Secondly, appearance facilitates the re-identification of peo-
ple across long distances, unlike motion models that become
asymptotically uncorrelated. Yet, incorporating long-range
re-identification into algorithms for multiple people track-
ing remains challenging. One reason is the simple fact that
similar looking people are not necessarily identical. To
address these challenges, in this paper, we generalize the

Figure 1. Qualitative results on the MOT16 Benchmark. The solid
line under each bounding box indicates the life time of the track.
The lifted multicut tracking model is able to link people through
occlusions and produces persistent long-lived tracks

mathematical model of [29] and [30] so as to express the
fact that similar looking people are considered as the same
person only if they are connected by at least one feasible
track (possibly skipping occlusion). In [29], multi-person
tracking is cast as a minimum cost multicut problem [13, 8].
There and in our work, every detection is represented by a
node in a graph; edges connect detections within and across
time frames, and costs assigned to edges can be positive,
to encourage the incident nodes to be in the same track, or
negative, to encourage the incident nodes to be in distinct
tracks. Such mathematical abstraction has several advan-
tages. Firstly, the number of persons is not fixed or biased
by definition of the problem, but is estimated in an unbiased
fashion from the video sequence and is determined by the
solution of the problem. Secondly, multiple detections of
the same person in the same frame are effectively clustered,
which eliminates the need for heuristic non-maxima sup-
pression. In order to avoid that distinct but similar looking
people are assigned to the same track, a distinction must be
made between edges that define possible connections (i.e., a
feasible set) and edges that define the costs or rewards for as-
signing the incident nodes to distinct tracks (i.e., an objective
function). We achieve this, while maintaining the advantages
of [29], by casting the multi-person tracking problem as a
minimum cost lifted multicut problem [1].

Specifically, we make three contributions:
Firstly, we design and train deep networks for re-

1

[Keuper	et	al.	TPAMI	2018]
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2.1 Unconstrained binary cubic problem4

The minimum cost multicut problem w.r.t. a graph G = (V,E) and a cost funciton c : E ! Z is the5

binary linear program6

min
x2{0,1}E

X

e2E

ce xe (1)

subject to 8C 2 cc(G) 8e 2 C : xe 
X

e02C\{e}

xe0 . (2)

Here, cc(G) denotes the set of all chordless cycles of G.7

This problem can be equivalently stated as an unconstrained binary multilinear program with a large8

enough constant C 2 N.9

min
x2{0,1}E

X

e2E

ce xe + C
X

C2cc(G)

X

e2C

xe

Y

e02C\{e}

(1� xe0) . (3)

In the special case where G is complete, every 3-cycles is chordless. Thus, (3) specializes to the10

binary cubic problem11

min
x2{0,1}E

X

e2E

ce xe + C
X

{u,v,w}2
�V
3

�
(xuvx̄vwx̄uw + x̄uvxvwx̄uw + x̄uvx̄vwxuw) . (4)

Here, x̄vw := 1� xvw.12
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3 Inference in Models with Higher-order Terms

We now describe how a number of types of higher-order potential may be incor-
porated in fully connected models of the kind described in Sec. 2, while continu-
ing to permit e�cient mean-field updates. The introduction of such higher-order
terms not only greatly expands the expressive power of such densely connected
models, but also makes e�cient filter-based inference possible in a range of mod-
els where other techniques are currently used. We show in our experimentation
that filter-based inference generally outperforms the best alternative methods in
terms of speed and accuracy.

We first give a general form of the models we will be dealing with. In place
of Eq. 2, we consider the general energy:

E(V|I) =
X

c2C
 c(vc|I) (6)

where V is a joint assignment of the random variables V = {V1, ..., VNV }, C
is a set of cliques each consisting of a subset of random variables c ✓ V, and
associated with a potential function  c over settings of the random variables
in c, vc. In Sec. 2 we have that V = X , that each Xi takes values in the set
L of object labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that X ✓ V, so
that V may also include other random variables (e.g. latent variables) which may
take values in di↵erent label sets, and C may also include higher-order cliques.

The general form of the mean-field update equations (see [16]) is:

Qi(vi = ⌫) =
1

Zi
exp{�

X

c2C

X

{vc|vi=⌫}

Qc�i(vc�i) ·  c(vc)} (7)

where ⌫ is a value in the domain of random variable vi, vc denotes an assignment
of all variables in clique c, vc�i an assignment of all variables apart from Vi, and
Qc�i denotes the marginal distribution of all variables in c apart from Vi derived
from the joint distribution Q. Zi =

P
⌫ exp{�

P
c2C

P
{vc|vi=⌫} Qc�i(vc�i) ·

 c(vc)} is a normalizing constant for random variable vi. We note that the sum-
mations

P
{vc|vi=⌫} Qc�i(vc�i) ·  c(vc) in Eq. 7 evaluate the expected value of

 c over Q given that Vi takes the value ⌫. The updates for the densely con-
nected pairwise model in Eq. 4 are derived by evaluating Eq. 7 across the unary
and pairwise potentials defined in Sec. 2 for vi = x1...N and ⌫ = 1...L. We de-
scribe below how similar updates can be e�ciently calculated for each of the
higher-order potentials we consider.

Pattern-based Potentials: In [11], a pattern-based potential3 is defined as:

 
pat
c (xc) =

(
�xc if xc 2 Pc

�max otherwise
(8)

3 The class of such sparse higher-order potentials is also considered in [17].
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We now describe how a number of types of higher-order potential may be incor-
porated in fully connected models of the kind described in Sec. 2, while continu-
ing to permit e�cient mean-field updates. The introduction of such higher-order
terms not only greatly expands the expressive power of such densely connected
models, but also makes e�cient filter-based inference possible in a range of mod-
els where other techniques are currently used. We show in our experimentation
that filter-based inference generally outperforms the best alternative methods in
terms of speed and accuracy.

We first give a general form of the models we will be dealing with. In place
of Eq. 2, we consider the general energy:

E(V|I) =
X

c2C
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where V is a joint assignment of the random variables V = {V1, ..., VNV }, C
is a set of cliques each consisting of a subset of random variables c ✓ V, and
associated with a potential function  c over settings of the random variables
in c, vc. In Sec. 2 we have that V = X , that each Xi takes values in the set
L of object labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that X ✓ V, so
that V may also include other random variables (e.g. latent variables) which may
take values in di↵erent label sets, and C may also include higher-order cliques.
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Qc�i denotes the marginal distribution of all variables in c apart from Vi derived
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 c(vc)} is a normalizing constant for random variable vi. We note that the sum-
mations
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{vc|vi=⌫} Qc�i(vc�i) ·  c(vc) in Eq. 7 evaluate the expected value of

 c over Q given that Vi takes the value ⌫. The updates for the densely con-
nected pairwise model in Eq. 4 are derived by evaluating Eq. 7 across the unary
and pairwise potentials defined in Sec. 2 for vi = x1...N and ⌫ = 1...L. We de-
scribe below how similar updates can be e�ciently calculated for each of the
higher-order potentials we consider.

Pattern-based Potentials: In [11], a pattern-based potential3 is defined as:
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3 Inference in Models with Higher-order Terms

We now describe how a number of types of higher-order potential may be incor-
porated in fully connected models of the kind described in Sec. 2, while continu-
ing to permit e�cient mean-field updates. The introduction of such higher-order
terms not only greatly expands the expressive power of such densely connected
models, but also makes e�cient filter-based inference possible in a range of mod-
els where other techniques are currently used. We show in our experimentation
that filter-based inference generally outperforms the best alternative methods in
terms of speed and accuracy.

We first give a general form of the models we will be dealing with. In place
of Eq. 2, we consider the general energy:

E(V|I) =
X

c2C
 c(vc|I) (6)

where V is a joint assignment of the random variables V = {V1, ..., VNV }, C
is a set of cliques each consisting of a subset of random variables c ✓ V, and
associated with a potential function  c over settings of the random variables
in c, vc. In Sec. 2 we have that V = X , that each Xi takes values in the set
L of object labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that X ✓ V, so
that V may also include other random variables (e.g. latent variables) which may
take values in di↵erent label sets, and C may also include higher-order cliques.

The general form of the mean-field update equations (see [16]) is:

Qi(vi = ⌫) =
1
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exp{�

X
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X

{vc|vi=⌫}

Qc�i(vc�i) ·  c(vc)} (7)

where ⌫ is a value in the domain of random variable vi, vc denotes an assignment
of all variables in clique c, vc�i an assignment of all variables apart from Vi, and
Qc�i denotes the marginal distribution of all variables in c apart from Vi derived
from the joint distribution Q. Zi =

P
⌫ exp{�

P
c2C

P
{vc|vi=⌫} Qc�i(vc�i) ·

 c(vc)} is a normalizing constant for random variable vi. We note that the sum-
mations

P
{vc|vi=⌫} Qc�i(vc�i) ·  c(vc) in Eq. 7 evaluate the expected value of

 c over Q given that Vi takes the value ⌫. The updates for the densely con-
nected pairwise model in Eq. 4 are derived by evaluating Eq. 7 across the unary
and pairwise potentials defined in Sec. 2 for vi = x1...N and ⌫ = 1...L. We de-
scribe below how similar updates can be e�ciently calculated for each of the
higher-order potentials we consider.

Pattern-based Potentials: In [11], a pattern-based potential3 is defined as:

 
pat
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We now describe how a number of types of higher-order potential may be incor-
porated in fully connected models of the kind described in Sec. 2, while continu-
ing to permit e�cient mean-field updates. The introduction of such higher-order
terms not only greatly expands the expressive power of such densely connected
models, but also makes e�cient filter-based inference possible in a range of mod-
els where other techniques are currently used. We show in our experimentation
that filter-based inference generally outperforms the best alternative methods in
terms of speed and accuracy.

We first give a general form of the models we will be dealing with. In place
of Eq. 2, we consider the general energy:

E(V|I) =
X

c2C
 c(vc|I) (6)

where V is a joint assignment of the random variables V = {V1, ..., VNV }, C
is a set of cliques each consisting of a subset of random variables c ✓ V, and
associated with a potential function  c over settings of the random variables
in c, vc. In Sec. 2 we have that V = X , that each Xi takes values in the set
L of object labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that X ✓ V, so
that V may also include other random variables (e.g. latent variables) which may
take values in di↵erent label sets, and C may also include higher-order cliques.

