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Real-Time Dense Mapping
for Self-Driving Vehicles using Fisheye Cameras
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Abstract— We present a real-time dense geometric mapping
algorithm for large-scale environments. Unlike existing methods
which use pinhole cameras, our implementation is based on
fisheye cameras whose large field of view benefits various
computer vision applications for self-driving vehicles such as
visual-inertial odometry, visual localization, and object detec-
tion. Our algorithm runs on in-vehicle PCs at approximately
15 Hz, enabling vision-only 3D scene perception for self-driving
vehicles. For each synchronized set of images captured by
multiple cameras, we first compute a depth map for a reference
camera using plane-sweeping stereo. To maintain both accuracy
and efficiency, while accounting for the fact that fisheye images
have a lower angular resolution, we recover the depths using
multiple image resolutions. We adopt the fast object detection
framework, YOLOV3, to remove potentially dynamic objects.
At the end of the pipeline, we fuse the fisheye depth images
into the truncated signed distance function (TSDF) volume
to obtain a 3D map. We evaluate our method on large-scale
urban datasets, and results show that our method works well
in complex dynamic environments.

I. INTRODUCTION

Real-time 3D mapping of an environment is required for
autonomous vehicles to perceive and thus navigate in com-
plex environments. Typically, LiDAR sensors are used for
3D perception as they can generate accurate 3D point clouds
in real-time. In contrast to LiDAR sensors, cameras do not
directly provide 3D information. However, we can recover
3D information from multiple images based on multi-view
geometry techniques. In comparison to LiDAR sensors which
suffer from poor vertical resolution, cameras can generate 3D
maps with high resolution. Moreover, scene understanding
techniques for cameras are more well-developed than those
for LiDAR point clouds [29].

Image-based 3D dense mapping usually comprises two key
steps. The first step involves recovering depth information
via a (multi-view) stereo algorithm. The second step entails
temporal fusion of individual depth images with associated
camera poses into a 3D map representation. Both monocular
and binocular systems are used in previous work. Monocular
systems [31}[13] recover the depth with a sequence of consec-
utive frames, and have difficulty in handling moving objects.
Binocular systems [26l 27] compute the depth from two
images captured at the same time, and better handle complex
dynamic environments. Recently, Barsan et al. [2] proposed
a robust dense mapping algorithm for large-scale dynamic
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Fig. 1: Input and outputs of our real-time dense mapping system for
fisheye cameras. (a) Image from the front center camera; (b) Depth
map generated by plane-sweep stereo; (c) Dynamic objects detected
by the object detector; (d) The 3D map built by our approach, with
dynamic objects automatically removed from the model.

environments. Leveraging both instance-level segmentation
and scene flow estimation, the system reconstructs both the
static part of the environment and moving objects. However,
the entire pipeline is too computationally expensive to be
applied to self-driving vehicles, especially at high driving
speeds. Constrained by the instance-aware semantic segmen-
tation phase, their method can only run at approximately
2.5Hz on stereo pinhole cameras.

In this paper, we present a real-time dense mapping system
for self-driving vehicles. Due to the large field of view,
fisheye cameras have shown better performance than pinhole
cameras for multiple tasks including visual-inertial odometry
[22] and localization [11]. Hence, we adopt a multi-fisheye-
camera stereo setup for dense mapping with a self-driving ve-
hicle. However, fisheye cameras have a drawback: the pixels
in the central region of a fisheye image have lower angular
resolution compared to those of a pinhole image with the
same image resolution [33]]. This lower resolution degrades
the depth estimation of far-away objects in front of vehicles,
and this degradation is made more severe with downsampling
of fisheye images for real-time processing. In order to
maintain both accuracy and efficiency, we propose a new
strategy for fisheye depth map recovery using images with
different resolutions. Several filtering methods are adopted to
filter noisy and unreliable depth estimates in texture-poor and
low-resolution areas. Subsequently, we fuse the fisheye depth
maps directly into a 3D map model. To increase the system’s
scalability, we reduce both memory usage and run-time with
local map pruning and only store map data in the vehicle’s



vicinity. In contrast to Barsan et al. [2], in order to fulfill the
requirement of real-time mapping for self-driving vehicles,
we adopt a fast object detection pipeline to handle potentially
moving objects. We filter these objects directly from the
depth map before the depth fusion in order to obtain a static
map of the surrounding environment. Experiments show
that although there are occasional false positive detections
which filter out static parts of the environment, there is
little impact on the 3D mapping as depth information is
fused temporally. The on-road test shows that our method
is capable of generating dense maps in real-time, and with
good accuracy and reasonable completeness when the car
drives up to 40 km/h.

