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Abstract

We propose a novel method for instance label segmen-
tation of dense 3D voxel grids. We target volumetric scene
representations which have been acquired with depth sen-
sors or multi-view stereo methods and which have been pro-
cessed with semantic 3D reconstruction or scene comple-
tion methods. The main task is to learn shape information
about individual object instances in order to accurately sep-
arate them, including connected and incompletely scanned
objects. We solve the 3D instance-labeling problem with a
multi-task learning strategy. The first goal is to learn an ab-
stract feature embedding which groups voxels with the same
instance label close to each other while separating clusters
with different instance labels from each other. The second
goal is to learn instance information by estimating direc-
tional information of the instances’ centers of mass densely
for each voxel. This is particularly useful to find instance
boundaries in the clustering post-processing step, as well
as for scoring the quality of segmentations for the first goal.
Both synthetic and real-world experiments demonstrate the
viability of our approach. Our method achieves state-of-
the-art performance on the ScanNet 3D instance segmenta-
tion benchmark [4)].

1. Introduction

A central goal of computer vision research is high-level
scene understanding. Recent progress now allows for reli-
able results for a variety of computer vision problems in-
cluding image classification [23|43/47]], image segmenta-
tion [1L[32,41]l, object detection [[13}[29/38H40] or instance
segmentation on 2D images [2}[7H9; 17,2026l 27,31l 36].
Further, it is now possible to recover highly-detailed 3D
geometry with low-cost depth sensors or
with image-based 3D reconstruction algorithms [[T121/42].
Likewise, many algorithms have been proposed for 3D
scene and object classification [33}[44,/50], 3D object detec-
tion as well as method for joint 3D reconstruction
and semantic labeling [3]/51/6,[24}/48]|.

Advances in 2D instance segmentation were mainly fu-
eled by the large number of datasets and challenges avail-
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Figure 1. Example results of our method. Our method takes as
input a 3D point cloud, and outputs instance labels unique to each
object within the scene.

able in the 2D setting. When compared to the plethora of
powerful methods for instance segmentation of 2D images,
the problem in a 3D setting has been less explored in the
literature. In addition to the lack of datasets, the majority of
the 2D methods are not applicable to the 3D setting or their
extension is by no means straightforward.

With the emergence of labeled datasets and benchmarks
for 3D instance segmentation such as ScanNet [4], numer-
ous works have surfaced to tackle 3D object instance seg-
mentation. In many cases, the work in 3D benefits from
the pioneering works in 2D, with modifications that al-
low processing of information in 3D. The 3D processing in
many cases is similar to other 3D understanding techniques,
mainly semantic segmentation.

In this paper, we address the problem of 3D instance seg-
mentation: Given the 3D geometry of a scene, we want
to label all the geometry that belongs to the same object
with a unique label. Unlike previous methods that entan-
gle instance labeling with semantic labeling, we propose a



technique that would mainly focus on the instance labeling
through grouping/clustering of information pertaining to a
single object. Our method still benefits from semantic infor-
mation as a local cue, but adds to it information relating to
real 3D dimensions and 3D connectivity, whose usefulness
is unique to the 3D setting.

In particular, we propose a learning algorithm that would
process a 3D grid and learn two main characteristics: (1) a
feature descriptor unique to every instance, and (2) a di-
rection that would point towards the instance center. Our
method aims at providing a grouping force that is indepen-
dent of the size of the scene and the number of instances
within. In summary, we make the following contributions:

e We propose a multi-task neural network architecture for
3D instance segmentation of voxel-based scene represen-
tations. Besides a metric learning task we let the network
predict directional information to the object’s center. We
demonstrate that the multi-task learning improves the re-
sults for both tasks. Our approach is robust and scal-
able, therefore suitable for processing the large amounts
of data in a 3D scene.

e Our experiments demonstrate state-of-the-art perfor-
mance for 3D instance segmentation. By the time of sub-
mission, our method ranks first in terms of average AP50
score on the ScanNet 3D instance segmentation bench-
mark [4].

2. Related Work

This section gives a brief overview about related 2D
and 3D approaches. Especially for 2D deep learning-based
semantic segmentation and instance label segmentation a
large amount of works exist, recent surveys can be found
in [[12}|15].

