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Abstract

Visual localization is the task of accurate camera pose
estimation in a known scene. It is a key problem in com-
puter vision and robotics, with applications including self-
driving cars, Structure-from-Motion, SLAM, and Mixed Re-
ality. Traditionally, the localization problem has been tack-
led using 3D geometry. Recently, end-to-end approaches
based on convolutional neural networks have become pop-
ular. These methods learn to directly regress the camera
pose from an input image. However, they do not achieve the
same level of pose accuracy as 3D structure-based meth-
ods. To understand this behavior, we develop a theoretical
model for camera pose regression. We use our model to pre-
dict failure cases for pose regression techniques and verify
our predictions through experiments. We furthermore use
our model to show that pose regression is more closely re-
lated to pose approximation via image retrieval than to ac-
curate pose estimation via 3D structure. A key result is that
current approaches do not consistently outperform a hand-
crafted image retrieval baseline. This clearly shows that
additional research is needed before pose regression algo-
rithms are ready to compete with structure-based methods.

1. Introduction
Visual localization algorithms enable a camera to deter-

mine its absolute pose, i.e., its position and orientation, in a
scene. Localization thus is a core component for intelligent
systems such as self-driving cars [24] or other robots [38],
and for Augmented and Mixed Reality applications [15,48].

State-of-the-art algorithms for localization follow a 3D
structure-based approach [8, 10, 16, 46, 59, 63, 68, 69]. They
first establish correspondences between pixels in a test im-
age and 3D points in the scene. These 2D-3D matches are
then used to estimate the camera pose by applying an n-
point-pose (PnP) solver [2, 31–34] inside a RANSAC [18,
22, 36, 54] loop. Traditionally, the first stage is based on
matching descriptors extracted in the test image against de-
scriptors associated with the 3D points. Alternatively, ma-
chine learning techniques can be used to directly regress 3D
point positions from image patches [8,10,16,43,46,47,65].

In recent years, absolute pose regression (APR) ap-

proaches to visual localization have become popular [11,
12, 28–30, 44, 50, 53, 74, 76, 78]. Rather than using machine
learning only for parts of the localization pipeline, e.g., lo-
cal features [63,79], outlier filtering [49,70], or scene coor-
dinate regression [10,46], these approaches aim to learn the
full localization pipeline. Given a set of training images and
their corresponding poses, APR techniques train Convolu-
tional Neural Networks (CNNs) to directly regress the cam-
era pose from an image. APR techniques are computation-
ally efficient, given a powerful enough GPU, as only a sin-
gle forward pass through a CNN is required. Yet, they are
also significantly less accurate than structure-based meth-
ods [10, 63, 76]. In addition, updating the map, e.g., when
adding new data, requires expensive retraining of the CNN.

Rather than proposing a new APR variant to try to close
the pose accuracy gap to structure-based methods, this pa-
per focuses on understanding APR techniques and their per-
formance. To this end, we make the following contribu-
tions: i) We develop a theoretical model for absolute pose
regression (Sec. 3). To the best of our knowledge, ours is
the first work that aims at looking at the inner workings
of APR techniques. Based on this model, we show that
APR approaches are more closely related to approximate
pose estimation via image retrieval (Sec. 5) than to accu-
rate pose estimation via 3D geometry (Sec. 4). ii) Using
our theory, we show both theoretically and through experi-
ments that there is no guarantee that APR methods, unlike
structure-based approaches, generalize beyond their train-
ing data (Sec. 4). iii) Given the close relation between APR
and image retrieval, we show that current APR approaches
are much closer in performance to a handcrafted retrieval
baseline [71] than to structure-based methods. We show
that no published single image pose regression approach is
able to consistently outperform this baseline. This paper
thus introduces a highly necessary sanity check for judging
the performance of pose regression techniques.

In summary, this work closes an important gap in the un-
derstanding of absolute pose regression methods to visual
localization: It clearly demonstrates their short-comings
and more clearly positions them against other ways to ap-
proach the visual localization problem. Overall, we show
that a significant amount of research is still necessary be-
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fore absolute pose regression techniques can be applied in
practical applications that require accurate pose estimates.

2. Related Work

Structure-based localization approaches rely on 2D-3D
matches between 2D pixel positions and 3D scene coordi-
nates for pose estimation. These matches are established
by descriptor matching [21, 37, 39, 59, 63, 68, 69, 81] or by
regressing 3D coordinates from pixel patches [8–10, 16, 23,
43, 46, 47, 65]. Descriptor-based methods handle city-scale
scenes [37, 39, 68, 81] and run in real-time on mobile de-
vices [6, 38, 41, 48]. 3D coordinate regression methods cur-
rently achieve a higher pose accuracy at small scale, but
have not yet been shown to scale to larger scenes [10, 69].

Image retrieval is typically used for place recognition
[3, 5, 17, 58, 71, 72, 77, 80], i.e., for determining which part
of a scene is visible in a given image. State-of-the-art ap-
proaches use compact image-level descriptors to enable ef-
ficient and scalable retrieval [3, 52, 71]. Image retrieval can
be used for visual localization by approximating the pose of
a test image by the pose of the most similar retrieved image.
More precise estimates can be obtained by using feature
matches between the test image and the retrieved images for
relative pose estimation [13,82,83]. Image retrieval has also
been used as part of structure-based approaches [14,26,57].

