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Abstract— Visual localization is a key step in many robotics
pipelines, allowing the robot to (approximately) determine
its position and orientation in the world. An efficient and
scalable approach to visual localization is to use image retrieval
techniques. These approaches identify the image most similar
to a query photo in a database of geo-tagged images and
approximate the query’s pose via the pose of the retrieved
database image. However, image retrieval across drastically
different illumination conditions, e.g. day and night, is still a
problem with unsatisfactory results, even in this age of powerful
neural models. This is due to a lack of a suitably diverse dataset
with true correspondences to perform end-to-end learning. A
recent class of neural models allows for realistic translation of
images among visual domains with relatively little training data
and, most importantly, without ground-truth pairings.

In this paper, we explore the task of accurately localizing
images captured from two traversals of the same area in both
day and night. We propose ToDayGAN – a modified image-
translation model to alter nighttime driving images to a more
useful daytime representation. We then compare the daytime
and translated night images to obtain a pose estimate for the
night image using the known 6-DOF position of the closest
day image. Our approach improves localization performance
by over 250% compared the current state-of-the-art, in the
context of standard metrics in multiple categories.

I. INTRODUCTION

Many tasks such as autonomous vehicular navigation and
mixed reality revolve around keeping track of the source
of visual sensing, the camera, in its surroundings. The
problem of being able to notice a previously observed spot
is known as place recognition, and it is often intertwined
with the related problem of localization: keeping track of
one’s position with respect to the previous position and the
surrounding environment. Place recognition can aid or even
serve as the basis for localization itself.

One way of performing place recognition is to directly
compare traversal images against images captured during a
potentially different traversal. Between comparisons, view-
ing conditions such as weather and lighting can change
considerably. Ideally, places should be matched correctly
regardless of differing conditions. Yet in practice, existing
methods are hampered by shifts between the domains of
the images used for querying and those used for reference.
Closing this domain gap should lead to an easier and more
accurate comparison among images. This paper focuses on
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the problem of image comparison across contrasting visual
conditions for the purpose of visual localization.

Modern learning-based methods such as deep neural net-
works should theoretically be well-suited for tackling the
image comparison problem. But the issue holding them back
currently appears to be a lack of appropriate training data.
Training such a model for this task directly would require
hundreds of thousands - or more - of images taken from
many different positions, with multiple images taken at each
position under diverse conditions, to ensure robustness to
viewpoint and viewing condition changes. However, gather-
ing or automatically generating this type of data is difficult.

Instead of gathering tedious quantities of labeled data, we
exploit advantages of a recent class of neural networks that
perform unpaired image-to-image translation [1], [5], [10],
[15], [28]. This refers to the idea of changing the visual
properties of images from one domain to appear as if it came
from another, where domains are defined by collections of
data alone. The process is conveniently unsupervised: rather
than requiring tuples of images depicting the same place
under different conditions, one just needs collections of any
images taken under the same conditions. Based on these
collections, one can train a model that translates between
the different conditions. In addition, these models can, in our
experience and purposes, produce visually-adequate results
with as little as ∼500 points of data per domain, unlike most
neural network-based tasks which demand tens-of-thousands
to millions.

Image translation began as altering the characteristics
of an image between perceived styles for artistic and/or
entertainment purposes. With projects such as [1], [5], [15],
[20], [28] breaking ground, it was now possible to perform
high-quality image translation. Soon thereafter, the idea was
used to aid other learning tasks [9], [15], [18], [19], [21].
These works show that being able to attain high-quality
representations of images in the appearance of other domains
is useful for tasks containing a shift in the data domain;
irrelevant source-domain-specific information is discarded
and helpful target domain-specific details can be filled in.