The general form of the mean-field update equations (see [16]) is:
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We now describe how a number of types of higher-order potential may be incor-
porated in fully connected models of the kind described in Sec. 2, while continu-
ing to permit e�cient mean-field updates. The introduction of such higher-order
terms not only greatly expands the expressive power of such densely connected
models, but also makes e�cient filter-based inference possible in a range of mod-
els where other techniques are currently used. We show in our experimentation
that filter-based inference generally outperforms the best alternative methods in
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We first give a general form of the models we will be dealing with. In place
of Eq. 2, we consider the general energy:

E(V|I) =
X

c2C
 c(vc|I) (6)

where V is a joint assignment of the random variables V = {V1, ..., VNV }, C
is a set of cliques each consisting of a subset of random variables c ✓ V, and
associated with a potential function  c over settings of the random variables
in c, vc. In Sec. 2 we have that V = X , that each Xi takes values in the set
L of object labels, and that C contains unary and pairwise cliques of the types
discussed. In general, in the models discussed below we will have that X ✓ V, so
that V may also include other random variables (e.g. latent variables) which may
take values in di↵erent label sets, and C may also include higher-order cliques.

The general form of the mean-field update equations (see [16]) is:

Qi(vi = ⌫) =
1

Zi
exp{�

X

c2C

X

{vc|vi=⌫}

Qc�i(vc�i) ·  c(vc)} (7)

where ⌫ is a value in the domain of random variable vi, vc denotes an assignment
of all variables in clique c, vc�i an assignment of all variables apart from Vi, and
Qc�i denotes the marginal distribution of all variables in c apart from Vi derived
from the joint distribution Q. Zi =

P
⌫ exp{�

P
c2C

P
{vc|vi=⌫} Qc�i(vc�i) ·

 c(vc)} is a normalizing constant for random variable vi. We note that the sum-
mations

P
{vc|vi=⌫} Qc�i(vc�i) ·  c(vc) in Eq. 7 evaluate the expected value of

 c over Q given that Vi takes the value ⌫. The updates for the densely con-
nected pairwise model in Eq. 4 are derived by evaluating Eq. 7 across the unary
and pairwise potentials defined in Sec. 2 for vi = x1...N and ⌫ = 1...L. We de-
scribe below how similar updates can be e�ciently calculated for each of the
higher-order potentials we consider.

Pattern-based Potentials: In [11], a pattern-based potential3 is defined as:

 
pat
c (xc) =

(
�xc if xc 2 Pc

�max otherwise
(8)

3 The class of such sparse higher-order potentials is also considered in [17].

E(x) =
X

i

 U
i (xi) +

X

c

 Cycle
c (xc)

- Mean-field	inference	as	RNN		[Zheng	et	al.	@ICCV	2015,		Arnab	et	al.	@ECCV	2016]
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Abstract

Given an image of a scene without people, we can easily

imagine how people could interact with this scene and the

objects in it. Our goal is to train a neural network to take

a single image without people and generate plausible hu-

man bodies conditioned on the scene. Training a computer

to take an image and do the same is a challenge because

we lack ground truth training data of 3D people in scenes.

We can, however, get images of people in scenes and esti-

mate the 3D human pose using existing methods. We then

remove the person from the scene, fill in the missing data,

and train an autoencoder to represent the scene in a low-

dimensional latent space. We then train a conditional vari-

ational autoencoder to predict 3D human pose conditioned

on the latent scene representation. Then given an image of

a scene without any person present, we can sample humans

interacting with the scene in realistic poses.

1. Introduction

Inside of an environment, usually a person knows how to
interact with the surrounding objects in a natural manner
based on prior knowledge. For example, the person sits on
the sofa when feeling tired, since the sofa can comfortably
support the body. Or the person stands on a wooden chair
to reach the ceiling, because the chair is considered to be

stable. It is reported that the structure and semantic infor-
mation of a scene can heavily influence the manner of how
a person interacts with it [33]. Considering the structure
and the semantics of the scene, people are able to interact
with the environment in a natural or even spontaneous man-
ner. Thus, we aim to unsupervisedly create a computational
model to synthesize interactions, simulating how a natu-
ral human-scene interaction occurs without external instruc-
tion. Rather than direct modelling the complex perception-
motor functions of human beings, we learn a probabilistic
distribution from a set of natural images, so that one can
sample various human bodies provided the structural and
semantic information of the scene. One can see the teaser
figure for some generated human bodies.

Such generative model is highly useful in various tasks.
For instance, it can be used as a prior to capture human-
scene interaction from a single image. Or it can be used
to infer scene structure based on human behaviors. Also,
the generative model can raise a number of new applica-
tions, e.g., extending current scene datasets to ones with
humans, reasoning about possible interactions given a new
environment design, identifying abnormal behaviors and
so forth. The questions are how to learn such generative
model, and where to get large-scale training data of diverse
scenes with and without humans to enable the learning of
natural human-scene interaction?

Several solutions have been proposed to address these
questions in recent years. An intuitive way is to use videos
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Abstract

Given an image of a scene without people, we can easily

imagine how people could interact with this scene and the

objects in it. Our goal is to train a neural network to take

a single image without people and generate plausible hu-

man bodies conditioned on the scene. Training a computer

to take an image and do the same is a challenge because

we lack ground truth training data of 3D people in scenes.

We can, however, get images of people in scenes and esti-

mate the 3D human pose using existing methods. We then

remove the person from the scene, fill in the missing data,

and train an autoencoder to represent the scene in a low-

dimensional latent space. We then train a conditional vari-

ational autoencoder to predict 3D human pose conditioned

on the latent scene representation. Then given an image of

a scene without any person present, we can sample humans

interacting with the scene in realistic poses.

1. Introduction

Inside of an environment, usually a person knows how to
interact with the surrounding objects in a natural manner
based on prior knowledge. For example, the person sits on
the sofa when feeling tired, since the sofa can comfortably
support the body. Or the person stands on a wooden chair
to reach the ceiling, because the chair is considered to be

stable. It is reported that the structure and semantic infor-
mation of a scene can heavily influence the manner of how
a person interacts with it [33]. Considering the structure
and the semantics of the scene, people are able to interact
with the environment in a natural or even spontaneous man-
ner. Thus, we aim to unsupervisedly create a computational
model to synthesize interactions, simulating how a natu-
ral human-scene interaction occurs without external instruc-
tion. Rather than direct modelling the complex perception-
motor functions of human beings, we learn a probabilistic
distribution from a set of natural images, so that one can
sample various human bodies provided the structural and
semantic information of the scene. One can see the teaser
figure for some generated human bodies.

Such generative model is highly useful in various tasks.
For instance, it can be used as a prior to capture human-
scene interaction from a single image. Or it can be used
to infer scene structure based on human behaviors. Also,
the generative model can raise a number of new applica-
tions, e.g., extending current scene datasets to ones with
humans, reasoning about possible interactions given a new
environment design, identifying abnormal behaviors and
so forth. The questions are how to learn such generative
model, and where to get large-scale training data of diverse
scenes with and without humans to enable the learning of
natural human-scene interaction?

Several solutions have been proposed to address these
questions in recent years. An intuitive way is to use videos
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on the latent scene representation. Then given an image of

a scene without any person present, we can sample humans
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1. Introduction

Inside of an environment, usually a person knows how to
interact with the surrounding objects in a natural manner
based on prior knowledge. For example, the person sits on
the sofa when feeling tired, since the sofa can comfortably
support the body. Or the person stands on a wooden chair
to reach the ceiling, because the chair is considered to be

stable. It is reported that the structure and semantic infor-
mation of a scene can heavily influence the manner of how
a person interacts with it [33]. Considering the structure
and the semantics of the scene, people are able to interact
with the environment in a natural or even spontaneous man-
ner. Thus, we aim to unsupervisedly create a computational
model to synthesize interactions, simulating how a natu-
ral human-scene interaction occurs without external instruc-
tion. Rather than direct modelling the complex perception-
motor functions of human beings, we learn a probabilistic
distribution from a set of natural images, so that one can
sample various human bodies provided the structural and
semantic information of the scene. One can see the teaser
figure for some generated human bodies.

Such generative model is highly useful in various tasks.
For instance, it can be used as a prior to capture human-
scene interaction from a single image. Or it can be used
to infer scene structure based on human behaviors. Also,
the generative model can raise a number of new applica-
tions, e.g., extending current scene datasets to ones with
humans, reasoning about possible interactions given a new
environment design, identifying abnormal behaviors and
so forth. The questions are how to learn such generative
model, and where to get large-scale training data of diverse
scenes with and without humans to enable the learning of
natural human-scene interaction?

Several solutions have been proposed to address these
questions in recent years. An intuitive way is to use videos
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support the body. Or the person stands on a wooden chair
to reach the ceiling, because the chair is considered to be
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mation of a scene can heavily influence the manner of how
a person interacts with it [33]. Considering the structure
and the semantics of the scene, people are able to interact
with the environment in a natural or even spontaneous man-
ner. Thus, we aim to unsupervisedly create a computational
model to synthesize interactions, simulating how a natu-
ral human-scene interaction occurs without external instruc-
tion. Rather than direct modelling the complex perception-
motor functions of human beings, we learn a probabilistic
distribution from a set of natural images, so that one can
sample various human bodies provided the structural and
semantic information of the scene. One can see the teaser
figure for some generated human bodies.

Such generative model is highly useful in various tasks.
For instance, it can be used as a prior to capture human-
scene interaction from a single image. Or it can be used
to infer scene structure based on human behaviors. Also,
the generative model can raise a number of new applica-
tions, e.g., extending current scene datasets to ones with
humans, reasoning about possible interactions given a new
environment design, identifying abnormal behaviors and
so forth. The questions are how to learn such generative
model, and where to get large-scale training data of diverse
scenes with and without humans to enable the learning of
natural human-scene interaction?

Several solutions have been proposed to address these
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be regarded as initial values. We can also reformulate the
reconstruction loss in terms of probabilistic representations,
which can be given by

L
rec
hum =

X

hi2H

�Ez⇠p(z|hi)

⇥
log q(hi|z)

⇤
, (6)

in which p(·) and q(·) are the corresponding encoder and
decoder, h := (t,⇡, ✓,�)T and z denotes the concatenation
of zh and zs.

(b) A Kullback-Leibler (KL) divergence loss is given by

L
KL
hum = KL-Div ( p(z|h)||p0(z) ) , (7)

in which the latent variable prior p0(·) is set to the normal
distribution N(0, I).

(c) A projection loss is proposed to learn trec and ⇡rec.
With the 3D human mesh Mi := M(�i, ✓i), the projection
loss is given by

L
proj
hum = Ei2|H|

⇥
k⇡̃rec

i � J (Mi + treci )� J3d,ik1

⇤
, (8)

in which ⇡̃rec
i := (srecxy,i, s

rec
xy,i, s

rec
z,i )

T , � denotes the
element-wise product and J (·) denotes the function of
extracting 3D keypoints from the 3D human body mesh.
Therefore, minimizing such projection loss can unify the
coordinate systems of the SMPL model, the image coordi-
nate and the depth.