Absolute camera pose regression (APR) approaches
train CNNs to regress the camera pose of an input im-
age [11, 28–30, 44, 50, 53, 74, 76, 78], thus representing the
scene implicitly by the weights of the networks. They all
follow the same pipeline: Features are extracted using a
base network, e.g., VGG [66] or ResNet [25], which are
then embedded into a high-dimensional space. This embed-
ding is then used to regress the camera pose in the scene.
Existing approaches mainly differ in the underlying base
architecture and the loss function used for training, e.g.,
using a weighted combination of position and orientation
errors [11, 30, 76], geometric reprojection errors [29], or
adding visual odometry constraints [11,53,74]. [50,78] ex-
tend the set of training images with synthetic data. [12, 28]
also reason about the uncertainty of the estimated poses.
Rather than using a single image, [11, 19, 53, 74] propose
methods based on localizing sequences of images.

Recent results show that APR methods are significantly
less accurate than structure-based methods [10,46,76]. This
paper aims to understand these results by developing a the-
oretical model for APR. Based on this model, we show that,
in contrast to structure-based methods, APR approaches
struggle to generalize beyond their training data or might
not generalize at all. Furthermore, we show that APR tech-
niques are inherently closer related to image retrieval than
to structure-based methods and that current APR algorithms
do not consistently outperform a retrieval baseline.

Relative camera pose regression (RPR) approaches pre-
dict the pose of a test image relative to one or more training
images rather than in absolute scene coordinates [7, 35, 45,
56]. The prediction is again handled by a CNN trained for
regression. Relevant training images can be found using an
explicit image retrieval step [7, 35] or by implicitly repre-
senting the images in the CNN [56]. APR is an instance-
level problem, i.e., APR techniques need to be trained for a
specific scene. In contrast, RPR is a more general problem
and RPR methods can be trained on multiple scenes [7,35].

In this paper, we use our theory of APR to show that
there is an inherent connection to RPR. We also show that,
while being are among the best-performing end-to-end lo-
calization approaches, current RPR techniques also do not
consistently outperform an image retrieval baseline.

3. A Theory of Absolute Pose Regression

The purpose of this section is to develop a theoretical
model for absolute camera pose estimation methods such as
PoseNet [28–30] and its variants [11,50,76,78]. Our theory
is not tied to a specific network architecture but covers the
family of architectures used for pose regression. Based on
this theory, Sec. 4 compares absolute pose regression and
structure-based methods, using experiments to support our
model. Sec. 5 then uses the theory to show the inherent
similarities between pose regression and image retrieval.

Notation Let I be an image taken from a camera pose
pI = (cI , rI). Here, cI ∈ R3 is the camera position and
rI is the camera orientation. There are multiple ways to rep-
resent the orientation, e.g., as a 4D unit quaternion [30, 76]
or its logarithm [11], or as a 3D vector representing an an-
gle and an axis [7, 73]. The exact choice of representation
is not important for our following analysis. Without loss
of generality, we thus simply represent the orientation as a
r-dimensional vector rI ∈ Rr. Absolute camera poses are
thus represented as points in R3+r.

Absolute pose regression. Given a test image I, the task of
absolute camera pose regression is to predict the pose from
which the image was taken. This pose is defined with re-
spect to a given scene coordinate frame. To solve this tasks,
algorithms for absolute camera pose regression learn a vi-
sual localization functionL(I) = p̂I , where p̂I = (ĉI , r̂I)
is the camera pose predicted for image I. In the following,
we will focus on methods that represent the function L via
a convolutional neural network (CNN) [11, 28–30, 76].

Absolute camera pose regression is an instance level
problem. Thus, CNN-based methods for absolute pose re-
gression use a set of images of the scene, labeled with their
associated camera poses, as training data. Additional image
sequences without pose labels might also be used to pro-
vide additional constraints [11, 74]. The training objective
is to minimize a loss L(p̂I ,pI) enforcing that the predicted
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Figure 1. Visualization of the base translations {cj} learned by PoseNet [29, 30] and MapNet [11]. Each point corresponds to one base
translation. The scale of the base translations is in meters. We show the combinations of base translations for some training images for
MapNet. The weight a translation received in Eq. 3 for a single image, respectively all images (on the right of the figure), is indicated by
colors and point sizes, with warm colors and large points for translations with a large coefficient. The training and test trajectory are shown
in red and green. The test predictions by PoseNet and MapNet and Active Search [59] are shown in blue, purple, and cyan, respectively.

pose p̂I is similar to the ground truth pose pI . The precise
formulation of the loss is not important for our analysis.

A theory of absolute pose regression. We divide ab-
solute pose regression via a CNN into three stages: The
first stage, representing a function F (I), extracts a set of
features from the image. This stage is typically imple-
mented using the fully convolutional part of a CNN such
as VGG [66] or ResNet [25]. The second stage computes
a (non-linear) embedding E(F (I)) of the features into a
vector αI = (αI1 , . . . , α

I
n)T ∈ Rn in a high-dimensional

space. This embedding typically corresponds to the output
of the second-to-last layer in a pose regression method. The
last stage performs a linear projection from the embedding
space into the space of camera poses. This third stage cor-
responds to the last (fully-connected) layer in the network.
This three stage model covers all PoseNet-like approaches
that have been published so far.