2D Instance Segmentation via Object Proposals or De-
tection.  Girshick [13] proposed a network architecture
that creates region proposals as candidate object segments.
In a series of works, this idea has been extended be faster
[40]] and to additionally output pixel-accurate masks for in-
stance segmentation [|17]]. The authors of YOLO [38]] and its
follow-up work [39] apply a grid-based approach in which
each grid cell generates an object proposal. DeepMask [36]
learns to jointly estimate an object proposal and an object
score. Lin et al. [|29]] propose a multi-resolution approach
for object detection which they call feature pyramid net-
works. In [[16], the region proposals are refined with net-
work that predicts the distance to the boundary which is
then transformed into a binary object mask. Khoreva et
al. [20] jointly perform instance and semantic segmenta-
tion. A similar path follows [26], which combines fully
convolutional networks for semantic segmentation with in-
stance mask proposals. Dai et al. 8] use fully convolutional
networks (FCNs) and split the problem into bounding box

estimation, mask estimation and object categorization and
propose a multi-task cascaded network architecture. In a
follow-up work [7], they combine FCNs with windowed
instance-sensitive score maps.

While all these approaches have been very successful
in the 2D domain, many of them are already require large
amounts of resources and their extension to the 3D domain
is non-trivial and challenging.

2D Instance Segmentation via Metric Learning. In [27],
Liang et al. [27]] propose a method without object proposals
as they directly estimate bounding box coordinates and con-
fidences in combination with clustering as a post-processing
step. Fathi et al. [9]] compute likelihoods for pixels belong-
ing to the same object and then by grouping similar pixel to-
gether within an embedding space. Kong and Fowlkes [22]
train a network that assigns all pixels to a spherical embed-
ding in which points of the same object instance within are
within a close vicinity and non-instance related points are
placed apart from each other. The instances are then ex-
tracted via a variant of mean-shift clustering [10] that is
implemented as a recurrent network. The approach by De-
Brabandere et al. [2] follows the same idea, but the authors
do not impose constraints on the shape of the embedding
space. Likewise, they compute the final segmentation via
mean-shift clustering in the feature space.

None of these approaches has been applied to a 3D set-
ting. Our approach builds upon the work of DeBraban-
dere et al. [2]]. We extend this method with a multi-task ap-
proach for 3D instance segmentation on dense voxel grids.

3D Instance Segmentation. Wang er al. [49] propose
SGPN, an instance segmentation for 3D point clouds. In
first step they extract features with PointNet [37]] and sub-
sequently build a similarity matrix in which each element
classifies weather two points belong to the same object in-
stance. The approach is not very scalable and limited to
small point cloud sizes as they construct a similarity matrix
with the size of the number of points squared.

Further, there are a number of recent concurrent or un-
published works that address 3D instance segmentation.
GSPN [53]], a generative shape proposal network relies on
object proposals to identify instances in 3D point clouds.
3D-SIS [18]] jointly evaluating 3D features and 2D features
which are aggretated from multiple RGB-D input views.
MASC [30] relies on the high performance of the Spar-
seConvNet [14] architecture and combine it with an affin-
ity score for instances that is estimated across multiple
scales. PanopticFusion [34] predicts pixel-wise labels for
RGB frames and carries them over into a 3D grid where a
fully connected CRF is used for final inference.

Apart from these recent concurrent works there has been
generally very little research performed on 3D instance seg-
mentation so far.
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Figure 2. Overview of our network architecture. We cast the 3D instance segmentation task as a multi-task learning problem. The input
to our method is a voxel grid and the output are two latent spaces: 1) a feature vector embedding that groups voxels with similar instance
label close in the latent space; 2) a 3D latent space that encodes directional predictions for each voxel.

3. Method Overview

In this work, we aim at segmenting 3D instances of a
given 3D scene. To fully locate a 3D instance, one would
require both a semantic label and an instance label. Rather
than solving the complex task of scene completion, seman-
tic labeling and instance segmentation at once, we model
our 3D instance segmentation process as a post-processing
step of the semantic segmentation labeling. We focus on the
grouping and splitting of semantic labels, relying on inter-
instance and intra-instance relations. We benefit from the
real distances in 3D scenes, where sizes and distances be-
tween objects are key to the final instance segmentation.