Combining (a), (b) and (c), the loss for the human body
net is given by

Lhum = L
rec
hum + �KLL

KL
hum + �projL

proj
hum, (9)

in which �KL and �proj are positive hyper-parameters.
Given a set of human-centric images, via our decoupling

process we can obtain a tuple of feature sets (S,H) :=
{(si, hi)}Ni=1. The training process is two-stage. We first
train the environment net to obtain a low dimensional rep-
resentation of scene, and then we train the CVAE to obtain
a generative human-scene interaction model.

We use the Adam algorithm [14] for optimization and
train the environment net and the human body net in an al-
ternating manner. Specifically, we first train the environ-
ment net with one epoch and then use the scene latent vari-
able to train the human body net by the second epoch. The
initial learning rate is set to 0.001, and begins to decay after
100 epochs.

3.4. Synthesis
Based on the trained generative model we aim to derive

various human body configurations (various shapes, poses
and positions) in the same scene with interaction manners
from the training data. To obtain a human body configu-
ration, we randomly draw a sample from the standard nor-
mal distribution, concatenate it with the environment latent

Si
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0
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2

Figure 4. For the SittingOnSofa dataset, the first two rows show
training images and the third row shows testing images. For the
other two datasets, only the associated depth maps with images
are shown.

variable and feed to the human body net decoder to derive
a sample of h := (t,⇡, ✓,�)T . Consequently, with the syn-
thesized body shape � and joint rotations ✓ we can obtain a
3D body mesh M(�, ✓) with the pelvis location at the ori-
gin. Then we shift the body mesh by t, rescale the spatial
coordinate of the depth map by dividing by sxy , and rescale
the depth value with division by sz .

Besides reasonable global location and body pose, the
human body is expected to be supported by the scene sur-
face correctly. Based on the 3D point cloud, we define the
human-object contacting points as the vertices on the hu-
man body mesh corresponding to the top 50 closest points
of the scene. Then each contacting point gives a vote to
the associated body part 1, and then we can obtain a his-
togram of contacting body parts of each sample. If we draw
multiple samples, then the votes of contacting parts are ac-
cumulated.

4. Experiments
4.1. Datasets

For all the datasets, we estimate the dense semantic map
via the Xception model [3] pre-trained on ADE20K [35],
which contains 150 object categories. To improve consis-

1The human body is divided to 20 body parts, which are right calf, head,
right hand, neck, spine lower, pelvis, right foot, left foot, spine middle,
spine top, right thigh, left upper arm, left shoulder, left thigh, left forearm,
right shoulder, left hand, right upper arm, right forearm and left calf.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
u

Z

⌦

�
(1�m) · |u� f |+m · (|ru|2)

�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
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in which  (s2) := 2✓2
p
1 + s2/✓2 � 2✓2 [2] is to ensure

piece-wise smooth and we set ✓ = 0.1 for all cases. For
semantic map, we directly use the person segmentation as
the mask and perform inpainting via the convex relaxation
method of [5]. Specifically, we convert f(x) to a higher-
dimensional embedding f l(x) 2 {0, 1}k with 1 � f l

1 �

· · · � f l
k � 0, in which k is equal to the number of classes

(see [5, Eq. 1.4], and then minimize Eq. 2.

min
{ul

k}

Z

⌦

 
(1�m) ·

X

k

|ul
k � f l

k|+m ·

X

k

|rul
k|

!
dx

(2)
and

u =
X

k

ul
k. (3)

The forth and sixth rows of Fig. 1 show the examples of
depth/semantic map inpainting. One can see that the vari-
ational methods generalize well across various scenes and
input modalities.

Representing humans by SMPL [21]. A human body
configuration h 2 H comprises several components. First,
the 3D shape and pose are represented by the parameters of
the SMPL model [21]. With the shape parameter � 2 R10

and the pose parameter ✓ 2 R72, one can obtain a 3D hu-
man body mesh M(�, ✓), the pelvis of which is located at
the origin in the 3D space. In our work we use the method
HMR [12] to estimate the 3D body pose and shape of the
person and the 2D joints J

hmr
2d in images. Some exam-

ples are shown in Fig. 1 (second row). We then combine
the estimate of HMR with the inpainted depth map, derive
the corresponding depth values of J hmr

2d , and formulate the
3D body joints J

hmr
3d . In addition, we define a 3D trans-

lation t 2 R3 to move the generated SMPL mesh from
the origin to another place, and a camera configuration ⇡
to project the 3D mesh to the image plane. Following the
work of [12], we assume orthographic projection and set
⇡ = (sxy, sz)T , denoting two scaling factors on the image
plane projection and the depth domain respectively. In our
work we set t = (0, 0, 0.5) and ⇡ = (1, 1) for all images,
indicating that the default position of the 3D human body is
located at the camera focal axis with a half unit depth and no
scaling during projection. Therefore, the full human config-
uration is represented as h := (t,⇡, ✓,�)T 2 R87, which
incorporate the body shape, pose, position and projection to
the image and depth.

3.2. Conditional Variational Autoencoder

Condition module: Environment net. The input to the
environment net s 2 S is the stack of the depth map and
the semantic map of an image. To ensure that semantics
and depth can contribute equally, we normalize them to the
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Figure 2. The environment net is an autoencoder and consists of
four convolutional layers and four residual blocks. The original
resolution is gradually reduced to a quarter and then recovered.
The latent variable zs ranging between [�1, 1] is derived from a
fully-connected layer and is output from the network.
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Figure 3. The human body net is a conditional variational autoen-
coder with multiple fully-connected layers. The condition is given
by the environment latent variable zs.

range of [0, 1]. The architecture is shown in Fig. 2, which is
designed based on [31] and the Tensorflow implementation
[1] of CycleGAN [36]. We output the latent variable zs,
which is constrained to be within the range of [�1, 1].
Encoder/Decoder module: Human body net. The human
body net is a variational autoencoder conditioned on the en-
vironment latent variable zs, which is illustrated in Fig. 3.
The input to the net is the 87D human body configuration
vector h 2 H, and hence the net output is its reconstruction
hrec.

3.3. Learning
Learning the environment net. The environment net is
trained to minimize the reconstructions loss, which is given
by

Lenv = Ei2|S|

⇥
kzs,i � zrecs,i k1

⇤
. (4)

Minimizing this loss function is used to obtain effective la-
tent variables zs of the scene.

Learning the human body net. The human body net has
several loss functions:

(a) A reconstruction loss of H is given by

L
rec
hum = Ei2|H|

⇥
k✓i � ✓reci k1 + k�i � �rec

i k1

+ �rec (kti � treci k1 + k⇡i � ⇡rec
i k1)

⇤
,

(5)

in which �rec is the weight for reconstruction of the camera
configuration and the 3D translation. In our experiments
we fix it to 10�4 and hence the settings in Sec. 3.1 can
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
u

Z

⌦

�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
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⌦

�
(1�m) · |u� f |+m · (|ru|2)

�
dx, (1)

3

• Condi2onal	Human	body	genera2on

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

ICCV
#2728

ICCV
#2728

ICCV 2019 Submission #2728. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
u
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⌦

�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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in which  (s2) := 2✓2
p
1 + s2/✓2 � 2✓2 [2] is to ensure

piece-wise smooth and we set ✓ = 0.1 for all cases. For
semantic map, we directly use the person segmentation as
the mask and perform inpainting via the convex relaxation
method of [5]. Specifically, we convert f(x) to a higher-
dimensional embedding f l(x) 2 {0, 1}k with 1 � f l

1 �

· · · � f l
k � 0, in which k is equal to the number of classes

(see [5, Eq. 1.4], and then minimize Eq. 2.

min
{ul

k}

Z

⌦

 
(1�m) ·

X

k

|ul
k � f l

k|+m ·

X

k

|rul
k|

!
dx

(2)
and

u =
X

k

ul
k. (3)

The forth and sixth rows of Fig. 1 show the examples of
depth/semantic map inpainting. One can see that the vari-
ational methods generalize well across various scenes and
input modalities.

Representing humans by SMPL [21]. A human body
configuration h 2 H comprises several components. First,
the 3D shape and pose are represented by the parameters of
the SMPL model [21]. With the shape parameter � 2 R10

and the pose parameter ✓ 2 R72, one can obtain a 3D hu-
man body mesh M(�, ✓), the pelvis of which is located at
the origin in the 3D space. In our work we use the method
HMR [12] to estimate the 3D body pose and shape of the
person and the 2D joints J

hmr
2d in images. Some exam-

ples are shown in Fig. 1 (second row). We then combine
the estimate of HMR with the inpainted depth map, derive
the corresponding depth values of J hmr

2d , and formulate the
3D body joints J

hmr
3d . In addition, we define a 3D trans-

lation t 2 R3 to move the generated SMPL mesh from
the origin to another place, and a camera configuration ⇡
to project the 3D mesh to the image plane. Following the
work of [12], we assume orthographic projection and set
⇡ = (sxy, sz)T , denoting two scaling factors on the image
plane projection and the depth domain respectively. In our
work we set t = (0, 0, 0.5) and ⇡ = (1, 1) for all images,
indicating that the default position of the 3D human body is
located at the camera focal axis with a half unit depth and no
scaling during projection. Therefore, the full human config-
uration is represented as h := (t,⇡, ✓,�)T 2 R87, which
incorporate the body shape, pose, position and projection to
the image and depth.

3.2. Conditional Variational Autoencoder

Condition module: Environment net. The input to the
environment net s 2 S is the stack of the depth map and
the semantic map of an image. To ensure that semantics
and depth can contribute equally, we normalize them to the
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Figure 2. The environment net is an autoencoder and consists of
four convolutional layers and four residual blocks. The original
resolution is gradually reduced to a quarter and then recovered.
The latent variable zs ranging between [�1, 1] is derived from a
fully-connected layer and is output from the network.
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Figure 3. The human body net is a conditional variational autoen-
coder with multiple fully-connected layers. The condition is given
by the environment latent variable zs.

range of [0, 1]. The architecture is shown in Fig. 2, which is
designed based on [31] and the Tensorflow implementation
[1] of CycleGAN [36]. We output the latent variable zs,
which is constrained to be within the range of [�1, 1].
Encoder/Decoder module: Human body net. The human
body net is a variational autoencoder conditioned on the en-
vironment latent variable zs, which is illustrated in Fig. 3.
The input to the net is the 87D human body configuration
vector h 2 H, and hence the net output is its reconstruction
hrec.