Treating the first two stages as a single network, we can
write the trained visual localization function L as

L(I) = b + P · E(F (I))

= b + P ·
(
αI1 , . . . , α

I
n

)T
, (1)

where P ∈ R(3+r)×n is a projection matrix and b ∈ R3+r

is a bias term. The output of L(I) is an estimate p̂I =
(ĉI , r̂I) of the image’s camera pose. Let Pj ∈ R3+r be the
jth column of P. We can express the predicted camera pose

as a linear combination of the columns of P via

L(I) = b +

n∑
j=1

αIj Pj =

(
ĉI
r̂I

)
. (2)

We further decompose the jth column Pj of the projection
matrix P into a translational part cj ∈ R3 and an orientation
part rj ∈ Rr, such that Pj = (cTj , r

T
j )T . Similarly, we can

decompose the bias term b as b = (cTb , r
T
b )T , resulting in(

ĉI
r̂I

)
=

(
cb +

∑n
j=1 α

I
j cj

rb +
∑n

j=1 α
I
j rj

)
. (3)

Note that Eq. 3 also covers separate embeddings and pro-
jections for the position and orientation of the camera, e.g.,
as in [78]. In this case, the projection matrix has the form

P =

(
c1 . . . ck 0 . . . 0
0 . . . 0 rk+1 . . . rn

)
. (4)

Intuitive interpretation. Eq. 3 leads to the following in-
terpretation of absolute camera pose regression algorithms:
Method such as PoseNet and its variants learn a set B =
{(cj , rj)} of base poses such that the poses of all train-
ing images can be expressed as a linear combination of
these base poses1. How much a base pose contributes to

1In practice, most methods usually compute a conical combination as
they use a ReLU activation before the linear projection.
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a predicted pose depends on the appearance of the input im-
age: The first stage F (I) provides a set of feature response
maps. The second stage E(F (I)) then generates a high-
dimensional vector αI = (αI1 , . . . , α

I
n)T . Each entry αIj

is computed by correlating feature activations from the first
stage [76] and corresponds to a base pose (cj , rj). These
correlations thus provide the importance of each base pose
for a given input image.

Fig. 1 visualizes the translational part {cj} of the base
poses learned by PoseNet [29, 30] and MapNet [11], to-
gether with the combinations used for individual training
images. As can be seen from the scale of the plots (in me-
ters), {cj} corresponds to a set of translations with small
magnitude. Essentially, the network learns to sum these
translations up to an absolute pose by scaling them appro-
priately via the coefficients in the embedding (c.f . Eq. 3).
For this reason, we refer to the {cj} as base translations
rather than base positions. Notice that the base translations
in Fig. 1 approximately lie in a plane since all training poses
lie in a plane. The supp. video (c.f . Sec. A) shows how the
base translations change with changing image content.

4. Comparison with Structure-based Methods
Visual localization algorithms represent a mapping from

image content to the camera pose from which the image
was taken. The current gold standard for localization are
structure-based approaches [8, 10, 16, 46, 59, 63, 68, 69].
These methods establish correspondences between 2D pixel
positions in an image and 3D point coordinates in the scene.
The camera pose is then computed by solving the PnP prob-
lem, i.e., by finding a pose that maximizes the number of 3D
points projecting close to their corresponding 2D positions.
As long as there are sufficiently many correct matches,
structure-based methods will be able to estimate a pose.

In contrast to structure-based methods, pose regression
algorithms do not explicitly use knowledge about projec-
tive geometry. Rather, they learn the mapping from image
content to camera pose from data. Based on our theory,
absolute pose regression methods are expressive enough to
be able to learn this mapping given enough training data:
Changes in image content lead to different features maps
F (I), which lead to a change in the embedding E(F (I)),
and thus a different pose (c.f . Eq. 3). Assuming the right
network architecture, loss function, and enough training
data, it should thus be possible to train an absolute pose
regression approach that is able to accurate estimate camera
poses from novel viewpoints.

In practice, collecting a vast amount of images, comput-
ing the training poses (e.g., via SfM), and training a CNN on
large amounts of data are all highly time-consuming tasks.
Thus, methods that are able to accurately predict poses us-
ing as little training data as possible are preferable. In the
following, we use our theoretical model to predict failure

cases for pose regression techniques in scenarios with lim-
ited training data. We validate our predictions experimen-
tally, thus also validating our theory. In addition, we show
that structure-based methods, as can be expected, are able
to handle these situations.

Experimental setup. For the practical experiments used
in this section, we recorded new datasets2 . We deliberately
limited the amount of training data to one or a few trajecto-
ries per scene and captured test images from differing view-
points. Ground truth poses for training and testing data were
obtained using SfM [62]. We scaled the resulting 3D mod-
els to meters by manually measuring distances. For evalu-
ation, we use both PoseNet [29, 30] and MapNet [11]. We
use the PoseNet variant that learns the coefficient weighting
position and orientation errors during training [29]. Both
methods are state-of-the-art absolute pose regression algo-
rithms. We use Active Search [59] to obtain baseline re-
sults for structure-based methods. Active Search uses Root-
SIFT [4,40] features to establish 2D-3D matches. It is based
on prioritized matching, terminating correspondence search
once 200 matches have been found. The pose is estimated
via a P3P solver [31] inside a RANSAC [18] loop, followed
by non-linear refinement of the pose [1]. The 3D model re-
quired by Active Search is build by matching each training
image against nearby training images and triangulating the
resulting matches using the provided training poses.

Training data captured on a line or parallel lines. Let
T = {(I,pI = (cI , rI))} be a set of training images with
their corresponding camera poses. As shown in Sec. 3, cam-
era pose regression techniques express the camera pose of
an image as a linear combination of a set of learned base
poses. Consider a scenario where all training camera posi-
tions lie on a line. This represents the most simple and basic
data capture scenario, e.g., for data captured from a car such
as large-scale the San Francisco dataset [17].

In this scenario, each camera position cI corresponds to
a point on a line o+δd. Here, o ∈ R3 is a point on the line,
d ∈ R3 is the direction of the line, and δ ∈ R is a scaling
factor. One admissible solution to the training problem, al-
though not the only one, is thus to place all base translations
cj on the line o+ δd. As any linear combinations of points
on a line lies on the line, this solution will never generalize.