We split our task into a label-segmentation then instance-
segmentation problem as we believe that features learned in
each step possess task-specific information. Semantic seg-
mentation can rely on local information to predict the class
label. Learning to semantically label a volumetric repre-
sentation inherently encodes features from neighboring vol-
umes but does not require knowledge of the whole environ-
ment. On the other hand, instance segmentation requires a
holistic understanding of the scene in order to join and/or
separate semantic labeled volumes.

Problem Setting. Our method takes in a voxelized 3D
space with each voxel encoding either a semantic label or
a local feature vector learned through semantic labeling. In
particular, we use the semantic labeling network in [14]. We
fix our voxel size to preserve 3D distances among all voxels
within a scene. In problem settings where point cloud or
meshes are available, one could generate a 3D voxelization
by grouping information from points within every voxel.
Our method then processes the voxelized 3D space and out-
puts instance label masks, each corresponding to a single
object in the scene, along with its semantic label. The out-
put mask can also be reprojected back into a point cloud by
assigning the voxel label to all points within.

3.1. Network Architecture

In order to process our input, we utilize a 3D convolution
network which is based on the SSCNet architecture [45].
We apply some changes to the original SSCNet network to
better suit our task. As shown in Figure 2] the network in-
put and output are equally sized. Since the pooling layer
scales down the scene size, we use a transpose of convo-
lution (also referred as deconvolutions [55[]) to upsample
back into the original size. We also use larger dilations for
diluted 3D convolution layers to increase the receptive field.
We make the receptive field large enough to access all the
voxels of usual indoor rooms. With a voxel size of 10cm,
our receptive field is as large as 14.2m. With larger scenes,
our 3D convolution network would still be applicable to the
whole scene, while preserving the filter and voxel sizes, and
thus preserving the real distances. Objects lying at distances
larger than the receptive field are separated by default.

3.2. Multi-task Loss Function

In order to group voxels of the same instance, we aim at
learning two sets of feature embeddings. The first set maps
every voxel into a feature embedding in a feature space,
where voxels of the same instance have closer feature em-
beddings. This is similar to the work of DeBrabandere et
al. [2], but applied in a 3D setting. The second set of fea-
ture embeddings assigns a 3D vector to every voxel, where
the vector would point towards the physical center of the
object. This allows to learn shape containment and removes
ambiguities among similar shapes.

In order to learn our feature embeddings, we introduce
a multi-task loss function that we minimize in our training.
The first loss encourages discrimination in the feature space
among multiple instances. The second loss penalizes angu-
lar deviations of vectors from the desired direction.

Feature Embedding Loss. We follow the work of De-
Brabandere et al. [2]] and define the feature embedding loss
as a weighted sum of three terms: (1) An intra-cluster vari-
ance term Ly, that pulls features that should belong to the
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Figure 3. Embedding space visualization. Voxels with similar labels are mapped to similar locations in the feature embedding space. The
red arrows depict inter-class push forces, while the grey arrows indicate intra-class pull forces.

same instance towards the mean feature, (2) An inter-cluster
distance term L4, which ensures that clusters with differ-
ent instance labels are pushed apart, (3) A regularization
term L, that pulls all features towards the origin in order
to bound the activations.
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The individual loss functions are weighted by Vyar = Vaist =
1, Yreg = 0.001 and are defined similar to [2] as follows:
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Here C' is the number of ground truth clusters, N. denotes
the number of elements in cluster ¢, . is the cluster center,
i.e. the mean of the elements in cluster ¢, and z; is a fea-
ture vector. Further, the norm || - || denotes the ¢5-norm and
[z]+ = maz(0,z) the hinge. The parameter dy,, describes
the maximum distance which feature vector x; is allowed to
have from the cluster center . in order to belong to cluster
c. Likewise, 204;s is the minimum distance that different
cluster centers should have in order to avoid overlap. A vi-
sualization of the forces and the embedding spaces can be
found in Figure[3] Feature embeddings of different clusters
exert forces on each other, which means that each feature
embedding is affected by the number and location of other
cluster centers. This connection might be disadvantageous
in some cases, especially when a large number of instances
occur in a single scene. Therefore, we propose next an ad-
ditional loss that provides local information essential for in-
stance separation without being affected by other instances.