This paper explores different methods for tackling the
problem of similarity between images captured from car-
mounted cameras, specifically for applications in au-
tonomous driving. Our method involves performing image
translation from a source (night) to a target domain (day)
and feeding the output to an existing image comparison
tool. Using a fixed representation for comparing the images
allows us to decouple the problem into domain adaptation
and image matching, where we only need to focus on the
former. The number of parameters and degrees of freedom
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is thus reduced. Additionally, the objective of the translation
model is modified so that the output not only contains
the visually perceptible qualities of the target domain but
also the properties that the image comparison tool relies on
most heavily. We present an image-translation model that
specializes discriminators to directly address a task. It is
also one of the first instances of applying image translation
to the problem of retrieval-based localization. Our approach
greatly outperforms all current state-of-the-art methods on a
challenging benchmark.

II. RELATED WORK

A. Image-to-Image Translation

Many tasks in computer vision can be thought of as
translation problems where an input image a is to be trans-
lated from domain A to b in another domain B. Instead of
sampling from a probability distribution to generate images
as with regular Generative Adversarial Networks (GANs) [8],
translation approaches produce an output conditioned on a
given input [11], [27].

Introduced by Zhu et al., CycleGAN [28] extends image-
to-image translation to an unsupervised framework, meaning
no alignment of image pairs is necessary. It relies on GANs, a
class of neural networks proven to be excellent for capturing
the rich distributions of natural images [8]. Adversarial
training involves a generator and discriminator network,
updated in alternating steps, allowing both to gradually
improve alongside each other; first D is trained to distinguish
between one or more pairs of real and generated samples,
and then the generator is trained to fool D with generated
samples. CycleGAN consists of two pairs of generator and
discriminator nets, (GA, DA) and (GB , DB), where the
translators between domains A and B are GA : A→ B and
GB : B → A. DA is trained to discriminate between real
images a and translated images GB(b), while DB is trained
to discriminate between images b and GA(a). The system is
trained using both an adversarial loss and a cycle consistency
loss (see Figure 1). The Cycle consistency loss is a way to
regularize the highly unconstrained problem of translating
an image unidirectionally, by encouraging mappings GA

and GB to be inverses such that GB(GA(a)) ≈ a and
GA(GB(b)) ≈ b. The full CycleGAN objective is expressed:

LGAN (G,D, a, b) = Eb[(D(b) − 1)2] + Ea[D(G(a))2] (1)

Lcyc = Ea[||GB(GA(a))−a||1]+Eb[||GA(GB(b))−b||1] (2)

LCycleGAN = LGAN (GA, DB , a, b)

+ LGAN (GB , DA, b, a) + λLcyc . (3)

Subsequent works improved upon this foundation. Liu et
al. used a variational autoencoder loss formulation to en-
courage a shared feature space for a model they named
UNIT [15]. Ignatov et al. performed one-way translation for
image enhancement, using two discriminators per domain
- one for color and the other for texture - rather than just
one [10]. And ComboGAN [1] and SMIT [20] allowed for n-
domain translation, solving the exponential scaling problem
in the number of domains.
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Fig. 1: CycleGAN/ComboGAN generator training pass for domain
direction A→ B. This pass is repeated symmetrically for direction
B → A as well.

This project uses ComboGAN as the base image-to-image
translation model, which is equivalent to CycleGAN in the
case of two domains only. And since we do not work with
more than two domains in this paper, it’s irrelevant which
one is used as the starting point (though using ComboGAN
means the model can automatically serve more then two
domains if need be). We modify ComboGAN incrementally
over the course of our experiments to better suit our exact
task. We also compare results with UNIT to see how another
translation model performs, out-of-the-box.

B. Place Recognition and Localization

Place recognition refers to the task of identifying a real
world location from images of said place - essentially loca-
tion classification. Ideally this process should be invariant to
various image and world properties such as camera position,
orientation, weather conditions, etc. Visual localization is the
process of identifying the camera location (and sometimes
orientation) either relative to a local or global map. One way
of achieving this is via image retrieval: finding the most
similar image with a known pose to a unknown query. In
such a case, invariance to camera pose is not desired, as these
are critical to calculating pose as accurately as possible.