In summary, this paper makes the following contributions:
(1) We propose a practical system to achieve real-time
dense mapping for self-driving vehicles purely using fisheye
cameras. (2) A new multi-scale strategy is proposed for
fisheye depth map estimation to maintain both depth map
accuracy and efficiency. (3) Multiple depth filtering and
local map pruning techniques are studied and evaluated with
LiDAR data, giving us insights into directions for future
work.

II. RELATED WORK

Many works [10} 26, 127]] exist for real-time dense mapping
with multi-camera systems including stereo cameras. These
works are based on the stereo matching using a pinhole
camera model, which assumes rectified input images and
performs disparity search along the epipolar line. So they
cannot be extended to fisheye cameras, and rectifying the
fisheye images to pinhole images would lead to a significant
loss of field-of-view [12]. Pollefeys et al. [28] propose a
method of 3d reconstruction from video which assumes
that the scene is static, while this will lead to dynamic
objects leaving a trail of artifacts in the 3D map. Hernandez-
Juarez et al. [16] convert a depth map into a compact stixel
representation; this representation only works well for urban
environments with strong planarity features unlike a TSDF
volume representation [[17) 25]] which can represent arbitrary
environments. Schops et al. [31] implement large-scale 3D
reconstruction with a monocular fisheye camera and TSDF-
based depth fusion. This reconstruction pipeline is not able to
handle dynamic environments too. Barsan et al. [2] propose a
mapping approach for dynamic environments but use stereo
pinhole cameras, and their approach is too slow for real-time
3D perception for self-driving vehicles. Recently, several
visual odometry methods [3, |14} 21]] for fisheye cameras have
been proposed, and the camera poses recovered from these
methods could be utilized for our depth map fusion.

III. REAL-TIME DENSE MAPPING

In this section, we describe our real-time dense mapping
method for fisheye cameras. As shown in Fig.[2] the proposed
method consists of three steps: depth map estimation, dy-
namic object detection, and TDSF-based depth map fusion.
At each time step, we obtain synchronized frames from
multiple fisheye cameras. We use stereo matching between
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Fig. 2: Given multiple images captured at the same point in time
by fisheye cameras, our approach first computes depth maps for
a reference frames. Detecting dynamic objects allow us to avoid
artifacts in the 3D model caused by moving objects. Using camera
poses provided by a localization system, the resulting depth maps
are integrated into a truncated signed distance function volume.

the different camera images and a reference camera to
estimate a depth map for the reference camera. At the same
time, we input the image from the reference camera into
an object detector and obtain the masks of all potentially
moving objects. Then we use the detection results to mask
out potentially moving objects from the depth map to avoid
introducing artifacts into the 3D map. Finally, we fuse the
resulting depth map into the TSDF volume to reconstruct a
3D map of the static environment.

A. Depth Map Estimation at Multiple Scales

To enable large-field-of-view mapping which is advan-
tageous for self-driving vehicles, we use multiple fisheye
images for depth map computation. We use plane-sweeping
stereo [4] for the depth map estimation. Plane-sweeping
stereo matches the reference image to a set of supporting
images with known relative poses by sweeping a set of
planes through 3D space. Each position of a plane defines
a homography mapping pixels from the reference image
into other images. At the same time, each plane position
corresponds to a depth hypothesis for each pixel. For a
given pixel in the reference image, the quality of a depth
hypothesis can be evaluated by computing the image dis-
similarity within a small local window. As shown in Hine
et al. [12f], the image warping function can be run on the
fly on a graphics processing unit (GPU) at little additional
computational costs. Compared to standard stereo matching
methods [9] and recent deep-learning-based methods [23]], it
is not necessary for the plane-sweeping stereo algorithm to
undistort the fisheye images prior to depth map computation
which would otherwise result in a loss of field of view [12].
In addition, plane-sweeping stereo allows us to easily use
more than two cameras.

As proposed in Gallup et al. [8] and Hine et al. [13]],
we sweep planes along multiple directions. As is standard,
one set of planes is parallel to the image plane of the
reference camera. The other set of planes is parallel to the
ground plane, which leads to a better estimate of the ground
as observed in Hine et al. [[13]. The extrinsic calibration
of the cameras provides an estimate for the ground plane.
Subsequently, only a few planes close to the ground are used
for this sweeping direction.