Directional Loss. We here aim to generate a vector fea-
ture that would locally describe the inter-cluster relation-
ship without being affected by other clusters. We choose
the vector to be the one pointing towards the real center of
the obect. In order to learn the vector feature, we define the
directional loss as follows
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Here v; denotes the normalized vector feature, viGT is

the desired direction which points towards the object center,
X is the voxel center location, and X, is the object center
location.

Joint Loss. We jointly minimize both the feature embed-
ding loss and the directional loss during training. Our final
joint loss read as

AC_]omt aFEEFE + adlr»cdlr (6)

Post-processing. We apply mean-shift clustering [[10] on
the feature embedding. Similar to object detection algo-
rithms, instance segmentation does not restrict the labeling
to one coherent set, and thus allows overlap between mul-
tiple objects. We use the mean-shift clustering output with
multiple thresholds as proposals that are scored according
to their direction feature consistency. We also use con-
nected components for suggested splitting that would fur-
ther be scored by the coherency of its feature embeddings.
The coherency of the feature embedding is described by the
number of feature embedding that lie within a given thresh-
old from the feature cluster center. The directional feature
coherency score is simple - Lg;;, which is the average of
cosine the angle between the normalized vector pointing
from the voxel to the center of the object and the normal-
ized direction loss. We then sort all object proposals and



perform non-maximum suppression (NMS) to remove ob-
jects that overlap by more than a threshold. The final score
is obtained by appending the both feature embedding scores
with a score that motivates objects of regular sizes over ex-
tremely large or small obects. As for the semantic label, it
is chosen to be the most probable label for all points within
the clustered voxels.

3.3. Network Training

Training Data. During training, we append flips of vox-
elized scenes as well as multiple orientations around the
vertical axis to our training data. We pretrain our network
using groundtruth segmentation labels as input, with labels
one-hot encoded to maintain the same sized input as train-
ing from segmentation output.

4. Results and Evaluation

Setup. Our network has been implemented in Tensorflow
and run under Linux with Nvidia GTX1080Ti GPU. For the
network training We use ADAM optimizer and a learning
rate 5e—4 and batch size 2. The training converged after
about 100 epochs and took about 2 days. The inference time
for our network is about 1s for scene sizes of 1.6M voxels.

Datasets. For experimental evaluation, we trained an
tested our method on the following datasets which include
real and synthetic data.

e Synthetic Toy Dataset: In order to validate our ap-
proach, we create a synthetic dataset with objects of dif-
ferent sizes and aspect ratios placed on a planar surface.
We introduce 5 object shapes, where each shape is analo-
gous to an object class in the real data. The shapes of the
objects considered are shown in Figure 5] We then ran-
domly orient and position objects on the surface plane,
and randomly choose whether an object is in contact with
another object. We generate 1000 scene, and split our
dataset into 900 training scenes, and 100 testing scenes.

e ScanNet [4]]: We conduct experiments on the ScanNet v2
dataset, which contains 1513 scans with 3D instance an-
notations. We train our network on the train split, which
contains 1201 scans, and validate on the remaining 312
scans. Additional unlabeled 100 scans form an evaluation
test set.

Evaluation metrics. Following the evaluation procedure
adopted in most instance segmentation methods as well as
ScanNet evaluation benchmark, we use the average preci-
sion metric (AP) score to evaluate our proposed algorithm.
We use the AP25 and AP50 metrics, which denote AP score
with a minimum intersection-over-union (IoU) threshold of
25% and 50% respectively. The AP score averages scores
obtained with IoU thresholds ranging from 50% to 95%

Groundtruth Instances

Object Classes

Example Scene

Figure 4. Overview of the synthetic toy dataset. Left: We con-
sider 5 different object classes represented by cubes with various
edge lengths. Middle: Example scene with object colors show-
ing the class labels. Right: Corresponding ground thruth instance
labeling (random color per instance).

with step of 5.