Fig. 2 shows two examples for this scenario: In the first
one, training data was captured while riding an escalator up-
wards. Testing data was acquired while riding the escalator
down (looking again upwards) in another lane. In the sec-
ond example, training data was acquired while walking par-
allel to building facades while test data was acquired from a
bit farther away. In both cases, MapNet clearly places most
base translations along a line. While there are some transla-

2The datasets are available at https://github.com/
tsattler/understanding_apr.
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Figure 2. Example scenarios in which two absolute pose regression techniques, PoseNet [29, 30] and MapNet [11], fail to generalize. For
both scenes, the networks learn to (roughly) interpolate along a line. Consequently, the poses of the test images are also placed along this
line. Please see the caption of Fig. 1 for details on the color coding and the base translations shown for the two scenes.

tions not on the line, these are mostly used to handle cam-
era shake (c.f . the supp. video). As a result, MapNet places
its estimates of the test poses on or close to the resulting
line and does not generalize to diverging viewpoints. This
clearly shows that solutions to the training problem that are
guaranteed to not generalize are not only of theoretical in-
terest but can be observed in practice.

The base translations estimated by PoseNet are signifi-
cantly more noisy and do not all lie on a line. Interestingly,
PoseNet still places all test poses on the line correspond-
ing to the training images. This shows that while the base
poses span a space larger than positions on the line, PoseNet
is still not able to generalize. This is due to a failure of
mapping the image appearance to suitable weights for the
base poses, showing that multiple solutions exists that do
not generalize. As shown in Fig. 2, Active Search is able to
handle both scenarios well.

More general trajectories. The argument above exploits
that it is not necessary that the base translations span the
space of all possible translations to explain a set of images
taken on a line. If the training trajectory is more general,
e.g., covering all directions in a plane in the case of planar
motion, this argument is not applicable anymore.

For more general training trajectories, it is usually pos-
sible to express each viable test pose as a linear combina-
tion of the base poses. However, this is only a necessary
but not a sufficient condition for generalization. As evident
from Eq. 3, absolute pose regression techniques couple base
poses to image appearance via the coefficients αIj .

Consider a part P ′ of the scene defined by a subset
T ′ = {I} of the training images. The corresponding rel-
evant subset B′(P ′) of the base poses B = {(cj , rj)} is

B′(P ′) = {(cj , rj)| exists I ∈ T ′ with |αIj | > 0} . (5)

A stronger necessary condition for generalization is that the
linear span of each such B′(P ′) contains the poses of all
test images in P ′3. In the following, we show that this is

3This condition is not sufficient as a network might not learn the ”right”

not necessarily guaranteed in practice.
Figs. 1 and 3 show scenes with more general motion.

For each scene, we show the training and ground truth test-
ing trajectories, as well as the test trajectories estimated by
PoseNet, MapNet, and Active Search. In addition, we show
the base translations used by the two networks. Since the
training images are taken in a plane, the base translations
also lie in a plane (up to some noise). As can be seen, the
networks are able to generalize in some parts of the scene,
e.g., when the test trajectory crosses the training trajectory
in Fig. 1. In other parts, they however seem to resort to some
form of nearest neighbor strategy: Test poses are placed
close to parts of the training trajectory with similar image
appearance. In these parts, the relevant base translations are
not sufficient to model the test positions more accurately.
This shows that more training data is required in these re-
gions. It also shows that networks do not automatically ben-
efit from recording more data in unrelated parts of the scene.

As can be expected, Active Search fails or produces in-
accurate pose estimates when there is little visual overlap
between the test and training images (c.f . the example test
image in Fig. 3(left), where the wall visible in the image is
not seen during training). Still, Active Search overall han-
dles viewpoint changes significantly better.

Fig. 4 shows a more complex example, where the train-
ing data is captured on multiple parallel lines and should be
sufficient to explain the test poses. In this case, both net-
works are able to estimate poses close to these lines, but are
not able to properly interpolate between them and do not
generalize beyond them. Active Search is mostly handles
the large viewpoint changes between training and testing
images. If the change is too large however, it fails to find
enough matches and thus to estimate a pose. Local features
that are more robust to large viewpoint changes are an ac-
tive field of research [51, 55] and structure-based methods
will automatically benefit from progress in this field.

Using densely sampled training data. Training using

embedding for expressing all test poses as linear combinations of B′(P ′).
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Figure 3. Example scenarios with more general training trajectories in which two absolute pose regression techniques, PoseNet [29, 30]
and MapNet [11], fail to generalize. Please see the caption of Fig. 1 for details on the color coding.

max. distance - 1m 2m 3m
spacing - 1m 0.5m 0.25m 1m 0.5m 0.25m 1m 0.5m 0.25m

# training images 203 501 1,315 4,576 683 2,035 7,425 806 2,531 9,412
PoseNet [29] 1.19 / 6.88 1.02 / 6.48 0.74 / 7.07 0.79 / 5.84 1.15 / 8.10 0.86 / 6.88 0.54 / 5.84 0.66 / 6.88 0.66 / 6.06 0.68 / 5.38
MapNet [11] 1.07 / 4.70 0.61 / 3.31 0.64 / 2.85 0.41 / 2.18 0.72 / 3.41 0.42 / 2.06 0.38 / 2.31 0.69 / 3.18 0.44 / 2.39 0.33 / 1.46
Active Search [59] 0.01 / 0.04
DenseVLAD [71] 0.98 / 7.90 0.79 / 8.01 0.74 / 7.81 0.63 / 7.68 0.72 / 7.81 0.61 / 7.38 0.57 / 6.94 0.66 / 7.81 0.60 / 7.27 0.51 / 6.87
DenseVLAD+Inter. 0.89 / 5.71 0.75 / 5.62 0.52 / 6.65 0.45 / 6.93 0.57 / 5.96 0.48 / 6.13 0.41 / 6.41 0.49 / 6.07 0.46 / 6.26 0.38 / 6.41

Table 1. Median position / orientation errors in meters / degree on the synthetic Shop Facade dataset obtained by rendering a multi-view
stereo reconstruction. We enhance the training set by additional images captured on a regular grid, varying the spacing between images.
We only consider additional images within a certain maximum distance to the positions of the original training poses.