3.3. Learning
Learning the environment net. The environment net is
trained to minimize the reconstructions loss, which is given
by

Lenv = Ei2|S|

⇥
kzs,i � zrecs,i k1

⇤
. (4)

Minimizing this loss function is used to obtain effective la-
tent variables zs of the scene.

Learning the human body net. The human body net has
several loss functions:

(a) A reconstruction loss of H is given by

L
rec
hum = Ei2|H|

⇥
k✓i � ✓reci k1 + k�i � �rec

i k1

+ �rec (kti � treci k1 + k⇡i � ⇡rec
i k1)

⇤
,

(5)

in which �rec is the weight for reconstruction of the camera
configuration and the 3D translation. In our experiments
we fix it to 10�4 and hence the settings in Sec. 3.1 can
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
u
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⌦

�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
u

Z

⌦

�
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�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
u

Z

⌦

�
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�
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
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�
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in which  (s2) := 2✓2
p
1 + s2/✓2 � 2✓2 [2] is to ensure

piece-wise smooth and we set ✓ = 0.1 for all cases. For
semantic map, we directly use the person segmentation as
the mask and perform inpainting via the convex relaxation
method of [5]. Specifically, we convert f(x) to a higher-
dimensional embedding f l(x) 2 {0, 1}k with 1 � f l

1 �

· · · � f l
k � 0, in which k is equal to the number of classes

(see [5, Eq. 1.4], and then minimize Eq. 2.

min
{ul

k}

Z

⌦

 
(1�m) ·

X

k

|ul
k � f l

k|+m ·

X

k

|rul
k|

!
dx

(2)
and

u =
X

k

ul
k. (3)

The forth and sixth rows of Fig. 1 show the examples of
depth/semantic map inpainting. One can see that the vari-
ational methods generalize well across various scenes and
input modalities.

Representing humans by SMPL [21]. A human body
configuration h 2 H comprises several components. First,
the 3D shape and pose are represented by the parameters of
the SMPL model [21]. With the shape parameter � 2 R10

and the pose parameter ✓ 2 R72, one can obtain a 3D hu-
man body mesh M(�, ✓), the pelvis of which is located at
the origin in the 3D space. In our work we use the method
HMR [12] to estimate the 3D body pose and shape of the
person and the 2D joints J

hmr
2d in images. Some exam-

ples are shown in Fig. 1 (second row). We then combine
the estimate of HMR with the inpainted depth map, derive
the corresponding depth values of J hmr

2d , and formulate the
3D body joints J

hmr
3d . In addition, we define a 3D trans-

lation t 2 R3 to move the generated SMPL mesh from
the origin to another place, and a camera configuration ⇡
to project the 3D mesh to the image plane. Following the
work of [12], we assume orthographic projection and set
⇡ = (sxy, sz)T , denoting two scaling factors on the image
plane projection and the depth domain respectively. In our
work we set t = (0, 0, 0.5) and ⇡ = (1, 1) for all images,
indicating that the default position of the 3D human body is
located at the camera focal axis with a half unit depth and no
scaling during projection. Therefore, the full human config-
uration is represented as h := (t,⇡, ✓,�)T 2 R87, which
incorporate the body shape, pose, position and projection to
the image and depth.

3.2. Conditional Variational Autoencoder

Condition module: Environment net. The input to the
environment net s 2 S is the stack of the depth map and
the semantic map of an image. To ensure that semantics
and depth can contribute equally, we normalize them to the
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Figure 2. The environment net is an autoencoder and consists of
four convolutional layers and four residual blocks. The original
resolution is gradually reduced to a quarter and then recovered.
The latent variable zs ranging between [�1, 1] is derived from a
fully-connected layer and is output from the network.
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Figure 3. The human body net is a conditional variational autoen-
coder with multiple fully-connected layers. The condition is given
by the environment latent variable zs.

range of [0, 1]. The architecture is shown in Fig. 2, which is
designed based on [31] and the Tensorflow implementation
[1] of CycleGAN [36]. We output the latent variable zs,
which is constrained to be within the range of [�1, 1].
Encoder/Decoder module: Human body net. The human
body net is a variational autoencoder conditioned on the en-
vironment latent variable zs, which is illustrated in Fig. 3.
The input to the net is the 87D human body configuration
vector h 2 H, and hence the net output is its reconstruction
hrec.

3.3. Learning
Learning the environment net. The environment net is
trained to minimize the reconstructions loss, which is given
by

Lenv = Ei2|S|

⇥
kzs,i � zrecs,i k1

⇤
. (4)

Minimizing this loss function is used to obtain effective la-
tent variables zs of the scene.

Learning the human body net. The human body net has
several loss functions:

(a) A reconstruction loss of H is given by

L
rec
hum = Ei2|H|

⇥
k✓i � ✓reci k1 + k�i � �rec

i k1

+ �rec (kti � treci k1 + k⇡i � ⇡rec
i k1)

⇤
,

(5)

in which �rec is the weight for reconstruction of the camera
configuration and the 3D translation. In our experiments
we fix it to 10�4 and hence the settings in Sec. 3.1 can
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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⌦
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.

min
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⌦
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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in which  (s2) := 2✓2
p
1 + s2/✓2 � 2✓2 [2] is to ensure

piece-wise smooth and we set ✓ = 0.1 for all cases. For
semantic map, we directly use the person segmentation as
the mask and perform inpainting via the convex relaxation
method of [5]. Specifically, we convert f(x) to a higher-
dimensional embedding f l(x) 2 {0, 1}k with 1 � f l

1 �

· · · � f l
k � 0, in which k is equal to the number of classes

(see [5, Eq. 1.4], and then minimize Eq. 2.

min
{ul

k}

Z

⌦

 
(1�m) ·

X

k

|ul
k � f l

k|+m ·

X

k

|rul
k|

!
dx

(2)
and

u =
X

k

ul
k. (3)

The forth and sixth rows of Fig. 1 show the examples of
depth/semantic map inpainting. One can see that the vari-
ational methods generalize well across various scenes and
input modalities.

Representing humans by SMPL [21]. A human body
configuration h 2 H comprises several components. First,
the 3D shape and pose are represented by the parameters of
the SMPL model [21]. With the shape parameter � 2 R10

and the pose parameter ✓ 2 R72, one can obtain a 3D hu-
man body mesh M(�, ✓), the pelvis of which is located at
the origin in the 3D space. In our work we use the method
HMR [12] to estimate the 3D body pose and shape of the
person and the 2D joints J

hmr
2d in images. Some exam-

ples are shown in Fig. 1 (second row). We then combine
the estimate of HMR with the inpainted depth map, derive
the corresponding depth values of J hmr

2d , and formulate the
3D body joints J

hmr
3d . In addition, we define a 3D trans-

lation t 2 R3 to move the generated SMPL mesh from
the origin to another place, and a camera configuration ⇡
to project the 3D mesh to the image plane. Following the
work of [12], we assume orthographic projection and set
⇡ = (sxy, sz)T , denoting two scaling factors on the image
plane projection and the depth domain respectively. In our
work we set t = (0, 0, 0.5) and ⇡ = (1, 1) for all images,
indicating that the default position of the 3D human body is
located at the camera focal axis with a half unit depth and no
scaling during projection. Therefore, the full human config-
uration is represented as h := (t,⇡, ✓,�)T 2 R87, which
incorporate the body shape, pose, position and projection to
the image and depth.

3.2. Conditional Variational Autoencoder

Condition module: Environment net. The input to the
environment net s 2 S is the stack of the depth map and
the semantic map of an image. To ensure that semantics
and depth can contribute equally, we normalize them to the
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Figure 2. The environment net is an autoencoder and consists of
four convolutional layers and four residual blocks. The original
resolution is gradually reduced to a quarter and then recovered.
The latent variable zs ranging between [�1, 1] is derived from a
fully-connected layer and is output from the network.
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Figure 3. The human body net is a conditional variational autoen-
coder with multiple fully-connected layers. The condition is given
by the environment latent variable zs.

range of [0, 1]. The architecture is shown in Fig. 2, which is
designed based on [31] and the Tensorflow implementation
[1] of CycleGAN [36]. We output the latent variable zs,
which is constrained to be within the range of [�1, 1].
Encoder/Decoder module: Human body net. The human
body net is a variational autoencoder conditioned on the en-
vironment latent variable zs, which is illustrated in Fig. 3.
The input to the net is the 87D human body configuration
vector h 2 H, and hence the net output is its reconstruction
hrec.

3.3. Learning
Learning the environment net. The environment net is
trained to minimize the reconstructions loss, which is given
by

Lenv = Ei2|S|

⇥
kzs,i � zrecs,i k1

⇤
. (4)

Minimizing this loss function is used to obtain effective la-
tent variables zs of the scene.

Learning the human body net. The human body net has
several loss functions:

(a) A reconstruction loss of H is given by

L
rec
hum = Ei2|H|

⇥
k✓i � ✓reci k1 + k�i � �rec

i k1

+ �rec (kti � treci k1 + k⇡i � ⇡rec
i k1)

⇤
,

(5)

in which �rec is the weight for reconstruction of the camera
configuration and the 3D translation. In our experiments
we fix it to 10�4 and hence the settings in Sec. 3.1 can
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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ways. Given an image and a location as input Wang et al.
first predict the most likely pose from a set of 30 poses. This
pose is deformed and scaled by a second network to fit into
the scene. Li et al. [19] extend this work to automatically
estimate where to put people and to predict 3D poses. To ac-
quire 3D training data they map 2D poses to 3D poses and
place them in 3D scenes from the SUNCG dataset [26, 34].
This synthesized dataset is cleaned by removal of all pre-
dictions intersecting with the 3D scene or without sufficient
support for the body. The resulting dataset is then used to
train a network that directly predicts 3D poses for RGB or
RGB-D or depth images. Physical plausibility of poses is
encouraged by usage of an adversarial loss. The methods
of [32, 19] are limited in their generalization, since they re-
quire a large amount of paired data and manual cleaning of
the pose detections. Such a large amount of data might be
hard to acquire for scenes that are less frequently covered
by sitcoms, or in case of [19] in 3D scene datasets. Further-
more, both methods only predict poses represented as stick
figures. Such a representation is hard to validate visually
and can not directly be used to generate realistic synthetic
data of humans interacting with an environment.

3. Probabilistic 3D Body Generation in Images
In this section we describe our generative method for

human-scene interaction, which aims to model a posterior
of 3D human body configuration given an image under the
framework of conditional variational autoencoder (CVAE).
Specifically, we propose to learn p(H|S), in which H and
S denote the 3D human body configuration and the scene
information, respectively.