Baselines. For assessing the performance of our method
we considered the following baseline methods:

e Input Segmentation: In this case, we assume that the
segmentation label, which is input to our method, to be
the desired instance segmentation label. If every scene
contained a single instance of every semantic label, this
baseline would be ideal. In reality, these scenes barely
occur, but such metric would still serve as an inception to
whether splitting and/or grouping voxels is logical.

e Connected Component: Given the ground truth seg-
mentation labels, a connected components algorithm al-
ready correctly labels all instances as long as they are not
touching. Since this happens seldomly in a 3D setting,
this is usually a high-scoring and challenging baseline.

e Via the ScanNet [4] benchmark we further com-
pare against recent submissions: Mask R-CNN
proj [17], SGPN [37], GSPN [53], 3D-SIS [18],
MASC [30], PanopticFusion [34], Occipital-SCS, and
3D-BoNet [52]].

4.1. Evaluation on Synthetic 3D Data

We evaluate our method on the simple toy dataset, and
report AP50 score for all objects in Table [T} In this part,
we allow only one coherent labeling. Note that the direc-
tional loss alone is not discriminative enough for subsequent
clustering and is therefore not considered in the ablation
study. Generating object proposals from directional infor-
mation only is tedious since the directional information is
noisy and the clustering problem much more difficult and
less efficient. Therefore, we do not evaluate the directional
prediction alone in the ablation study and we resort to using
object proposals from mean shift clustering and using the
directional information for scoring.

The goal of the simple toy problem in Figure [5] was
to study whether the network can abstract and differenti-
ate various object size although their shape is rather sim-
ilar. Further, it is interesting to see how the method per-
forms when object instances are spatially touching, espe-
cially when they belong to the same semantic class. Al-



Method [Objl Obj2 Obj3 Obj4 Obj5

Connected comp. | 92.5 85.1 869 935 799
Ours (FE only) 973 927 950 964 952
Ours (Multi-task) | 98.0 93.5 96.1 96.6 953

Table 1. AP50 results on synthetic toy dataset. On this dataset
with 5 objects our approach with the multi-task learning as well
as the basline with only feature embedding (FE) outperform the
connected components baseline which are computed on the ground
truth semantic labels. The difference between FE only and Multi-
task is small in a noise-free setting.

Input Scenes with Semantic Labels
Figure 5. Experiment on synthetic toy dataset. Two examples of
random scenes for which our network generated instance labels.

Output Scenes with Instance Labels

though the input features are very similar due to the same
object class and the spatial proximity, our network needs
to place the corresponding feature vectors in different loca-
tions in the feature space.

4.2. Evaluation on Real 3D Data

Feature Space Study. The feature loss Eq. (I)) mainly per-
forms two intuitive tasks: pulling points belong to the same
instance together and pushing clusters of different instances
apart. Since real data contains noise, outliers and missing
data, the mapping of individual points in the feature space
might be less discriminative and clusters might be overlap-
ping. In Figure [6| we visualize the 3D feature space in or-
der to study these effects and observe that feature points
are indeed spreading towards neighboring clusters, but for
this example the clustering results is not influenced and still
achieve high accuracy. Note that we exclude ground and
wall labels since their instance segmentation and splitting is
less meaningful and also ignored in the benchmark.

Evaluation on ScanNet Output. In Figure|/| we present

qualitative results on the ScanNet dataset [4]. The results
of our methods on the voxel grid are simply projected onto
the mesh which is then used for evaluation on the bench-
mark. As can be seen in the rightmost column, our method
sometimes splits objects like the desk or the labels of fur-
niture bleed into neighboring geometry. Due to our mostly
geometric approach, our method needs sufficient structural
changes to recognize object boundaries and to potentially
relabel a new instance. Nonetheless, our proposed method
was in most cases able to group single object instances to-
gether.

In Table [2] we provide a comparison against baselines
such as the instance labeling performance of our input seg-
mentation labeling SparseConvNet [14] for which we test
the output of the SparseConvNet labeling method [14]. Fur-
ther, we evaluate a simple connected component labeling
method on the segmentation labeling, because in the 3D
setting in general, including the considered datasets, only
very few object instances are touching each other. Hence,
this connected component baseline is already a challenging
one especially for a rather noise free geometry and labeling.
With increasing amounts of noise the connected component
labeling rapidly performs worse. In the table it is apparent
that the connected component method usually substantially
improves the instance labeling results. In rare cases, the re-
sults get worse, which is due to the fact that the scenes are
not completely scanned and a single object instance might
be disconnected due to missing scene parts.