Figure 4. See caption of Fig. 1 for details.

more data in a part of the scene should intuitively improve
the prediction accuracy of pose regression techniques. To
verify this assumption, we use synthetic data: We created a
3D model of the Shop Facade scenes from the Cambridge
Landmarks dataset [30] using multi-view stereo [64]. We
then rendered [75] the scene from the poses of the original
training and testing images, as well as from a set of addi-
tional poses. These poses are placed on a regular grid in the
plane containing the original poses, with a spacing of 25cm
between poses. We only created poses up to 3 meters away
from the original training poses. The orientation of each
additional pose is set to that of the nearest training pose.
Varying the maximum distance to the original poses and the
grid spacing thus creates varying amounts of training data.

Tab. 1 compares PoseNet and MapNet trained on varying
amounts of data with Active Search using only renderings
from the original training poses4. As expected, using more
training data improves pose accuracy. However, PoseNet

4All images used in this experiment are renderings of the 3D model.
We use a resolution of 455×256 pixels as input to all methods.

and MapNet do not perform even close to Active Search,
even with one order of magnitude more data.

Discussion. Pose regression techniques are unlikely to
work well when only little training data is available and sig-
nificant viewpoint changes need to be handled. This clearly
limits their relevance for practical applications. Even with
large amounts of training data, pose regression does not
reach the same performance as structure-based methods.
This clearly shows a fundamental conceptual difference be-
tween the two approaches to visual localization. We at-
tribute this divide to the fact that the latter are based on the
laws of projective geometry and the underlying 3D geome-
try of the scene.

5. Comparison with Image Retrieval
As can be seen in Fig. 1 and Fig. 3(right), absolute pose

regression (APR) techniques tend to predict test poses close
to the training poses in regions where little training data is
available. This behavior is similar to that of image retrieval
approaches. Below, we show that this behavioral similar-
ity is not a coincident. Rather, there is a strong connection
between APR and image retrieval. We also show that APR
methods do not consistently outperform a retrieval baseline.

Relation to image retrieval. Let I be a test image and J
a training image observing the same part of the scene. We
can write the embedding αI as αI = αJ + ∆I , for some
offset ∆I . Using Eq. 3, we can thus relate the pose (ĉI , r̂I)
estimated for I to the pose (ĉJ , r̂J ) estimated for J via(

ĉI
r̂I

)
=

(
ĉJ
r̂J

)
+

(∑n
j=1 ∆Ij cj∑n
j=1 ∆Ij rj

)
=

(
ĉJ
r̂J

)
+

(
ĉI,J
r̂I,J

)
. (6)
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Here, (ĉI,J , r̂I,J ) is a pose offset, i.e., the pose of I is
predicted relative to the pose predicted for J .

Eq. 6 highlights the conceptual similarity between abso-
lute pose regression and image retrieval. Standard image
retrieval approaches first find the training image J most
similar to a given test image I, where similarity is defined
in some feature space such as Bag-of-Words (BoW) [67] or
VLAD [3,27,71]. The pose of the test image is then approx-
imated via the pose of the retrieved image, i.e., (ĉI , r̂I) =
(cJ , rJ ), without adding an offset. However, retrieval
methods can also estimate such an offset as an affine combi-
nation

∑k
i=1 ai(cJi , rJi),

∑
ai = 1, of the poses of top-k

retrieved training images J1, . . . ,Jk. Let d(I) be the de-
scriptor for image I used during retrieval. The weights ai
can be obtained by finding the affine combination of train-
ing image descriptors that is closest to the test descriptor
d(I), i.e., by minimizing ||d(I) −

∑k
i=1 aid(Ji)||2 sub-

ject to
∑
ai = 1. This approach has been shown to work

well for linearly interpolating between two BoW represen-
tations [72]. Note the conceptual similarity between this
interpolation and Eq. 3, where the trained base poses are
used instead of the poses of the retrieved images.

Eq. 6 also establishes a relation between APR ap-
proaches and relative pose regression (RPR) algorithms.
RPR methods first identify a set of training images rele-
vant to a given test image, e.g., using image retrieval [7,35]
or by encoding the training images in a CNN [56]. They
then compute a pose offset from the training images to the
test image via regression. RPR approaches naturally benefit
from computing offsets to multiple training images [7].

5.1. Experimental Comparison

Baselines. We use DenseVLAD [71] as an image retrieval
baseline. DenseVLAD densely extracts RootSIFT [4, 40]
descriptors from an image and pools them into a VLAD [27]
descriptor. Dimensionality reduction via PCA, trained on
an unrelated outdoor dataset [71], is then used to reduce
the dimensionality of the descriptor to 4096. The Euclidean
distance is used to measure similarity between two Den-
seVLAD descriptors. We use the implementation provided
by [71], but only extract RootSIFT descriptors at a single
scale5. We chose DenseVLAD as it uses a handcrafted fea-
ture representation. At the same time, DenseVLAD has
been shown to perform well even on challenging localiza-
tion tasks [60, 61, 71]. However, DenseVLAD has not yet
been used as a baseline for pose regression.

DenseVLAD approximates the pose of the test image via
the pose of the most similar training image. In addition, we
also use a variant, denoted as DenseVLAD + Inter., that uses
the interpolation approach described above. We use all top-
k ranked images for interpolation. As there might be some

5Scale invariance is not desirable when searching for the training image
taken from the most similar pose.

outliers among the top retrieved images, interpolation can
potentially decrease pose accuracy. However, we decided
to keep this baseline as simple as possible and thus did not
implement an outlier filtering mechanism.