Our method incorporate three aspects: (1) We decou-
ple the human and the scene in the image (see Sec. 3.1)
to extract effective individual representations. (2) We de-
sign a novel CVAE architecture conditioned on a low-
dimensional representation of the scene to formulate the
posterior p(H|S) (Sec. 3.2). (3) We create a family of loss
functions to couple the human body features and the scene
features, encouraging the network to learn the interactions
from training images (Sec. 3.3). Consequently, provided
a scene image, our model can generate 3D human bodies
with various plausible poses, predict potential interaction
locations, synthesize 3D human-centric scene, and infer the
contacting body parts.

3.1. Decoupling the person and scene in the image
Representing the scene. In our study, a scene s 2 S is
represented by its structure and context, which are, in our
opinion, essential factors to influence human-scene interac-
tions. We use the depth map to represent the scene struc-
ture, since inferring the depth map from a single image is
more applicable via existing methods than estimating the
3D geometry (e.g. surface meshes). We use the FCRN

Figure 1. Four examples are presented in columns. The detected
2D body joints, 3D human meshes (rendered by OpenDR [22]),
scene depth, inpainted scene depth, semantic maps and inpainted
semantic maps are shown from top to bottom. Images in the first
two rows are from our SittingOnSofa dataset, and the images in
the second two rows are from the CAD-60 dataset [28]. One can
see Sec. 4.1 for details.

method [17], which is pre-trained on the NYU-V2 dataset
[23], to extract depth maps from single images. In paral-
lel, the context is represented by a dense semantic map and
is extracted by the Xception model [3] pre-trained on the
ADE20K dataset [35]. The first two columns in Fig. 1 show
some results of depth and semantics estimation.

Recovering occluded information. Removing the per-
son from the RGB image leaves a region which is very
difficult to recover. On the other hand, the depth map and
the semantic map of an indoor scene are piece-wise smooth
(piece-wise affine or piece-wise constant), and hence fit
well with certain regularization terms. Therefore, we re-
move the person from the depth map and the semantic map
individually, and perform inpainting based on variational
methods. For efficiency, the inpainting algorithm is per-
formed on 0.25 of the original resolution.

First, we define the image domain as ⌦ ⇢ R2 and for-
mulate the original depth/semantic map with person as a
function f(x) : x 2 ⌦! R. For depth map, we extract the
person mask via Mask R-CNN [11] and perform inpainting
via minimizing Eq. 1.
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in which  (s2) := 2✓2
p
1 + s2/✓2 � 2✓2 [2] is to ensure

piece-wise smooth and we set ✓ = 0.1 for all cases. For
semantic map, we directly use the person segmentation as
the mask and perform inpainting via the convex relaxation
method of [5]. Specifically, we convert f(x) to a higher-
dimensional embedding f l(x) 2 {0, 1}k with 1 � f l

1 �

· · · � f l
k � 0, in which k is equal to the number of classes

(see [5, Eq. 1.4], and then minimize Eq. 2.

min
{ul

k}

Z

⌦

 
(1�m) ·

X

k

|ul
k � f l

k|+m ·

X

k

|rul
k|

!
dx

(2)
and

u =
X

k

ul
k. (3)

The forth and sixth rows of Fig. 1 show the examples of
depth/semantic map inpainting. One can see that the vari-
ational methods generalize well across various scenes and
input modalities.

Representing humans by SMPL [21]. A human body
configuration h 2 H comprises several components. First,
the 3D shape and pose are represented by the parameters of
the SMPL model [21]. With the shape parameter � 2 R10

and the pose parameter ✓ 2 R72, one can obtain a 3D hu-
man body mesh M(�, ✓), the pelvis of which is located at
the origin in the 3D space. In our work we use the method
HMR [12] to estimate the 3D body pose and shape of the
person and the 2D joints J

hmr
2d in images. Some exam-

ples are shown in Fig. 1 (second row). We then combine
the estimate of HMR with the inpainted depth map, derive
the corresponding depth values of J hmr

2d , and formulate the
3D body joints J

hmr
3d . In addition, we define a 3D trans-

lation t 2 R3 to move the generated SMPL mesh from
the origin to another place, and a camera configuration ⇡
to project the 3D mesh to the image plane. Following the
work of [12], we assume orthographic projection and set
⇡ = (sxy, sz)T , denoting two scaling factors on the image
plane projection and the depth domain respectively. In our
work we set t = (0, 0, 0.5) and ⇡ = (1, 1) for all images,
indicating that the default position of the 3D human body is
located at the camera focal axis with a half unit depth and no
scaling during projection. Therefore, the full human config-
uration is represented as h := (t,⇡, ✓,�)T 2 R87, which
incorporate the body shape, pose, position and projection to
the image and depth.

3.2. Conditional Variational Autoencoder

Condition module: Environment net. The input to the
environment net s 2 S is the stack of the depth map and
the semantic map of an image. To ensure that semantics
and depth can contribute equally, we normalize them to the
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Figure 2. The environment net is an autoencoder and consists of
four convolutional layers and four residual blocks. The original
resolution is gradually reduced to a quarter and then recovered.
The latent variable zs ranging between [�1, 1] is derived from a
fully-connected layer and is output from the network.
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Figure 3. The human body net is a conditional variational autoen-
coder with multiple fully-connected layers. The condition is given
by the environment latent variable zs.

range of [0, 1]. The architecture is shown in Fig. 2, which is
designed based on [31] and the Tensorflow implementation
[1] of CycleGAN [36]. We output the latent variable zs,
which is constrained to be within the range of [�1, 1].
Encoder/Decoder module: Human body net. The human
body net is a variational autoencoder conditioned on the en-
vironment latent variable zs, which is illustrated in Fig. 3.
The input to the net is the 87D human body configuration
vector h 2 H, and hence the net output is its reconstruction
hrec.

3.3. Learning
Learning the environment net. The environment net is
trained to minimize the reconstructions loss, which is given
by

Lenv = Ei2|S|

⇥
kzs,i � zrecs,i k1

⇤
. (4)

Minimizing this loss function is used to obtain effective la-
tent variables zs of the scene.

Learning the human body net. The human body net has
several loss functions:

(a) A reconstruction loss of H is given by

L
rec
hum = Ei2|H|

⇥
k✓i � ✓reci k1 + k�i � �rec

i k1

+ �rec (kti � treci k1 + k⇡i � ⇡rec
i k1)

⇤
,

(5)

in which �rec is the weight for reconstruction of the camera
configuration and the 3D translation. In our experiments
we fix it to 10�4 and hence the settings in Sec. 3.1 can
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in which  (s2) := 2✓2
p
1 + s2/✓2 � 2✓2 [2] is to ensure

piece-wise smooth and we set ✓ = 0.1 for all cases. For
semantic map, we directly use the person segmentation as
the mask and perform inpainting via the convex relaxation
method of [5]. Specifically, we convert f(x) to a higher-
dimensional embedding f l(x) 2 {0, 1}k with 1 � f l

1 �

· · · � f l
k � 0, in which k is equal to the number of classes

(see [5, Eq. 1.4], and then minimize Eq. 2.

min
{ul

k}

Z

⌦

 
(1�m) ·

X

k

|ul
k � f l

k|+m ·

X

k

|rul
k|

!
dx

(2)
and

u =
X

k

ul
k. (3)

The forth and sixth rows of Fig. 1 show the examples of
depth/semantic map inpainting. One can see that the vari-
ational methods generalize well across various scenes and
input modalities.

Representing humans by SMPL [21]. A human body
configuration h 2 H comprises several components. First,
the 3D shape and pose are represented by the parameters of
the SMPL model [21]. With the shape parameter � 2 R10

and the pose parameter ✓ 2 R72, one can obtain a 3D hu-
man body mesh M(�, ✓), the pelvis of which is located at
the origin in the 3D space. In our work we use the method
HMR [12] to estimate the 3D body pose and shape of the
person and the 2D joints J

hmr
2d in images. Some exam-

ples are shown in Fig. 1 (second row). We then combine
the estimate of HMR with the inpainted depth map, derive
the corresponding depth values of J hmr

2d , and formulate the
3D body joints J

hmr
3d . In addition, we define a 3D trans-

lation t 2 R3 to move the generated SMPL mesh from
the origin to another place, and a camera configuration ⇡
to project the 3D mesh to the image plane. Following the
work of [12], we assume orthographic projection and set
⇡ = (sxy, sz)T , denoting two scaling factors on the image
plane projection and the depth domain respectively. In our
work we set t = (0, 0, 0.5) and ⇡ = (1, 1) for all images,
indicating that the default position of the 3D human body is
located at the camera focal axis with a half unit depth and no
scaling during projection. Therefore, the full human config-
uration is represented as h := (t,⇡, ✓,�)T 2 R87, which
incorporate the body shape, pose, position and projection to
the image and depth.

3.2. Conditional Variational Autoencoder

Condition module: Environment net. The input to the
environment net s 2 S is the stack of the depth map and
the semantic map of an image. To ensure that semantics
and depth can contribute equally, we normalize them to the
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Figure 2. The environment net is an autoencoder and consists of
four convolutional layers and four residual blocks. The original
resolution is gradually reduced to a quarter and then recovered.
The latent variable zs ranging between [�1, 1] is derived from a
fully-connected layer and is output from the network.
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Figure 3. The human body net is a conditional variational autoen-
coder with multiple fully-connected layers. The condition is given
by the environment latent variable zs.

range of [0, 1]. The architecture is shown in Fig. 2, which is
designed based on [31] and the Tensorflow implementation
[1] of CycleGAN [36]. We output the latent variable zs,
which is constrained to be within the range of [�1, 1].
Encoder/Decoder module: Human body net. The human
body net is a variational autoencoder conditioned on the en-
vironment latent variable zs, which is illustrated in Fig. 3.
The input to the net is the 87D human body configuration
vector h 2 H, and hence the net output is its reconstruction
hrec.

3.3. Learning
Learning the environment net. The environment net is
trained to minimize the reconstructions loss, which is given
by

Lenv = Ei2|S|

⇥
kzs,i � zrecs,i k1

⇤
. (4)

Minimizing this loss function is used to obtain effective la-
tent variables zs of the scene.