A traditional tool widely used in place recognition and/or
image retrieval is the VLAD descriptor [13]. The descriptor
is a rather low-dimensional vector intended to serve as a
featurization of the image as a whole. A visual vocabulary
is built from a diverse dataset, extracting D-dimensional
descriptors from affine-invariant detections - and clustered
into k centers. Afterwards, for a given query image with
n local descriptors, the residual from each descriptor to
each cluster center is calculated and summed per cluster,
resulting in k D-dimensional aggregate vectors. These are
then concatenated and normalized to form a unit-length,
k×D-dimensional VLAD descriptor. Vectors across images
can now be compared directly (using the original Euclidean
distance metric involved) to quantify similarity.

DenseVLAD, a modification of the VLAD procedure, was
formalized by Torii et al. [25] to improve place recognition
as a subprocedure for camera pose estimation. Instead of
using a detector to choose where to extract features, 128-
dimensional RootSIFT descriptors [3] - an adjustment to the
classic SIFT [16] - are simply extracted on a regular grid
throughout the image. This removes the issue of inconsistent



detections affecting the process altogether. The next steps
follow the standard VLAD clustering with k clusters to
produce a 128k-dimensional VLAD descriptor per image,
which is then down-projected via PCA.

In 2015, NetVLAD [2] reformulated the VLAD process
into a neural network framework. The idea was to maintain
the clustering and unit vector principles while allowing for a
differentiable, trainable architecture. It consists of a feature-
extraction portion, which could be early layers from a pre-
trained convolutional network, and a “VLAD-Core” module
which performs soft-clustering to output a VLAD-like vector.

C. Image Translation for Visual Localization

Domain shift, or equivalently, dataset bias, is an often
encountered problem in methods that learn from data. This
occurs when a model built from data is applied to data that
differs in some characteristics. Differences between training
and inference data can cause large variation in outputs if
models are not robust against them. Domain Adaptation is the
practice of mitigating the effects of domain shifts [7], [26].
Image-based Localization under differing visual conditions
has been shown to be heavily affected by domain shifts [23].

A concurrent work, published during the development of
this paper, by Porav et al. [19] sought to use CycleGAN
to approach almost the same problem as ours: effectively
comparing images under different illumination conditions by
visually translating one domain to the other - for example
changing nighttime images to day prior to feature matching.
They add additional cycle losses on top of the original Cy-
cleGAN setup: constraints that reconstructed images should
have identical second-order derivatives and Haar responses.
This is because the localization procedure employed utilizes
SURF [4] features, which rely on second order-derivatives
for detection and Haar responses for description. The model
was tested on localizing a night sequence to a daytime se-
quence from the Oxford RobotCar dataset [17], synthesizing
daytime images from the night ones to match features against
the real daytime images. This is closely related to our main
approach, where we translate images to improve descriptor
matching. Whereas their method enforces a descriptor-aiding
feature loss on the input and cyclically-reconstructed image
in hopes of these features staying present in the intermediate
translated image, our main approach in this paper enforces a
similar type of loss directly on the initial translated output.
Their method also used a subset of data from the same
dataset as ours, albeit trained on a different set of cameras
with different orientations and intrinsics. Additionally, it was
evaluated on the related - but not directly comparable - task
of visual odometry on sequential data with synchronized
starting positions. We attempted to adapt the process to our
task, but had to conclude that a fair comparison was not
possible in the scope of this work.

III. OUR METHOD - TODAYGAN

Our approach, ToDayGAN, to tackle day-night localiza-
tion between a daytime reference set with known poses and a
nighttime query set is as follows. First, an image translation
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Fig. 2: Each discriminator in our ToDayGAN is comprised of
three network clones that operate separately on the blurred-RGB,
Grayscale, and xy-Gradients of its input image. Each discriminator
outputs a decision at each convolutional layer to cover different
receptive-field sizes.

model is trained to translate between day and night image
domains. Second, the night-to-day direction is used to trans-
form nighttime images into a daytime representation. Both
the translated images and the reference images are then fed to
an existing featurization process to obtain a feature vector per
image. Nearest neighbor search gives us a closest matching
reference image per query. The pose of the query image
is then approximated by the pose of the nearest neighbor
daytime image.