Cambridge Landmarks [30] and 7 Scenes [65]. In a first
experiment, we compare state-of-the-art pose regression
techniques to the two image retrieval baselines on the Cam-
bridge Landmarks [30] and 7 Scenes [65] datasets. These
two relatively small-scale datasets are commonly used to
evaluate pose regression approaches. We only compare
methods that predict a camera pose from a single image.

Tab. 2 shows the median position and orientation errors
obtained by the various methods. As can be seen by the
results marked in red, none of the absolute and relative pose
regression approaches is able to consistently outperform the
retrieval baselines. In addition, pose regression techniques
are often closer in performance to image retrieval than to
structure-based methods. In particular, these results verify
our theoretical analysis that APR is much closer related to
image retrieval than to structure-based methods.

Out of the four best-performing pose regression ap-
proaches (MapNet [11], RelocNet [7], Relative PN [35],
AnchorNet [56]), three are RPR approaches (RelocNet,
Relative PN, AnchorNet). AnchorNet comes closest to
structure-based methods. It uses a brute-force approach that
essentially estimates a pose offset between the input image
and every 10th training image. Considering the relative im-
provement6, AnchorNet typically performs closer to other
APR or RPR methods than to the best performing structure-
based approach in each scene. It also fails to outperform the
simple DenseVLAD baseline on the Street scene, which is
the largest and most complex scene in the Cambridge Land-
marks dataset [10, 50].

AnchorNet encodes the training images in the regression
CNN and thus needs to be trained specifically per scene. In
contrast, Relative PN and RelocNet both perform an explicit
image retrieval step. They can thus also be trained on unre-
lated scenes. Besides RelocNet and Relative PN trained on
7 Scenes (7S), we thus also compare against variants trained
on other datasets (ScanNet (SN) [20], University (U) [35]).
As shown in Tab. 2, both approaches currently do not gen-
eralize well using this data, as they are less accurate than
DenseVLAD (which requires no training).

One challenge of the Cambridge Landmarks and 7
Scenes datasets is that there are significant differences in
pose between the training and test images. As shown in
Sec. 4, this is a severe challenge for current regression tech-
niques. In the following, we focus on scenes with less de-
viation between training and test poses, which should be
much easier for pose regression techniques. We show re-
sults on two such datasets. A further experiment (on the

6Defined as the ratio of the position / orientation errors of two methods.
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Cambridge Landmarks 7 Scenes
Kings Old Shop St. Mary’s Street Chess Fire Heads Office Pumpkin Kitchen Stairs

A
PR

PoseNet (PN) [30] 1.92/5.40 2.31/5.38 1.46/8.08 2.65/8.48 0.32/8.12 0.47/14.4 0.29/12.0 0.48/7.68 0.47/8.42 0.59/8.64 0.47/13.8
PN learned weights [29] 0.99/1.06 2.17/2.94 1.05/3.97 1.49/3.43 20.7/25.7 0.14/4.50 0.27/11.8 0.18/12.1 0.20/5.77 0.25/4.82 0.24/5.52 0.37/10.6
Bay. PN [28] 1.74/4.06 2.57/5.14 1.25/7.54 2.11/8.38 0.37/7.24 0.43/13.7 0.31/12.0 0.48/8.04 0.61/7.08 0.58/7.54 0.48/13.1
geo. PN [29] 0.88/1.04 3.20/3.29 0.88/3.78 1.57/3.32 20.3/25.5 0.13/4.48 0.27/11.3 0.17/13.0 0.19/5.55 0.26/4.75 0.23/5.35 0.35/12.4
LSTM PN [76] 0.99/3.65 1.51/4.29 1.18/7.44 1.52/6.68 0.24/5.77 0.34/11.9 0.21/13.7 0.30/8.08 0.33/7.00 0.37/8.83 0.40/13.7
GPoseNet [12] 1.61/2.29 2.62/3.89 1.14/5.73 2.93/6.46 0.20/7.11 0.38/12.3 0.21/13.8 0.28/ 8.83 0.37/6.94 0.35/8.15 0.37/12.5
SVS-Pose [50] 1.06/2.81 1.50/4.03 0.63/5.73 2.11/8.11
Hourglass PN [44] 0.15/6.17 0.27/10.8 0.19/11.6 0.21/8.48 0.25/7.01 0.27/10.2 0.29/12.5
BranchNet [78] 0.18/5.17 0.34/8.99 0.20/14.2 0.30/7.05 0.27/5.10 0.33/7.40 0.38/10.3
MapNet [11] 1.07/1.89 1.94/3.91 1.49/4.22 2.00/4.53 0.08/3.25 0.27/11.7 0.18/13.3 0.17/5.15 0.22/4.02 0.23/4.93 0.30/12.1
MapNet+ [11] 0.10/3.17 0.20/9.04 0.13/11.1 0.18/5.38 0.19/3.92 0.20/5.01 0.30/13.4
MapNet+PGO [11] 0.09/3.24 0.20/9.29 0.12/8.45 0.19/5.42 0.19/3.96 0.20/4.94 0.27/10.6