Ablation Study: Single-task vs. Multi-task. = More-
over, we focus on comparing our network with single-task
learning against multi-task learning. The six rightmost
columns in Table [2] show the result of single-task learning
and multi-task learning. With very few exceptions, the net-
work trained with a multi-task loss consistently outperforms
the single-task one. This is in line with the results on the
synthetic dataset and supports our hypothesis that the di-
rectional loss adds more discriminative features which are
helpful to group the features according to object instances
in the feature space. For objects that rarely have multiple in-
stances within a scene, such as the ’counter’ class, the seg-
mentation as instance outperforms our method. Still, this
occurrence is uncommon as can be noticed with the overall
average evaluation.

Table [3| provides an overview of our benchmark results
on the ScanNet test dataset (hidden groundtruth). One can
see that our method outperforms the other methods in terms
of AP50 scores. Other methods include ones that process
all RGB-D images that were used to reconstruct the scenes
of ScanNet. Instance labels of single RGB-D frames in
these methods are propagated throughout the whole scene
and concatenated based on the location estimation. On the
other hand, our method directly operates in the 3D setting,
without the need to use the 2D information. This leads to



Input (RGB) Feature Label GT Feature Label Ours GT Label Clustering Label
Figure 6. Visualization of the feature embedding and labelling. This figure shows the input 3D colored scene plots the generated 3D
feature embeddings, along with the GT label and our instance labeling result after the the mean-shift clustering (colors of the instances are
random and do not correspond to GT).

Segment. [|14] as Instance | Connect. Comp. on [|14] Ours (FE only) Ours (Multi-task)
Class AP  AP50 AP25 AP  AP50 AP25 AP  AP50 AP25 AP  AP50 AP25
cabinet 0.002 0.008 0.039 0.024 0.081 0.153 | 0.036 0.118 0.396 | 0.042 0.145 0.346
bed 0.105 0.197 0.540 0.200 0467 0.651 | 0.154 0446 0.696 | 0.197 0.540 0.806
chair 0.000 0.001 0.027 0.138 0.239 0.434 | 0475 0.689 0.814 | 0.567 0.792 0.877
sofa 0.066 0.240 0.462 0.157 0398 0.533 | 0.172 0.369 0.684 | 0.226 0.488 0.803
table 0.027 0.061 0.160 0.154 0324 0428 | 0.207 0.361 0.593 | 0.242 0.427 0.674
door 0.019 0.037 0.070 0.041 0.073 0.108 | 0.142 0.304 0.429 | 0.152 0.324 0.458
window 0.015 0.023 0.023 0.020 0.031 0.037 | 0.113 0.258 0.423 | 0.152 0.327 0472
bookshelf 0.013 0.024 0.187 0.077 0.198 0.453 | 0.075 0.175 0423 | 0.080 0.219 0.453
picture 0.001  0.005 0.005 0.001 0.005 0.008 | 0.028 0.067 0.169 | 0.044 0.109 0.198
counter 0.007 0.032 0.216 0.008 0.034 0.266 | 0.001 0.004 0.094 | 0.001 0.008 0.097
desk 0.012 0.057 0.211 0.022 0.109 0.364 | 0.011 0.053 0.327 | 0.031 0.142 0.499
curtain 0.034 0.085 0.185 0.081 0.173 0.225 | 0.114 0.285 0.450 | 0.174 0.399 0.542
refrigerator 0.059 0.112 0.211 0.105 0.162 0.225 | 0.124 0.302 0.317 | 0.185 0.421 0.441
shower curtain | 0.119 0.231 0.231 0.128 0.227 0.284 | 0.392 0.593 0.710 | 0.402 0.643 0.749
toilet 0.326 0.676 0.701 0.575 0.801 0.801 | 0.636 0.962 0.977 | 0.625 0.965 0.980
sink 0.048 0.130 0.328 0.054 0.135 0.307 | 0.094 0.294 0.397 | 0.120 0.364 0.445
bathtub 0.357 0.677 0.677 0.319 0.631 0.700 | 0.235 0.553 0.674 | 0.311 0.708 0.794
otherfurniture | 0.004 0.010 0.039 0.021 0.052 0.107 | 0.061 0.154 0.283 | 0.097 0.215 0.335
average 0.068 0.145 0.239 0.118 0.230 0.338 | 0.171 0.333 0.492 | 0.203 0.402 0.554