Our image featurization tool used is DenseVLAD [25].
As detailed in Section II-B, DenseVLAD is an improved
version of the VLAD image description technique for de-
scribing and comparing image data. By densely extracting
descriptors from images and forgoing the detection stage,
DenseVLAD is more robust to strong appearance changes
than standard VLAD is. As shown in [23], DenseVLAD
still outperforms more modern methods such as NetVLAD
in terms of generalization on day-night image matching.

Our image-translation model is built using the image-
translation model ComboGAN [1] as its base. The generator
networks are identical to the networks used in CycleGAN
(see Table A.1 in [1] for details on the network architecture),
yet each is divided in half, the frontal halves being encoders
and the latter halves decoders. For the case of two domains,
ComboGAN’s structure and training procedure are identical
to CycleGAN’s; thus it is irrelevant which one is used as the
starting point, though using ComboGAN means the model
can automatically serve more than two domains if need be.
Instead of just using ComboGAN as is, we adjust its setup to
fit our problem. More specifically, ComboGAN’s discrimina-
tors are modified, resulting in a noticeable improvement on
the localization task performed using the translated images.

Following WESPE [10], we replicate the discriminators to
specialize on different aspects of the input. In the complete
version of ToDayGAN, each domain’s discriminator (see
Figure 2) contains three copies of the network, expanding on
insights from WESPE. One takes the luminance (grayscale)
of the input image, one takes the RGB image blurred by
a 5x5 3σ Gaussian kernel (exactly as in [10]), and the last
takes the horizontal/vertical gradients of the image. These
three discriminators can now separately focus on texture,
color, and gradients. Each one is equal in architecture and



hyperparameters, and their losses are averaged in the end
equally. As shown by our experiments, with the addition of
each discriminator comes a significant performance boost.

The third discriminator is a novel contribution that serves
to emulate the process of extracting SIFT descriptors. The
DenseVLAD implementation from [25] converts the input
image to grayscale and downsamples it by a factor of 2×
by skipping every other pixel. Then it creates histograms
of magnitude-weighted gradient orientations after computing
gradients via convolution with a [−1 0 1] kernel for x-
direction gradients and its transpose for the y direction.
Therefore our model uses a 1 × 1 stride-2 convolution to
obtain the downsampled image and convolves it with the two
filters to obtain the same xy gradients for the discriminator
in a differentiable manner. As opposed to [19], we use
this discriminator to create matching-relevant features in
the translated version that were nonexistent in the original,
whereas they simply preserve the relevant features from the
original images in their cyclic reconstructions.

We also attempted to emulate the process of computing
DenseVLAD descriptors in more detail by including gradient
magnitudes and orientations in the discriminators. However,
experimental results showed a worse performance (by about
a factor of 2×) compared to using gradients only.

In addition, the discriminators output a label/decision
after each downsampling layer. Being able to discriminate
images at multiple scales encourages consistency in both
low- and high-level image statistics, rather than just at the
final arbitrary receptive field size. This idea was inspired by
[27], where multiple discriminators see differing sizes of the
input image; instead, in our case, single discriminators output
multiple decisions. The outputs for the final loss are weighed
linearly, ascending toward the last layer, as the complexity
and power of the network’s predictions increase with depth.
This can be seen as the n outputs, in ascending layer order,
weighed by [1, 2, .., n] then summed and divided by n

∑n
i i

to average out.

A recent discriminator loss format, the Relativistic Loss,
was introduced [12], which alters the discriminator loss
formulation by only requiring it to determine whether an
input is more real relative to a fake, rather than to determine
realness in an absolute manner. The motivation behind this
is to stabilize training overall by preventing the discrimi-
nator to become too powerful in relation to the generator.
Equation (4) defines ComboGAN’s least-squares GAN loss
from Equation (1) newly adapted to the Relativistic Loss
formulation:

LGAN (GA, DB , A,B) =


EaEb[(DB(b)−DB(GA(a))− 1)2]

from Discriminator perspective
EaEb[(DB(GA(a))−DB(b)− 1)2]

from Generator perspective
(4)