R
PR

Relative PN [35] (U) 0.31/15.0 0.40/19.0 0.24/22.2 0.38/14.1 0.44/18.2 0.41/16.5 0.35/23.6
Relative PN [35] (7S) 0.13/6.46 0.26/12.7 0.14/12.3 0.21/7.35 0.24/6.35 0.24/8.03 0.27/11.8
RelocNet [7] (SN) 0.21/ 10.9 0.32/11.8 0.15/13.4 0.31/ 10.3 0.40/ 10.9 0.33/10.3 0.33/11.4
RelocNet [7] (7S) 0.12/4.14 0.26/10.4 0.14/10.5 0.18/5.32 0.26/4.17 0.23/5.08 0.28/7.53
AnchorNet [56] 0.57/0.88 1.21/2.55 0.52/2.27 1.04/2.69 7.86/24.2 0.06/3.89 0.15/10.3 0.08/10.9 0.09/5.15 0.10/2.97 0.08/4.68 0.10/9.26

IR

DenseVLAD [71] 2.80/5.72 4.01/7.13 1.11/7.61 2.31/8.00 5.16/23.5 0.21/12.5 0.33/13.8 0.15/14.9 0.28/11.2 0.31/11.3 0.30/12.3 0.25/15.8
DenseVLAD + Inter. 1.48/4.45 2.68/4.63 0.90/4.32 1.62/6.06 15.4/25.7 0.18/10.0 0.33/12.4 0.14/14.3 0.25/10.1 0.26/9.42 0.27/11.1 0.24/14.7

3D

Active Search [59] 0.42/0.55 0.44/1.01 0.12/0.40 0.19/0.54 0.85/0.8 0.04/1.96 0.03/1.53 0.02/1.45 0.09/3.61 0.08/3.10 0.07/3.37 0.03/2.22
BTBRF [46] 0.39/0.36 0.30/0.41 0.15/0.31 0.20/0.40
DSAC++ [10] 0.18/0.3 0.20/0.3 0.06/0.3 0.13/0.4 0.02/0.5 0.02/0.9 0.01/0.8 0.03/0.7 0.04/1.1 0.04/1.1 0.09/2.6
InLoc [69] 0.03/1.05 0.03/1.07 0.02/1.16 0.03/1.05 0.05/1.55 0.04/1.31 0.09/2.47

Table 2. Results on the Cambridge Landmarks [30] and 7 Scenes [65] datasets. We compare absolute (APR) and relative (RPR) pose
regression methods, image retrieval (IR) techniques, and structure-based (3D) approaches. We report the median position / orientation
error in meters / degree. DenseVLAD + Inter. uses the top-20 (Cambridge Landmarks) respectively top-25 (7 Scenes) retrieved images.
Red numbers show when a method fails to outperform the image retrieval (IR) baselines. Results for Cambridge Landmarks for MapNet
are obtained running the code of the authors.

PoseNet MapNet LSTM Dense DenseVLAD
[30] [11] PN [76] VLAD [71] +Inter.

1.87m, 6.14◦ 1.71m, 3.50◦ 1.31m, 2.79◦ 1.08m, 1.82◦ 0.49m, 2.01◦

Table 3. Median position and orientation errors on the TUM LSI
dataset [76]. The top-2 retrieved images are used for interpolation.

0 5 10 15 20
Translation Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f I
m

ag
es

PoseNet
MapNet
MapNet+(2seq)
MapNet+PGO
DenseVLAD

0 20 40 60 80 100
Translation Error (m)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f I
m

ag
es

PoseNet
MapNet
MapNet+
MapNet+PGO
DenseVLAD

Figure 5. Cumulative distribution of positional errors (in meters)
for the (left) RobotCar LOOP and (right) RobotCar FULL
datasets. On the larger dataset, DenseVLAD significantly outper-
forms pose regression techniques.

DeepLoc dataset [53]) can be found in Sec. B.

TUM LSI [76]. The scenes in the Cambridge Landmarks
and 7 Scenes datasets are typically rather well-textured.
Thus, we can expect that the SIFT descriptors used by
DenseVLAD and Active Search [59] work rather well. In
contrast, the TUM LSI indoor dataset [76] contains large
textureless walls and repeating structures. In general, we
would expect learned approaches to perform significantly
better than methods based on low-level SIFT features as
the former can learn to use higher-level structures. Yet, as
shown in Tab. 3, DenseVLAD still outperforms pose regres-
sion techniques on this more challenging dataset.

RobotCar dataset [42]. The training images of the LOOP

and FULL scenes [11] correspond to trajectories of 1.1km
and 9.6km, respectively, driven by a car. The test images are
obtained by driving the same trajectory. This dataset repre-
sents a scenario encountered during autonomous driving.

Fig. 5 shows the cumulative distributions of position er-
rors for pose regression and image retrieval techniques. As
expected, MapNet+ and MapNet+PGO outperform Den-
seVLAD on the smaller LOOP dataset. However, they per-
form significantly worse on the larger FULL scene7. This
is despite MapNet+ using additional training sequences and
MapNet+PGO using information from multiple images for
its predictions. This scalability issue of pose regression is in
line with similar observations in the literature [60, 63, 69].

Using densely sampled data. As in Sec. 4, our final ex-
periment compares image retrieval and APR techniques on
a synthetic scene, where a vast amount of training data is
available. As shown in Tab. 1, MapNet outperforms the im-
age retrieval baselines when more training data is available.
Still, it performs much closer to the retrieval baselines than
to the structure-based method.

6. Conclusion
In this paper, we have derived a theoretic model for ab-

solute pose regression (APR) algorithms. For the first time,
this model allowed us to develop a better understanding of
what APR method are and are not capable of. Based on
our theory, we have predicted that APR techniques are not

7DenseVLAD is slightly more accurate on the FULL scene than on the
LOOP dataset. We attribute this to the image quality, as the test set of the
LOOP scene contains several overexposed images.
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guaranteed to generalize from the training data in practical
scenarios. We have also shown that APR is more closely re-
lated to image retrieval approaches than to methods that ac-
curately estimate camera poses via 3D geometry. These pre-
dictions have been verified through extensive experiments.