Learning the human body net. The human body net has
several loss functions:

(a) A reconstruction loss of H is given by

L
rec
hum = Ei2|H|

⇥
k✓i � ✓reci k1 + k�i � �rec

i k1

+ �rec (kti � treci k1 + k⇡i � ⇡rec
i k1)

⇤
,

(5)

in which �rec is the weight for reconstruction of the camera
configuration and the 3D translation. In our experiments
we fix it to 10�4 and hence the settings in Sec. 3.1 can
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Figure 5. Visualization of how the condition influences the model performance. For each background image, from top to bottom the results
are respectively from ModelS , ModelD and ModelB . For each background image the left side shows the mean human bodies and the right
side shows the averaged body masks.

Figure 6. The average results of 100 samples for each background
image. From left to right: The rendering results. The 3D recon-
struction of the human body and the scene (blue to red means near
to far from the image plane). The normalized histograms of con-
tacting body parts. In each example, the top-three frequent contact
body parts are pelvis, right foot and left foot.

Total Positive images Negative images
4700 2728 1912
Table 1. Comparison on plausible interactions.

Figure 7. Two confusing cases are shown. In each case the positive
and negative images are arranged from left to right.

that are confused by the users are shown in Fig. 7.

Figure 8. Visualization of sampling results on the SittingOnSofa
dataset, which are rendered by Blender.

4.4. Qualitative Visualization

Fig. 8-10 present examples of generated human bodies
that are conditioned on the input background images. In
particular, Fig. 10 shows results with occlusion relations
for SittingOnSofa and NYU-V2, respectively. One can see
that our method can produce plausible occlusion relations as
we estimate the scene geometry and 3D human body jointly.
Failure cases. Due to lack of explicit constraints on human-
object contact, there is no guarantee to avoid mesh inter-
penetration, even the global position and body poses are re-
alistic. Fig. 11 shows some failure examples.

In addition, when the testing environment is dramatically
from the training environment, some failure cases are likely
to occur. Three representative examples are shown in Fig.
12. One can note that the CAD-60 dataset has very limited
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure 5. Visualization of how the condition influences the model performance. For each background image, from top to bottom the results
are respectively from ModelS , ModelD and ModelB . For each background image the left side shows the mean human bodies and the right
side shows the averaged body masks.

Figure 6. The average results of 100 samples for each background
image. From left to right: The rendering results. The 3D recon-
struction of the human body and the scene (blue to red means near
to far from the image plane). The normalized histograms of con-
tacting body parts. In each example, the top-three frequent contact
body parts are pelvis, right foot and left foot.

Total Positive images Negative images
4700 2728 1912
Table 1. Comparison on plausible interactions.

Figure 7. Two confusing cases are shown. In each case the positive
and negative images are arranged from left to right.

that are confused by the users are shown in Fig. 7.

Figure 8. Visualization of sampling results on the SittingOnSofa
dataset, which are rendered by Blender.

4.4. Qualitative Visualization

Fig. 8-10 present examples of generated human bodies
that are conditioned on the input background images. In
particular, Fig. 10 shows results with occlusion relations
for SittingOnSofa and NYU-V2, respectively. One can see
that our method can produce plausible occlusion relations as
we estimate the scene geometry and 3D human body jointly.
Failure cases. Due to lack of explicit constraints on human-
object contact, there is no guarantee to avoid mesh inter-
penetration, even the global position and body poses are re-
alistic. Fig. 11 shows some failure examples.

In addition, when the testing environment is dramatically
from the training environment, some failure cases are likely
to occur. Three representative examples are shown in Fig.
12. One can note that the CAD-60 dataset has very limited
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-
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Figure 5. Visualization of how the condition influences the model performance. For each background image, from top to bottom the results
are respectively from ModelS , ModelD and ModelB . For each background image the left side shows the mean human bodies and the right
side shows the averaged body masks.

Figure 6. The average results of 100 samples for each background
image. From left to right: The rendering results. The 3D recon-
struction of the human body and the scene (blue to red means near
to far from the image plane). The normalized histograms of con-
tacting body parts. In each example, the top-three frequent contact
body parts are pelvis, right foot and left foot.

Total Positive images Negative images
4700 2728 1912
Table 1. Comparison on plausible interactions.

Figure 7. Two confusing cases are shown. In each case the positive
and negative images are arranged from left to right.

that are confused by the users are shown in Fig. 7.

Figure 8. Visualization of sampling results on the SittingOnSofa
dataset, which are rendered by Blender.

4.4. Qualitative Visualization

Fig. 8-10 present examples of generated human bodies
that are conditioned on the input background images. In
particular, Fig. 10 shows results with occlusion relations
for SittingOnSofa and NYU-V2, respectively. One can see
that our method can produce plausible occlusion relations as
we estimate the scene geometry and 3D human body jointly.
Failure cases. Due to lack of explicit constraints on human-
object contact, there is no guarantee to avoid mesh inter-
penetration, even the global position and body poses are re-
alistic. Fig. 11 shows some failure examples.

In addition, when the testing environment is dramatically
from the training environment, some failure cases are likely
to occur. Three representative examples are shown in Fig.
12. One can note that the CAD-60 dataset has very limited
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-
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Figure 5. Visualization of how the condition influences the model performance. For each background image, from top to bottom the results
are respectively from ModelS , ModelD and ModelB . For each background image the left side shows the mean human bodies and the right
side shows the averaged body masks.

Figure 6. The average results of 100 samples for each background
image. From left to right: The rendering results. The 3D recon-
struction of the human body and the scene (blue to red means near
to far from the image plane). The normalized histograms of con-
tacting body parts. In each example, the top-three frequent contact
body parts are pelvis, right foot and left foot.

Total Positive images Negative images
4700 2728 1912
Table 1. Comparison on plausible interactions.

Figure 7. Two confusing cases are shown. In each case the positive
and negative images are arranged from left to right.

that are confused by the users are shown in Fig. 7.

Figure 8. Visualization of sampling results on the SittingOnSofa
dataset, which are rendered by Blender.

4.4. Qualitative Visualization

Fig. 8-10 present examples of generated human bodies
that are conditioned on the input background images. In
particular, Fig. 10 shows results with occlusion relations
for SittingOnSofa and NYU-V2, respectively. One can see
that our method can produce plausible occlusion relations as
we estimate the scene geometry and 3D human body jointly.
Failure cases. Due to lack of explicit constraints on human-
object contact, there is no guarantee to avoid mesh inter-
penetration, even the global position and body poses are re-
alistic. Fig. 11 shows some failure examples.

In addition, when the testing environment is dramatically
from the training environment, some failure cases are likely
to occur. Three representative examples are shown in Fig.
12. One can note that the CAD-60 dataset has very limited
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Figure S3. Visualization results on SittingOnSofa.

Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-

Sofa and CAD-60, respectively.
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Figure S4. Visualization results on NYU-V2.

results in Fig. S3 and Fig. S4 for the datasets SittingOn-
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Seeing people in images without people

We thank all reviewers for the valuable feedback. We will
clarify misunderstandings and address questions below.
The SittingOnSofa scenario (R1 & R2 & R3): Due to the
complex nature of human-scene interaction, we focus on a
constrained scenario in our study, i.e. a single person in-
teracting with a specific environment category (sofa-centric
living room in our case), while allowing natural variations
of the human body and environment configurations. Thus,
we create the SittingOnSofa dataset (see Fig. S1). Com-
pared to unconstrained scenarios, e.g. the Binge Watch-
ing dataset in [32], which incorporates images with com-
plex interactions in different sorts of environments, our
constrained SittingOnSofa scenario has two advantages:
(1) Learning the human-scene interaction prior in 3D does
not require a massive number of training samples, and (2)
the pseudo ground truth to train our CVAE model, namely
the estimated depth, segmentation map and the 3D human
mesh, are of better quality since the off-the-shelf methods
perform consistently well in our simpler context. For exam-
ple, many images in Binge Watching contain multiple peo-
ple, and off-the-shelf human mesh recovery methods cannot
resolve their depth relations.

Figure S1. Some examples of training images of SittingOnSofa.

Comparison with the baseline in [32] (R3): We don’t
think our work and [32] are directly comparable: The
method in [32] requires a 2D position of the human body as
input and generates a stick figure at the given position, while
our method can infer the 3D position, the 3D pose of the
human body and 3D scene structures simultaneously just
based on the background. Our method actually puts human
bodies into an estimated 3D space and hence can address
occlusion relations between the human body and the scene
objects, which cannot be realized by replacing stick figures
in [32] by 3D human meshes. In addition, we not only aim
to put human bodies into scenes, but also attempt to use
human-scene interaction to infer human-object 3D relations
and assist 3D scene structure recovery (see Fig. 6 and the
teaser figure in the manuscript). We will add more discus-
sions on the comparison between [32] and our method.
Down-stream applications (R1 & R2): Here we present
two down-stream applications: The first application is to
generate synthetic data. Since the SMPL model has a pre-
defined UV map, 3D body meshes can be straightforwardly
rendered with texture (see Fig. S2). With interaction, our
method generates more plausible synthetic data than SUR-
REAL. The second application is to improve 3D pose esti-
mation via the learned human-scene interaction prior. Here

Figure S2. Human meshes rendered with texture.

Figure S3. Our test on human-sofa interaction images of MPI-INF
3DHP. In the first group are the background image, the estimated
depth and the estimated segmentation. In the second group are the
average mask and two generated body meshes. In the third group
are 3 examples of how a real person interacts with the sofa.

Threshold (mm) 20 40 60 80 100

VPoser 13.15 34.92 54.02 64.34 71.60
Ours 18.14 43.82 65.08 76.87 82.48

Table 1. PCK for varying thresholds. Better results are in boldface.

we use sequence 2 in the MPI-INF-3DHP test set and dis-
card frames in which neither trunk nor gluteus are in contact
with the sofa, resulting in 126 test images (see Fig. S3). We
use SMPLify-X (G. Pavlakos et al., CVPR 2019) as a base-
line, where the pose prior is a L2 penalty in a latent pose
space. We replace this prior by |✓̂ � ✓̄|2, in which ✓̄ is the
average of 100 generated poses based on the background
and using our CVAE model trained on SittingOnSofa (see
Fig. S3). We find that SMPLify-X achieves a mean per
joint position error (MPJPE) of 87.29mm. Using our prior,
the error drops to 63.28mm. Tab. 1 shows the superiority of
the interaction prior w.r.t. percentage of correct keypoints
(PCK). Moreover, our setting can lead to many other appli-
cations, such as (1) assisting indoor shop design via predict-
ing customers’ behavior with different layouts and interior
designs and (2) producing illustrative guidance of how to
use an object or how to act in a specific environment.
Sensitivity of off-the-shelf methods (R1 & R2): Due
to lack of training data with both natural interactions and
ground truth (e.g. body mocap and scene 3D scan), we use
off-the-shelf methods to extract pseudo ground truth. For
depth estimation and scene parsing, the pre-trained models
are trained with a large amount of indoor data and hence
fit our indoor scenarios quite well. The pre-trained HMR
also fits our case since it is especially designed to recover
a single 3D body mesh from 2D appearance with moder-
ate occlusion. During inference, we find that our model can
perform well when one of the two modalities, i.e. depth or
segmentation, is degraded. As in Fig. S3, although the esti-
mated segmentation has low quality, the pre-trained CVAE
model on SittingOnSofa can still effectively locate the sofa
and generate plausible 3D human meshes.