IV. EXPERIMENTAL SETUP

A. Dataset

Our source of images for training and evaluation is the
Oxford RobotCar dataset [17]. It contains multiple video
sequences of the same 10km route captured from an au-
tonomous vehicle in Oxford, England. Three Point Grey
Grasshopper2 cameras were mounted on the left, right, and
rear of the vehicle, and the traversals were taken over the
course of a year, providing variation in lighting, time-of-
day, and weather. Though it resulted in over 20 million
1024×1024-resolution images in total, only a subset of cer-
tain traversals are used for our experiments. The image sets
contain corresponding left, right, and rear views, meaning
there exist an image triplet per timestamp.

We use the RobotCar Seasons variant [23] for evaluation,
which provides accurate camera poses for a set of reference
and query images: A subset of 6,954 camera triplets of the
original RobotCar dataset, which we refer to as Day (known
as “overcast-reference” in [23]), is used as a reference.
Another set of 438 triplets, which are captured at night
are used as a query set (“night” in [23]). We also use a
second query set of 440 images captured at night during rain
(“night-rain” in [23]), whose only purpose is to examine the
transferability of our technique (trained without any rain)
to a visually-different domain. Finally, another set of 6,666
nighttime triplets, not included in [23] and used only for
training, is randomly sampled from three other traversals of
the RobotCar dataset directly. We call these three nighttime
datasets Night-query, Night-rain, and Night-train.

The same Day image set is used during training and
testing of ToDayGAN. This is intentional as inference is
only ever performed on Night images and since localization
is an instance-level task, i.e.,, reference images representing
the scene are always available. The goal of the model is to
generalize on Night inputs and specialize the outputs to the
specific Day reference dataset from which the poses were
precalculated. Hence, only the Night images are separated
into training and testing. We make the assumption that, due to
the relative ease of gathering unlabeled data for ToDayGAN,
others making use of this procedure can easily tailor the
training process for the specific visual qualities of their own
reference dataset.

Our datasets are subsets of much larger original video
sequences. In [23], they have been sub-sampled to reduce
sizes to manageable levels. A 3D map was constructed from
a vehicle’s traversal so that the pose of each image can
be estimated [23], and then an image was sampled every
meter. For the daytime images, using the vehicle’s inertial
navigation system and 3D visual tracking is sufficient to build
a map, but LIDAR data (also captured by the same vehicle)
was necessary to obtain ground-truth poses for nighttime
images. We use poses provided by [23].

As side-view images are only used to boost data count
during some of the training runs, side-views for the query-
Nighttime remain unused, and the correspondence (or lack
thereof) for the three views is irrelevant for the purpose of



TABLE I: Details of RobotCar and RobotCar Seasons dataset used.

Condition Purpose Recorded # triplets
overcast reference & training 28 Nov 2014 6,954
night training 27 Feb & 01 Sep 2015 6,666
night query 10 Dec 2014 438
night-rain query 17 Dec 2014 440

our experiments. As the problem is formulated below, the
same Daytime images are available during both training and
inference, so the same images are used for both, meanwhile
the night images are independent in all stages. Exact details
of each dataset can be found in Table I.

B. Training Setup

The following apply to all three types of our models.
Images, unless mentioned that left and right viewpoint im-
ages were used from the RobotCar dataset, were trained
on rear views only. And unless stated otherwise, images
in our trials were scaled to 286 × 286 size and randomly
cropped to 256× 256 for training. If a 512× 512 resolution
is used, training crops are of size 384× 384 due to memory
constraints. Memory also restricts training on resolutions
higher than 512 × 512. Inference is always on the pre-crop
size because our fully-convolutional architecture allows for
arbitrary input sizes. Batches are not used, and random image
flipping (left-right) is enabled. Training is run for 40 epochs.
Learning rates begin at 2e-4 for generators and 1e-4 for
discriminators, are constant for the first half of training and
decreasing linearly to zero during the second half. The λ
from equation (3) is set to 10.0, as in [28].