The second main result of our paper is to show that pose
regression techniques are currently competing with image
retrieval approaches approximating the test pose rather than
with methods that compute it accurately. More precisely,
we have shown that no current pose regression approach
consistently outperforms a handcrafted retrieval baseline.
This paper has thus introduced an important sanity check
for judging pose regression methods, showing that there is
still a significant amount of research to be done before pose
regression approaches become practically relevant.

Acknowledgements. This research was partially funded by the
Humboldt Foundation through the Sofja Kovalevskaya Award.

Appendix
The appendix consists of two parts: i) The accompanying video

shows how the base translations estimated by MapNet [11] are
coupled to the image content and illustrates the poses predicted
for the test images in some of the scenes shown in the paper. The
video is available at https://github.com/tsattler/
understanding_apr. Sec. A gives a short overview over the
video. ii) Sec. B presents an additional experiment on the DeepLoc
dataset [53] that was left out of the paper due to space constraints.

A. Supplementary Video
The video consists of two parts: The first part shows how the

impact of each estimated base translation on the predicted pose de-
pends on the image content. This is shown for the training images
from the scene from Fig. 2 (right).

The second part shows the positions estimated for the test im-
ages. We show the test image itself, the most similar training im-
age (where similarity is measured based on the embeddings in the
high-dimensional space), the base translations for the two images,
and a 2D top-down view of the camera trajectories. In the 2D view,
we show the ground truth training and testing positions, the pose
of the current test image predicted by an absolute pose regression
technique, the ground truth pose of the test image, and the pose of
the most similar training images.

For all experiments shown in the video, the absolute pose re-
gression technique used was MapNet [11]. Only test images that
can be localized by Active Search [59] are shown.

B. Experiments on the DeepLoc Dataset [53]
The DeepLoc8 dataset [53] was captured from a robot driving

a triangular-shaped trajectory multiple times (c.f . Fig. 6). In con-
trast to the RobotCar dataset [42], which was captured in an urban
environment, the DeepLoc dataset shows a significant amount of
vegetation.

8http://deeploc.cs.uni-freiburg.de/

Figure 6. Visualization of the SfM model of the DeepLoc
dataset [53] that we constructed from the training images (red).

Tab. 4 (first row) compares the results obtained with Den-
seVLAD [71] without (DenseVLAD) and with interpolation (Den-
seVLAD+Inter.) with the results for various absolute pose re-
gression techniques reported in [53]. Again, DenseVLAD signif-
icantly outperforms pose regression approaches based on a single
image [28,30,50]. The table also compares DenseVLAD and Den-
seVLAD+Inter. against three sequence-based approaches, VLoc-
Net [74], VLocNet++STL [53], and VLocNet++MTL [53]. All three
directly fuse feature map responses from the previous time step
t−1 into the CNN that predicts the pose at time t. VLocNet++MTL

also integrates some form of higher-level scene understanding
through semantic segmentation. All three methods operate on im-
age sequences and thus use more information compared to Den-
seVLAD, which only uses a single image for localization. Still,
DenseVLAD outperforms VLocNet [74].

The ground truth for the DeepLoc dataset was created using
LIDAR-based SLAM. The dataset only provides the poses of the
LIDAR sensor and not the cameras. This is not an issue for pose
regression techniques as the camera and the LIDAR are related by
a fixed (but unknown) transformation and it is irrelevant for the
regressor which of the two local coordinate systems is used. How-
ever, not knowing the relative transformation from the LIDAR to
the camera coordinate system prevents us from easily creating a
3D model for structure-based methods. In order to be able to com-
pare against Active Search [59], we thus created a second version
of the dataset using SfM [62]. To this end, we ran SfM on both
the training and test images together. We then registered the SfM
model against the LIDAR ground truth poses9 to recover the scale
of the model. This provided us with ground truth poses for the
training and test images. Finally, we used the ground truth poses
of the training images and the feature matches between them to
triangulate the 3D model used by Active Search10. This ensures
that the 3D model used for localization only contains information
from the training images.

9There seems to be some drift in the vertical direction for the LIDAR
poses while there seems to be little height variation in the scene. We thus
use a variant of the original ground truth positions, where all heights are
set to the same value, for computing the alignment between the SfM model
and the positions.

10As was done for the datasets used in the paper.
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Pose Bay. SVS VLocNet DenseVLAD DenseVLAD VLocNet++STL VLocNet++MTL Active
Net [30] PoseNet [28] Pose [50] [74] [71] +Inter. [53] [53] Search [59]

2.42m, 3.66◦ 2.24m, 4.31◦ 1.61m, 3.52◦ 0.68m, 3.43◦ 0.57m, 3.15 ◦ 0.48m, 3.14◦ 0.37m, 1.93◦ 0.32m, 1.48◦

0.51m, 2.57◦ 0.44m, 2.52◦ 0.01m, 0.04◦

Table 4. Median position and orientation errors on the DeepLoc dataset [53]. DenseVLAD+Inter. uses the top-15 retrieved images for
interpolation. We show results for (top row) the original dataset and (bottom) our SfM version of the dataset.

The second row of Tab. 4 shows the results obtained by Active
Search on our version of the dataset. As can be seen, Active Search
is significantly more accurate than all pose regression techniques,
including VLocNet++MTL, even though it only uses a single image
for localization. For reference, we also include results obtained
with DenseVLAD and DenseVLAD+Inter. on this new version of
the dataset. As can be seen, the results obtained via DenseVLAD
and DenseVLAD+Inter. do not change significantly between both
versions of the datasets. This shows that the results obtained by
Active Search and the pose regression algorithms on the two vari-
ants of the dataset are comparable.
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