• MPI-INF-3DHP	si_ng	sequence

[Pavlakos	et	al.	
@CVPR	2019]
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Seeing people in images without people

We thank all reviewers for the valuable feedback. We will
clarify misunderstandings and address questions below.
The SittingOnSofa scenario (R1 & R2 & R3): Due to the
complex nature of human-scene interaction, we focus on a
constrained scenario in our study, i.e. a single person in-
teracting with a specific environment category (sofa-centric
living room in our case), while allowing natural variations
of the human body and environment configurations. Thus,
we create the SittingOnSofa dataset (see Fig. S1). Com-
pared to unconstrained scenarios, e.g. the Binge Watch-
ing dataset in [32], which incorporates images with com-
plex interactions in different sorts of environments, our
constrained SittingOnSofa scenario has two advantages:
(1) Learning the human-scene interaction prior in 3D does
not require a massive number of training samples, and (2)
the pseudo ground truth to train our CVAE model, namely
the estimated depth, segmentation map and the 3D human
mesh, are of better quality since the off-the-shelf methods
perform consistently well in our simpler context. For exam-
ple, many images in Binge Watching contain multiple peo-
ple, and off-the-shelf human mesh recovery methods cannot
resolve their depth relations.

Figure S1. Some examples of training images of SittingOnSofa.

Comparison with the baseline in [32] (R3): We don’t
think our work and [32] are directly comparable: The
method in [32] requires a 2D position of the human body as
input and generates a stick figure at the given position, while
our method can infer the 3D position, the 3D pose of the
human body and 3D scene structures simultaneously just
based on the background. Our method actually puts human
bodies into an estimated 3D space and hence can address
occlusion relations between the human body and the scene
objects, which cannot be realized by replacing stick figures
in [32] by 3D human meshes. In addition, we not only aim
to put human bodies into scenes, but also attempt to use
human-scene interaction to infer human-object 3D relations
and assist 3D scene structure recovery (see Fig. 6 and the
teaser figure in the manuscript). We will add more discus-
sions on the comparison between [32] and our method.
Down-stream applications (R1 & R2): Here we present
two down-stream applications: The first application is to
generate synthetic data. Since the SMPL model has a pre-
defined UV map, 3D body meshes can be straightforwardly
rendered with texture (see Fig. S2). With interaction, our
method generates more plausible synthetic data than SUR-
REAL. The second application is to improve 3D pose esti-
mation via the learned human-scene interaction prior. Here

Figure S2. Human meshes rendered with texture.

Figure S3. Our test on human-sofa interaction images of MPI-INF
3DHP. In the first group are the background image, the estimated
depth and the estimated segmentation. In the second group are the
average mask and two generated body meshes. In the third group
are 3 examples of how a real person interacts with the sofa.

Threshold (mm) 20 40 60 80 100

VPoser 13.15 34.92 54.02 64.34 71.60
Ours 18.14 43.82 65.08 76.87 82.48

Table 1. PCK for varying thresholds. Better results are in boldface.

we use sequence 2 in the MPI-INF-3DHP test set and dis-
card frames in which neither trunk nor gluteus are in contact
with the sofa, resulting in 126 test images (see Fig. S3). We
use SMPLify-X (G. Pavlakos et al., CVPR 2019) as a base-
line, where the pose prior is a L2 penalty in a latent pose
space. We replace this prior by |✓̂ � ✓̄|2, in which ✓̄ is the
average of 100 generated poses based on the background
and using our CVAE model trained on SittingOnSofa (see
Fig. S3). We find that SMPLify-X achieves a mean per
joint position error (MPJPE) of 87.29mm. Using our prior,
the error drops to 63.28mm. Tab. 1 shows the superiority of
the interaction prior w.r.t. percentage of correct keypoints
(PCK). Moreover, our setting can lead to many other appli-
cations, such as (1) assisting indoor shop design via predict-
ing customers’ behavior with different layouts and interior
designs and (2) producing illustrative guidance of how to
use an object or how to act in a specific environment.
Sensitivity of off-the-shelf methods (R1 & R2): Due
to lack of training data with both natural interactions and
ground truth (e.g. body mocap and scene 3D scan), we use
off-the-shelf methods to extract pseudo ground truth. For
depth estimation and scene parsing, the pre-trained models
are trained with a large amount of indoor data and hence
fit our indoor scenarios quite well. The pre-trained HMR
also fits our case since it is especially designed to recover
a single 3D body mesh from 2D appearance with moder-
ate occlusion. During inference, we find that our model can
perform well when one of the two modalities, i.e. depth or
segmentation, is degraded. As in Fig. S3, although the esti-
mated segmentation has low quality, the pre-trained CVAE
model on SittingOnSofa can still effectively locate the sofa
and generate plausible 3D human meshes.

• MPI-INF-3DHP	si_ng	sequence

• Occlusion	handeling

[Pavlakos	et	al.	
@CVPR	2019]
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Seeing people in images without people

We thank all reviewers for the valuable feedback. We will
clarify misunderstandings and address questions below.
The SittingOnSofa scenario (R1 & R2 & R3): Due to the
complex nature of human-scene interaction, we focus on a
constrained scenario in our study, i.e. a single person in-
teracting with a specific environment category (sofa-centric
living room in our case), while allowing natural variations
of the human body and environment configurations. Thus,
we create the SittingOnSofa dataset (see Fig. S1). Com-
pared to unconstrained scenarios, e.g. the Binge Watch-
ing dataset in [32], which incorporates images with com-
plex interactions in different sorts of environments, our
constrained SittingOnSofa scenario has two advantages:
(1) Learning the human-scene interaction prior in 3D does
not require a massive number of training samples, and (2)
the pseudo ground truth to train our CVAE model, namely
the estimated depth, segmentation map and the 3D human
mesh, are of better quality since the off-the-shelf methods
perform consistently well in our simpler context. For exam-
ple, many images in Binge Watching contain multiple peo-
ple, and off-the-shelf human mesh recovery methods cannot
resolve their depth relations.

Figure S1. Some examples of training images of SittingOnSofa.

Comparison with the baseline in [32] (R3): We don’t
think our work and [32] are directly comparable: The
method in [32] requires a 2D position of the human body as
input and generates a stick figure at the given position, while
our method can infer the 3D position, the 3D pose of the
human body and 3D scene structures simultaneously just
based on the background. Our method actually puts human
bodies into an estimated 3D space and hence can address
occlusion relations between the human body and the scene
objects, which cannot be realized by replacing stick figures
in [32] by 3D human meshes. In addition, we not only aim
to put human bodies into scenes, but also attempt to use
human-scene interaction to infer human-object 3D relations
and assist 3D scene structure recovery (see Fig. 6 and the
teaser figure in the manuscript). We will add more discus-
sions on the comparison between [32] and our method.
Down-stream applications (R1 & R2): Here we present
two down-stream applications: The first application is to
generate synthetic data. Since the SMPL model has a pre-
defined UV map, 3D body meshes can be straightforwardly
rendered with texture (see Fig. S2). With interaction, our
method generates more plausible synthetic data than SUR-
REAL. The second application is to improve 3D pose esti-
mation via the learned human-scene interaction prior. Here

Figure S2. Human meshes rendered with texture.

Figure S3. Our test on human-sofa interaction images of MPI-INF
3DHP. In the first group are the background image, the estimated
depth and the estimated segmentation. In the second group are the
average mask and two generated body meshes. In the third group
are 3 examples of how a real person interacts with the sofa.

Threshold (mm) 20 40 60 80 100

VPoser 13.15 34.92 54.02 64.34 71.60
Ours 18.14 43.82 65.08 76.87 82.48

Table 1. PCK for varying thresholds. Better results are in boldface.

we use sequence 2 in the MPI-INF-3DHP test set and dis-
card frames in which neither trunk nor gluteus are in contact
with the sofa, resulting in 126 test images (see Fig. S3). We
use SMPLify-X (G. Pavlakos et al., CVPR 2019) as a base-
line, where the pose prior is a L2 penalty in a latent pose
space. We replace this prior by |✓̂ � ✓̄|2, in which ✓̄ is the
average of 100 generated poses based on the background
and using our CVAE model trained on SittingOnSofa (see
Fig. S3). We find that SMPLify-X achieves a mean per
joint position error (MPJPE) of 87.29mm. Using our prior,
the error drops to 63.28mm. Tab. 1 shows the superiority of
the interaction prior w.r.t. percentage of correct keypoints
(PCK). Moreover, our setting can lead to many other appli-
cations, such as (1) assisting indoor shop design via predict-
ing customers’ behavior with different layouts and interior
designs and (2) producing illustrative guidance of how to
use an object or how to act in a specific environment.
Sensitivity of off-the-shelf methods (R1 & R2): Due
to lack of training data with both natural interactions and
ground truth (e.g. body mocap and scene 3D scan), we use
off-the-shelf methods to extract pseudo ground truth. For
depth estimation and scene parsing, the pre-trained models
are trained with a large amount of indoor data and hence
fit our indoor scenarios quite well. The pre-trained HMR
also fits our case since it is especially designed to recover
a single 3D body mesh from 2D appearance with moder-
ate occlusion. During inference, we find that our model can
perform well when one of the two modalities, i.e. depth or
segmentation, is degraded. As in Fig. S3, although the esti-
mated segmentation has low quality, the pre-trained CVAE
model on SittingOnSofa can still effectively locate the sofa
and generate plausible 3D human meshes.

• MPI-INF-3DHP	si_ng	sequence
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Seeing people in images without people

We thank all reviewers for the valuable feedback. We will
clarify misunderstandings and address questions below.
The SittingOnSofa scenario (R1 & R2 & R3): Due to the
complex nature of human-scene interaction, we focus on a
constrained scenario in our study, i.e. a single person in-
teracting with a specific environment category (sofa-centric
living room in our case), while allowing natural variations
of the human body and environment configurations. Thus,
we create the SittingOnSofa dataset (see Fig. S1). Com-
pared to unconstrained scenarios, e.g. the Binge Watch-
ing dataset in [32], which incorporates images with com-
plex interactions in different sorts of environments, our
constrained SittingOnSofa scenario has two advantages:
(1) Learning the human-scene interaction prior in 3D does
not require a massive number of training samples, and (2)
the pseudo ground truth to train our CVAE model, namely
the estimated depth, segmentation map and the 3D human
mesh, are of better quality since the off-the-shelf methods
perform consistently well in our simpler context. For exam-
ple, many images in Binge Watching contain multiple peo-
ple, and off-the-shelf human mesh recovery methods cannot
resolve their depth relations.