DenseVLAD uses the k = 128 pretrained cluster centers
provided by [25]. The VLAD vectors are projected down
to 4096 dimensions via PCA prior to comparisons. We also
keep the default SIFT extraction scales used in DenseVLAD,
at n ∈ {4, 6, 8, 10}.

C. Evaluation Protocol & Baselines

Following the evaluation protocol of [23], we report the
percentage of query images whose predicted 6-DOF poses
is within three error tolerance thresholds: 5-meter and 10-
degree, 0.5-meter and 5-degree, and 0.25-meter and 2-degree.
Evaluating on the RobotCar Seasons dataset proposed in [23]
enables us to directly compare our approach to state-of-the-
art methods.

Table II lists the results obtained by running DenseVLAD
matching on the Daytime and Nighttime images (including
Night-rain) directly to benchmark what we believe according
to [23] to be the best known solution until now. We include
additional results from histogram-equalization of images
prior to matching; we try this both on the query images only
and also on both query and reference. We also compare with
out-of-the-box CycleGAN and UNIT [15]. Note that UNIT
is not tailored to any task other than perceptive quality of
images translated.

Lastly, we compare the best results obtained using our
methods with the state-of-the-art methods found in [23].
These include structure-based localization techniques Ac-
tiveSearch [22] and CSL [24], in addition to the image-based
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Fig. 3: Top to bottom row: Example real night images before
translation, synthetic day images using the best-performing model,
same model but without the Relativistic Loss, and synthetic day
images produced by UNIT.

TABLE II: DenseVLAD night query results for direct raw-image
baselines, images histogram-equalized beforehand, and those trans-
lated with UNIT.

Threshold Accuracy (%)
Preprocess Resolution 5m 10° 0.5m 5° 0.25m 2°

Direct 286 13.9 2.9 0.4
Direct 512 10.2 1.8 0.2
Direct 1024 19.9 3.4 0.9

Hist-Eq night only 1024 23.7 2.5 0.7
Hist-Eq night & day 1024 16.7 2.7 0.4

CycleGAN [28] 286 10.7 0.9 0.0
UNIT [15] 286 17.1 0.4 0.0

FAB-MAP [6] and NetVLAD [2]. Note that [23] report that
they were not able to train pose regression techniques such as
PoseNet [14] on the dataset. On the night query set, structure
based methods performed very poorly; meanwhile, image-
based approaches attained the highest accuracies for the same
criteria. DenseVLAD was the best of all methods, followed
by NetVLAD.

V. RESULTS

Table III shows the localization rates gathered over various
configurations of our own model to determine the effect of
certain modifications and variables. Sample visuals from the
process can be seen in Figure 3. These include a version
of the model with only one discriminator per domain but
with all three input features (color, texture, and gradients)
concatenated along the channel dimension as a single larger



TABLE III: Ablation study for the proposed method.

Threshold Accuracy (%)
Resolution Discriminators Rel.-loss? Dual-Eval.? L/R? 5m 10° 0.5m 5° 0.25m 2°

286 C 12.1 1.8 0.2
286 C, G 28.9 6.4 0.9
286 L, G 9.1 2.3 0.4
286 C, L 16.2 2.5 0.6
286 C+L+G 18.7 2.5 0.4
286 C, L, M 15.0 1.8 0.4
286 C, L, G 30.8 5.9 0.6
286 C, L, G X 36.0 7.0 1.3
512 C, L, G X 44.9 7.3 1.5
512 C, L, G X X 47.5 8.2 1.5
512 C, L, G X X X 52.9 9.1 1.1

TABLE IV: NetVLAD night query results after ToDayGAN trans-
lation; only for a subset of models from Table III to check
generalization potential.

Threshold Accuracy (%)
Resolution Discriminators Rel.-loss? Dual-Eval.? L/R? 5m 10° 0.5m 5° 0.25m 2°

286 C, L 12.7 1.5 0.9
286 C, L, G 30.5 4.7 0.9
512 C, L, G X X X 45.6 6.4 1.3

input. This can signal whether separate models are needed,
or if simply having these features pre-extracted is the key.

