

Siyu Tang

Max Planck Institute for Intelligent Systems

People are often a central element of visual scenes.

• People are often a central element of visual scenes.

• People are often a central element of visual scenes.

- People are often a central element of visual scenes.
- Visual understanding of people is the key component in many autonomous systems.

- People are often a central element of visual scenes.
- Visual understanding of people is the key component in many autonomous systems.

Autonomous driving

- People are often a central element of visual scenes.
- Visual understanding of people is the key component in many autonomous systems.

Autonomous driving

Mixed Reality

- People are often a central element of visual scenes.
- Visual understanding of people is the key component in many autonomous systems.

Autonomous driving

Mixed Reality

Human robot interaction

In this talk:

Learning to see humans:

• Learning to generate humans:

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

[Tang et al. CVPR 15, CVPR 2017]

[Keuper et al. TPAMI 2018]

[Levinkov et al. CVPR2017]

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

- How to *jointly* learn the model parameters of Multicut and the weights of the front end CNNs?
- How to use the cycle consistency constraints as supervisory signals?

[Pishchulin et al CVPR 2016, Insafutdinov et al CVPR 2017, Levinkov et al CVPR 2017]

- How to *jointly* learn the model parameters of Multicut and the weights of the front end CNNs?
- How to use the cycle consistency constraints as supervisory signals?

The minimum cost multicut problem

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

The minimum cost multicut problem

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

An unconstrained binary multilinear problem

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} c_e x_e + K \sum_{C \in cc(G)} \sum_{e \in C} x_e \prod_{e' \in C \setminus \{e\}} (1 - x_{e'}) .$$

The minimum cost multicut problem

$$\min_{x \in \{0,1\}^E} \quad \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

An unconstrained binary multilinear problem

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} c_e x_e + K \sum_{C \in cc(G)} \sum_{e \in C} x_e \prod_{e' \in C \setminus \{e\}} (1 - x_{e'}) .$$

The minimum cost multicut problem

$$\min_{x \in \{0,1\}^E} \ \ \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

An unconstrained binary multilinear problem

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} c_e x_e + K \sum_{C \in cc(G)} \sum_{e \in C} x_e \prod_{e' \in C \setminus \{e\}} (1 - x_{e'}).$$

The minimum cost multicut problem

$$\min_{x \in \{0,1\}^E} \ \ \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

An unconstrained binary multilinear problem

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} c_e x_e + K \sum_{C \in cc(G)} \sum_{e \in C} x_e \prod_{e' \in C \setminus \{e\}} (1 - x_{e'}).$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

The minimum cost multicut problem

$$\min_{x \in \{0,1\}^E} \ \ \sum_{e \in E} c_e \, x_e$$
 subject to
$$\forall C \in \mathrm{cc}(G) \, \forall e \in C: \quad x_e \leq \sum_{e' \in C \setminus \{e\}} x_{e'} \ .$$

An unconstrained binary multilinear problem

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} c_e x_e + K \sum_{C \in cc(G)} \sum_{e \in C} x_e \prod_{e' \in C \setminus \{e\}} (1 - x_{e'}).$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

Conditional Random Field

$$E(x) = \sum_{i} \psi_i^U(x_i) + \sum_{c} \psi_c^{Cycle}(\mathbf{x}_c)$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{c_e x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

- Pattern-based potential [Vineet et al. @ECCV 2012]

$$\psi_c^{Cycle}(\mathbf{x}_c) = \begin{cases} \gamma_{\mathbf{x}_c} & \text{if } \mathbf{x}_c \in \mathcal{P}_c \\ \gamma_{\text{max}} & \text{otherwise} \end{cases}$$

A binary cubic problem for the complete graph

$$\min_{x \in \{0,1\}^E} \sum_{e \in E} \frac{c_e x_e}{x_e} + K \sum_{\{u,v,w\} \in \binom{V}{3}} (x_{uv} \bar{x}_{vw} \bar{x}_{uw} + \bar{x}_{uv} x_{vw} \bar{x}_{uw} + \bar{x}_{uv} \bar{x}_{vw} x_{uw}) .$$

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

- Pattern-based potential [Vineet et al. @ECCV 2012]

$$\psi_c^{Cycle}(\mathbf{x}_c) = \begin{cases} \gamma_{\mathbf{x}_c} & \text{if } \mathbf{x}_c \in \mathcal{P}_c \\ \gamma_{\text{max}} & \text{otherwise} \end{cases}$$