Figure S1. Some examples of training images of SittingOnSofa.

Comparison with the baseline in [32] (R3): We don’t
think our work and [32] are directly comparable: The
method in [32] requires a 2D position of the human body as
input and generates a stick figure at the given position, while
our method can infer the 3D position, the 3D pose of the
human body and 3D scene structures simultaneously just
based on the background. Our method actually puts human
bodies into an estimated 3D space and hence can address
occlusion relations between the human body and the scene
objects, which cannot be realized by replacing stick figures
in [32] by 3D human meshes. In addition, we not only aim
to put human bodies into scenes, but also attempt to use
human-scene interaction to infer human-object 3D relations
and assist 3D scene structure recovery (see Fig. 6 and the
teaser figure in the manuscript). We will add more discus-
sions on the comparison between [32] and our method.
Down-stream applications (R1 & R2): Here we present
two down-stream applications: The first application is to
generate synthetic data. Since the SMPL model has a pre-
defined UV map, 3D body meshes can be straightforwardly
rendered with texture (see Fig. S2). With interaction, our
method generates more plausible synthetic data than SUR-
REAL. The second application is to improve 3D pose esti-
mation via the learned human-scene interaction prior. Here

Figure S2. Human meshes rendered with texture.

Figure S3. Our test on human-sofa interaction images of MPI-INF
3DHP. In the first group are the background image, the estimated
depth and the estimated segmentation. In the second group are the
average mask and two generated body meshes. In the third group
are 3 examples of how a real person interacts with the sofa.

Threshold (mm) 20 40 60 80 100

VPoser 13.15 34.92 54.02 64.34 71.60
Ours 18.14 43.82 65.08 76.87 82.48

Table 1. PCK for varying thresholds. Better results are in boldface.

we use sequence 2 in the MPI-INF-3DHP test set and dis-
card frames in which neither trunk nor gluteus are in contact
with the sofa, resulting in 126 test images (see Fig. S3). We
use SMPLify-X (G. Pavlakos et al., CVPR 2019) as a base-
line, where the pose prior is a L2 penalty in a latent pose
space. We replace this prior by |✓̂ � ✓̄|2, in which ✓̄ is the
average of 100 generated poses based on the background
and using our CVAE model trained on SittingOnSofa (see
Fig. S3). We find that SMPLify-X achieves a mean per
joint position error (MPJPE) of 87.29mm. Using our prior,
the error drops to 63.28mm. Tab. 1 shows the superiority of
the interaction prior w.r.t. percentage of correct keypoints
(PCK). Moreover, our setting can lead to many other appli-
cations, such as (1) assisting indoor shop design via predict-
ing customers’ behavior with different layouts and interior
designs and (2) producing illustrative guidance of how to
use an object or how to act in a specific environment.
Sensitivity of off-the-shelf methods (R1 & R2): Due
to lack of training data with both natural interactions and
ground truth (e.g. body mocap and scene 3D scan), we use
off-the-shelf methods to extract pseudo ground truth. For
depth estimation and scene parsing, the pre-trained models
are trained with a large amount of indoor data and hence
fit our indoor scenarios quite well. The pre-trained HMR
also fits our case since it is especially designed to recover
a single 3D body mesh from 2D appearance with moder-
ate occlusion. During inference, we find that our model can
perform well when one of the two modalities, i.e. depth or
segmentation, is degraded. As in Fig. S3, although the esti-
mated segmentation has low quality, the pre-trained CVAE
model on SittingOnSofa can still effectively locate the sofa
and generate plausible 3D human meshes.

• MPI-INF-3DHP	si_ng	sequence

• Occlusion	handeling

• Failure	cases
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Seeing people in images without people

We thank all reviewers for the valuable feedback. We will
clarify misunderstandings and address questions below.
The SittingOnSofa scenario (R1 & R2 & R3): Due to the
complex nature of human-scene interaction, we focus on a
constrained scenario in our study, i.e. a single person in-
teracting with a specific environment category (sofa-centric
living room in our case), while allowing natural variations
of the human body and environment configurations. Thus,
we create the SittingOnSofa dataset (see Fig. S1). Com-
pared to unconstrained scenarios, e.g. the Binge Watch-
ing dataset in [32], which incorporates images with com-
plex interactions in different sorts of environments, our
constrained SittingOnSofa scenario has two advantages:
(1) Learning the human-scene interaction prior in 3D does
not require a massive number of training samples, and (2)
the pseudo ground truth to train our CVAE model, namely
the estimated depth, segmentation map and the 3D human
mesh, are of better quality since the off-the-shelf methods
perform consistently well in our simpler context. For exam-
ple, many images in Binge Watching contain multiple peo-
ple, and off-the-shelf human mesh recovery methods cannot
resolve their depth relations.

Figure S1. Some examples of training images of SittingOnSofa.

Comparison with the baseline in [32] (R3): We don’t
think our work and [32] are directly comparable: The
method in [32] requires a 2D position of the human body as
input and generates a stick figure at the given position, while
our method can infer the 3D position, the 3D pose of the
human body and 3D scene structures simultaneously just
based on the background. Our method actually puts human
bodies into an estimated 3D space and hence can address
occlusion relations between the human body and the scene
objects, which cannot be realized by replacing stick figures
in [32] by 3D human meshes. In addition, we not only aim
to put human bodies into scenes, but also attempt to use
human-scene interaction to infer human-object 3D relations
and assist 3D scene structure recovery (see Fig. 6 and the
teaser figure in the manuscript). We will add more discus-
sions on the comparison between [32] and our method.
Down-stream applications (R1 & R2): Here we present
two down-stream applications: The first application is to
generate synthetic data. Since the SMPL model has a pre-
defined UV map, 3D body meshes can be straightforwardly
rendered with texture (see Fig. S2). With interaction, our
method generates more plausible synthetic data than SUR-
REAL. The second application is to improve 3D pose esti-
mation via the learned human-scene interaction prior. Here

Figure S2. Human meshes rendered with texture.

Figure S3. Our test on human-sofa interaction images of MPI-INF
3DHP. In the first group are the background image, the estimated
depth and the estimated segmentation. In the second group are the
average mask and two generated body meshes. In the third group
are 3 examples of how a real person interacts with the sofa.

Threshold (mm) 20 40 60 80 100

VPoser 13.15 34.92 54.02 64.34 71.60
Ours 18.14 43.82 65.08 76.87 82.48

Table 1. PCK for varying thresholds. Better results are in boldface.

we use sequence 2 in the MPI-INF-3DHP test set and dis-
card frames in which neither trunk nor gluteus are in contact
with the sofa, resulting in 126 test images (see Fig. S3). We
use SMPLify-X (G. Pavlakos et al., CVPR 2019) as a base-
line, where the pose prior is a L2 penalty in a latent pose
space. We replace this prior by |✓̂ � ✓̄|2, in which ✓̄ is the
average of 100 generated poses based on the background
and using our CVAE model trained on SittingOnSofa (see
Fig. S3). We find that SMPLify-X achieves a mean per
joint position error (MPJPE) of 87.29mm. Using our prior,
the error drops to 63.28mm. Tab. 1 shows the superiority of
the interaction prior w.r.t. percentage of correct keypoints
(PCK). Moreover, our setting can lead to many other appli-
cations, such as (1) assisting indoor shop design via predict-
ing customers’ behavior with different layouts and interior
designs and (2) producing illustrative guidance of how to
use an object or how to act in a specific environment.
Sensitivity of off-the-shelf methods (R1 & R2): Due
to lack of training data with both natural interactions and
ground truth (e.g. body mocap and scene 3D scan), we use
off-the-shelf methods to extract pseudo ground truth. For
depth estimation and scene parsing, the pre-trained models
are trained with a large amount of indoor data and hence
fit our indoor scenarios quite well. The pre-trained HMR
also fits our case since it is especially designed to recover
a single 3D body mesh from 2D appearance with moder-
ate occlusion. During inference, we find that our model can
perform well when one of the two modalities, i.e. depth or
segmentation, is degraded. As in Fig. S3, although the esti-
mated segmentation has low quality, the pre-trained CVAE
model on SittingOnSofa can still effectively locate the sofa
and generate plausible 3D human meshes.

• MPI-INF-3DHP	si_ng	sequence

• Occlusion	handeling

• Failure	cases

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

ICCV
#2728

ICCV
#2728

ICCV 2019 Submission #2728. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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Figure 9. Visualization of sampling results on the NYU-V2
dataset, which are rendered by Blender.

Figure 10. Visualization of sampling results on SittingOnSofa and
NYU-V2, which are rendered by Blender. The depth maps of the
scenes are visualized as well.

environments comparing to NYU-V2 and hence the envi-
ronment net is dramatically overfitted.

5. Conclusion, Limitation and Future Work
In this work, our goal is to answer the following research

questions: (1) How to learn a generative model of human-

Figure 11. Fail case 1: Human bodies inter-penetrate with object
surfaces, due to lack of explicit constraints.

Figure 12. Fail case 2: Body self-collision, implausible global ro-
tation and twisted body meshes, which can occur when the envi-
ronment net is severely overfitted.

scene interaction, so as to produce human bodies that inter-
act with the conditioned scene naturally? (2) How to turn
online in-the-wild images to a fertile source of training ex-
amples that enable the learning of diverse and unconstrained
human-scene interaction? To that end, we propose a novel
method which takes online images, disentangles the scene
and the human in the scene, learns a low-dimensional latent
space of the scene and a generative model of human-scene
interaction by building upon a conditional variational au-
toencoder. Although, as we show in this work, the proposed
model has several strong points, there are still some limita-
tions. First, the contact between human and scene is not
explicitly modeled or constrained during the training. Thus,
some of the samples are physically implausible. Second,
due to the noisy depth estimation both on the training and
testing images, differences between the scale of the human
and objects in the scene can be observed. Nevertheless, we
think that this work is a significant first step towards learn-
ing generative models of human-scene inter-action from un-
paired in-the-wild images. It adds an important primitive to
the toolbox of joint modeling human-scene interaction and
opens up many avenues for future research.
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