The “Discriminators” column contains up to three letters
representing the types of discriminators used for that trial.
“C” stands for Color, “L” for Luminance, and “G” for
Gradients. Note that when “C” is not used in conjunction
with an “L”, the RGB image remains un-blurred when input
to the color-discriminator. Likewise, when “L” is not used in
conjunction with a “C”, the entire model is run in grayscale,
for obvious reasons. “C+L+G” represents unification as a sin-
gle discriminator with the inputs concatenated. And lastly a
trial was performed where the gradient discriminator received
as input the magnitude and orientation of gradients in place
of the gradients themselves, denoted by “M”. This is closer
to the actual DenseVLAD process and should theoretically
be better suited as task adaptation.

“Rel.-Loss” in Table III means the discriminator loss is the
Relativistic Loss mentioned in Section III. “L/R” indicates
whether the left and right camera images were used to
enlarge the training set. “Dual-Eval.” refers to our Dual-
Evaluation procedure added as a finishing-touch enhance-
ment to our models. For this, a horizontally-flipped version of
each query image is fed to the network and then re-flipped for
DenseVLAD featurization. Distances are calculated between
these and the references as well, and the nearest neighbor is
the minimum of these and the original unflipped distances.
As the network is not invariant to left-right mirroring, this
produces two similar yet different “opinions,” which boosts
accuracies in our case.

VI. DISCUSSION

A. Comparing results with baselines

Our best model using the large training set with left/right
images, 512-resolution, three discriminators, relativistic loss,
and the flipped-image dual evaluation attains a gain of 2.65x
on the 5m/10° threshold over the best DenseVLAD result.
The 0.5m/5° category also sees a proportional boost from
3.4% to 9.1%. While our 0.25m/2° result also is marginally
lower than when not using left/right images, they all seem to
be low enough (≤ 1.5%) that their values are not meaningful.

TABLE V: Top overall results for both Night and Night-Rain
categories in comparison to other state-of-the-art methods (taken
from [23]).

Night Night-Rain
Threshold Accuracy (%) Threshold Accuracy (%)

Method 5m 10° 0.5m 5° 0.25m 2° 5m 10° 0.5m 5° 0.25m 2°
FAB-MAP [6] 0.0 0.0 0.0 0.0 0.0 0.0

ActiveSearch [22] 3.4 1.1 0.5 5.2 3.0 1.4
CSL [24] 5.2 0.9 0.2 9.1 4.3 0.9

NetVLAD [2] 15.5 1.8 0.2 16.4 2.7 0.5
DenseVLAD [25] 19.9 3.4 0.9 25.5 5.6 1.1

ToDayGAN (ours) 52.9 9.1 1.1 47.9 12.5 3.2

Testing the best-performing ToDayGAN model directly on
the secondary query set of Night-Rain images also works
very well, implying our model is robust to the appearance
shift. While the relative increases are not as high as the
original Night-query’s, the absolute accuracies are nearly
identical - even higher for the two stricter thresholds.

UNIT’s performance is notable in the 5m/10° threshold
but poorly for the other two thresholds. UNIT’s variational
encoding structure tends to result in blurry images, as shown
in Figure 3. Lack of low-level detail in the image appears
to impair its ability to localize at finer scales, but contains
higher-level details sufficient for localizing a general area.

As an additional test, we ran NetVLAD on some of the
resulting images as well (see Table IV) in order to check
the generalization potential of the images for a different
comparison method. It turns out to have about the same
improvement boost as opposed to directly using NetVLAD
(see Table V), suggesting both DenseVLAD and NetVLAD
largely rely on the same characteristics - mostly gradients.

We mentioned in Section II-C that we attempted to com-
pare our method with [19]. Due to lack of source code,
we could not train their model on our data. Since their
method optimizes for SURF features, an approximation of
SIFT, it should be suited for DenseVLAD-based localization.
The authors did manage to infer our query images on their
existing model (trained for a different camera type/view), yet
localizing with it performed worse than the naive baseline.
So we determined no fair comparison could be made due to
the difference in training sets and camera intrinsics.