Table 2. Results on the ScanNet dataset [4]. Results on the validation set when using labels from SparseConvNet [14]. We show the
instance labeling performance of the segmentation method in [[14]], connected component labeling on the [[14] segmentation, our method
with feature embedding (FE) only and our method with multi-task learning.
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Method Avg AP50 5 2 8 5 S 3 3 8 S 8 4 8 G G 3 E 2 E
MTML (Ours) 0.549 1.00 081 059 033 0.65 0.00 0.82 0.18 042 036 0.18 045 1.00 044 0.69 0.57 1.00 0.40
Occipital-SCS 0.512 1.00 072 051 051 061 009 060 0.18 035 038 0.17 044 085 039 062 054 089 0.39
3D-BoNet 0.488 1.00 067 059 030 048 0.10 062 031 034 026 0.13 043 080 040 050 051 091 044
PanopticFusion [34] 0.478 0.67 0.71 0.60 0.26 0.55 0.00 0.61 0.18 025 043 044 041 0.86 049 059 027 094 0.36
ResNet-backbone [28] 0.459 1.00 074 0.16 026 059 014 048 022 042 041 0.13 032 071 041 054 059 087 0.30
MASC [30] 0.447 0.53 0.56 0.38 038 0.63 0.00 051 026 036 043 033 045 0.57 037 0.64 039 098 0.28
3D-SIS [18] 0.382 1.00 043 025 0.19 058 001 026 003 032 024 008 042 086 0.12 070 027 088 024
Unet-backbone [28] 0.32 0.67 0.72 023 0.19 048 0.01 022 007 020 0.17 0.I1 0.12 044 02 0.62 036 092 0.09
R-PointNet [53] 0.306 0.50 041 031 035 059 005 0.07 0.13 028 029 0.03 022 021 033 040 028 0.82 0.25
3D-BEVIS 0.248 0.67 0.57 0.08 0.04 039 0.03 0.04 0.10 0.10 0.03 0.03 0.10 038 0.13 0.60 0.18 0.85 0.17
Seg-Cluster 0.215 037 034 029 0.11 033 003 028 0.09 0.11 0.11 001 008 032 0.11 031 030 059 0.12
SGPN [49] 0.143 021 039 0.17 0.07 0.28 0.03 0.07 000 009 004 002 0.03 0.00 0.11 035 0.17 044 0.14
MaskRCNN proj 0.058 0.33  0.00 0.00 0.05 0.00 0.00 0.02 0.00 0.05 0.02 024 0.07 0.00 0.01 011 0.02 0.11 0.01

Table 3. Results on the ScanNet 3D instance segmentation benchmark [4]. The table shows the AP50 score on individual semantic
categories and the average score (sorted by avg AP50 score in descending order). Our method achieves the best average score.



Input (RGB) Semantic GT SPC cC SGPN Instance GT Ours

Figure 7. Qualitative results of our method on the ScanNet validation dataset [4]. This figure shows the original input scene as a
textured mesh, the semantic labeling results of SparseConvNet (SPC) which we use as input and our instance labeling results as well
as the semantic groundtruth (GT). We further show multiple 3D instance segmentation baselines: connected component (CC) labeling on
the SPC semantic labeling, SPGN [49], and the groundtruth instance labels next to our labeling results.



much faster operation on the 3D scenes, and requires suub-
stantially less information (only 3D point cloud) to extract
the 3D object instance segmentations.

5. Conclusion

We proposed a method for 3D instance segmentation of
voxel-based scenes. Our approach is based on metric learn-
ing and the first part assigns all voxels belonging to the same
object instance similar feature vectors which are in close
vicinity. Conversely, voxels belonging to different object
instances are assigned with features that are further apart
from each other in the feature space. The second part es-
timates directional information of object centers which is
used to score the segmentations results of the first part.
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