- Mean-field inference as RNN [Zheng et al. @ICCV 2015, Arnab et al. @ECCV 2016]

End-to-end learning for multicut

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

- Pattern-based potential [Vineet et al. @ECCV 2012]

$$\psi_c^{Cycle}(\mathbf{x}_c) = \begin{cases} \gamma_{\mathbf{x}_c} & \text{if } \mathbf{x}_c \in \mathcal{P}_c \\ \gamma_{\text{max}} & \text{otherwise} \end{cases}$$

- Mean-field inference as RNN [Zheng et al. @ICCV 2015, Arnab et al. @ECCV 2016]

End-to-end learning for multicut

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

- Pattern-based potential [Vineet et al. @ECCV 2012]

$$\psi_c^{Cycle}(\mathbf{x}_c) = \begin{cases} \gamma_{\mathbf{x}_c} & \text{if } \mathbf{x}_c \in \mathcal{P}_c \\ \gamma_{\text{max}} & \text{otherwise} \end{cases}$$

- Mean-field inference as RNN [Zheng et al. @ICCV 2015, Arnab et al. @ECCV 2016]

End-to-end learning for multicut

Conditional Random Field

$$E(x) = \sum_{i} \psi_{i}^{U}(x_{i}) + \sum_{c} \psi_{c}^{Cycle}(\mathbf{x}_{c})$$

- Pattern-based potential [Vineet et al. @ECCV 2012]

$$\psi_c^{Cycle}(\mathbf{x}_c) = \begin{cases} \gamma_{\mathbf{x}_c} & \text{if } \mathbf{x}_c \in \mathcal{P}_c \\ \gamma_{\text{max}} & \text{otherwise} \end{cases}$$

- Mean-field inference as RNN [Zheng et al. @ICCV 2015, Arnab et al. @ECCV 2016]

Input

Part affinity field from OpenPose

Input

Part affinity field from OpenPose

Input

Part affinity field from OpenPose

with end-to-end training

End-to-end Learning for Graph Decomposition. Song, Andres, Black, Hilliges, Tang. ICCV 2019

Part 2: Learning to generate humans

Part 2: Learning to generate humans

Seeing People in Images without People

Scene and human body representation

- Estimate 3D body

Estimate semantic segmentation

Estimate semantic segmentation

Estimate depth

Scene and human body representation

- Estimate 3D body

Estimate semantic segmentation

Estimate depth

- Conditional Human body generation
 - Conditional module: Environment net

- Conditional Human body generation
 - Conditional module: Environment net

- Conditional Human body generation
 - Conditional module: Environment net

- Conditional Human body generation
 - Conditional module: Environment net

- Conditional variational autoencoder

- Conditional Human body generation
 - Conditional module: Environment net

Conditional variational autoencoder

- Conditional Human body generation
 - Conditional module: Environment net

- Conditional variational autoencoder

MPI-INF-3DHP sitting sequence

MPI-INF-3DHP sitting sequence

Threshold (mm)	20	40	60	80	100
VPoser [Pavlakos et al. @CVPR 2019] Ours	13.15 18.14	34.92 43.82	54.02 65.08	64.34 76.87	

MPI-INF-3DHP sitting sequence

Threshold (mm)	20	40	60	80	100
VPoser [Pavlakos et al. @CVPR 2019] Ours	13.15 18.14	34.92 43.82		64.34 76.87	71.60 82.48

Occlusion handeling

MPI-INF-3DHP sitting sequence

Threshold (mm)	20	40	60	80	100
VPoser [Pavlakos et al. @CVPR 2019] Ours	13.15	34.92	54.02	64.34	71.60
	18.14	43.82	65.08	76.87	82.48

Occlusion handeling

Failure cases

MPI-INF-3DHP sitting sequence

Threshold (mm)	20	40	60	80	100
VPoser [Pavlakos et al. @CVPR 2019] Ours	13.15 18.14	34.92 43.82		64.34 76.87	71.60 82.48

Occlusion handeling

Failure cases

MPI-INF-3DHP sitting sequence

Threshold (mm)	20	40	60	80	100
VPoser [Pavlakos et al. @CVPR 2019] Ours	13.15 18.14	34.92 43.82		64.34 76.87	71.60 82.48

Occlusion handeling

Failure cases

Thank you!