B. Impact of modifications to ComboGAN

The first sector of Table III ablates the different discrimi-
nator combinations to evaluate their contribution to the task.
We can see that adding the gradient discriminator just about
doubles accuracies, while adding the luminance discriminator
improves performance, though to a much lesser degree.
Performing the pipeline in RGB rather than just grayscale,
which seems to be easier for the networks, regularizes and
improves the process invaluably. The use of a combined
discriminator is considerably inferior to independent ones.
Additionally, note the use of gradient magnitude/orientation
as discriminator features unexpectedly behaves much worse
in practice compared to just the gradients themselves. There
is no obvious explanation, but it points to neural nets having
more difficulty dealing with the concepts of gradient angles.
The second sector of Table III shows the effects of the non-
discriminator factors. The Relativistic-Discriminator loss,



Dual-Evaluation procedure, and use of left/right images to
increase training set size all improve results.

Lastly, comparing vanilla CycleGAN in Table II to the
first entry of Table III, whose only difference is a multi-scale
discriminator scheme, we see an improvement in the stricter
thresholds, suggesting the multi-scale architecture handles
finer-grained details better, as intended

VII. CONCLUSION & FUTURE WORK

In this paper, we have introduced a visual localization
system based on image-to-image translations. Our results
show that our approach significantly outperforms previous
work on the challenging task of localizing nighttime queries
against a set of daytime images.

One of the corollaries that can be deduced from our
ablation experiments is the partitioning of features for dis-
criminators in a generative-adversarial setup. We find using
discriminators tasked with different aspects of a single input
image perform better in terms of encouraging the presence
of those aspects in generated outputs.

Future work in the field of generative models, in general,
can borrow from this very idea. Generated image quality
can potentially be improved by using multiple discriminators,
each focusing on different image features. Furthermore, these
features need not be handcrafted; one could potentially
enforce an orthogonality constraint of sorts on the initial
features extracted by each discriminator to ensure each
concentrates a different aspect of the same input.
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APPENDIX

TABLE VI: Layer specifications for ComboGAN Generator (En-
coder + Decoder) and Discriminator. We use the following abbre-
viations for brevity: N=Neurons, K=Kernel size, S=Stride size. The
transposed convolutional layer is denoted by DCONV. The residual
basic block is denoted as RESBLK. (Table taken from [1])

Layer # Encoders
1 CONV-(N64,K7,S1), InstanceNorm, PReLU
2 CONV-(N128,K3,S2), InstanceNorm, PReLU
3 CONV-(N256,K3,S2), InstanceNorm, PReLU
4 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
5 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
6 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
7 RESBLK-(N256,K3,S1), InstanceNorm, PReLU

Layer # Decoders
1 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
2 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
3 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
4 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
5 RESBLK-(N256,K3,S1), InstanceNorm, PReLU
6 DCONV-(N128,K4,S2), InstanceNorm, PReLU
7 DCONV-(N64,K4,S2), InstanceNorm, PReLU
8 CONV-(N3,K7,S1), Tanh

Layer # Discriminators
1 CONV-(N64,K4,S2), PReLU
2 CONV-(N128,K4,S2), InstanceNorm, PReLU
3 CONV-(N256,K4,S2), InstanceNorm, PReLU
4 CONV-(N512,K4,S2), InstanceNorm, PReLU
5 CONV-(N256,K4,S1), InstanceNorm, PReLU
6 CONV-(N1,K4,S1)

Fig. 4: Top to bottom row: Sample images from the Daytime set,
Night-training set, Night-query set, and Night-Rain query set.

Fig. 5: Additional visuals for night-to-day translation using ToDay-
GAN.

Fig. 6: Daytime translation of the real night images from Figure 3
using different discriminator setups (286 × 286 resolution). Using
same notation as in Table III, from top to bottom row: C, CL, CLG,
and C+L+G.
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