For our experiments, we use 64 fronto-parallel planes
and 30 planes parallel to the ground. The negative zero-



normalized cross-correlation (ZNCC) score over a local
window is used as the matching cost to measure the image
disimilarity. A matching cost of 1 corresponds to a ZNCC
score of —1 while a matching cost of 0 corresponds to a
ZNCC score of 1. We use a local window of 9 x 9 pixels for
full resolution and a window of 7 x 7 pixels for downsampled
images.

Multi-scale strategy: Depth estimation is a time-consuming
task even on a GPU. Thus, downsampling the fisheye images
to a lower resolution is necessary for achieving real-time per-
formance. Compared to pinhole images, the central portion
of fisheye images have a lower angular resolution. Together
with downsampling of fisheye images, it is challenging to
accurately reconstruct objects far from the scene, which in
autonomous driving scenarios are typically in the center of
view of forward facing cameras. At the same time, obtaining
accurate depth estimates for objects in the center of view is
important for path planning and collision detection in the
context of self-driving cars. In order to both reconstruct far-
away objects and cover the full field-of-view of the fisheye
images, we propose a new multi-scale strategy for fisheye
depth image estimation: First, we run depth estimation on
downsampled fisheye images, and subsequently, up-sample
the depth estimates to the original resolution. Next, we crop
the center area of the fisheye image at the original resolution
and compute the depth image corresponding to the cropped
area. We then fuse the two depth maps. Intuitively, our strat-
egy corresponds to combining a low-resolution depth map
generated from fisheye images with a higher-resolution depth
map obtained by close-to-pinhole cameras (as the center of a
fisheye image typically exhibits low radial distortion). In our
experiments, the full image resolution is 1024 x 544 pixels.
We downsample images to 512 x 272 pixels to obtain low-
resolution images, and the cropping size is 572 x 332 pixels.

Depth map filtering: As detailed in Section depth
maps estimated at each point in time are fused into a single
volume to obtain a 3D map of the scene. The raw depth maps
generated by plane-sweeping stereo often contain outliers.
Integrating outlier measurements into the volume leads to
false predictions for the scene geometry, which in turn can
cause problems for the path planning module which depends
on accurate 3D maps. Thus, we perform several filtering
steps designed to identify and remove outlier measurements.

Firstly, we filter the depth using the matching cost value
of the best depth candidate for a pixel. If the cost is larger
than «, we consider it an outlier. Then, the ratio between the
first and second best cost values is used to further remove
potentially unreliable depths. The larger the ratio is, the
more unique and reliable the estimated depth is. Finally,
we use local depth continuity checking to filter out noisy
depth values. For each pixel, we compare its depth value
against the depths of its neighboring pixels in a local window.
If the difference is smaller than a threshold ~, we will
consider the neighboring pixels to be consistent with the
central pixel. If the ratio of the consistent pixels in the local
window is smaller than §, we will consider the center pixel

to have inaccurate depth. In our implementation, we set «
for the upper and lower parts of the image as 0.05 and 0.3
respectively, and set y and § to be 0.5m and 0.3. The effect of
these filtering steps is shown in Fig. 3] From this figure, we
can see that most of the unreliable depth information (e.g., in
the sky, featureless building facades and long distance areas)
is filtered out successfully.

B. Dynamic Object Detection

In order to deal with moving objects, Barsan et al. [2]
used an instance-level semantic segmentation method [7].
Unfortunately, the method is too slow to achieve real-time
performance even on a powerful GPU, let alone the GPU
used on our vehicle. The reason is that it, as other instance-
level segmentation methods, is based on a two-stage object
detection approach which first generates many bounding box
proposals before estimating a segmentation mask for each
proposal. As a result, it is difficult for these methods to run
at high speeds. Single-stage detectors are significantly faster
than two-stage detectors as they treat object detection as a
simple regression problem by learning the class probabilities
and bounding box coordinates directly from the input image.
Thus, we use a single-stage object detection method [30]
to detect potentially moving objects. Although we do not
obtain as accurate object masks, we find that the single-stage
method is sufficient in practice to filter out moving objects.

YOLOV3 [30] takes an image and divides it into a S x S
grid. In each grid cell, it generates B bounding boxes. For
each bounding box, the network outputs a class probability
and bounding box attributes. Finally, bounding boxes with
associated class probabilities above a threshold value are
chosen.

The datasets [20] typically used to train object detectors
are composed of pinhole color images. In contrast, we use
grayscale fisheye images as the input to our algorithms. In
order to avoid having to create a large dataset with object
annotations, we base our model on an existing one trained on
the Microsoft COCO dataset [[20]. We adapt it to our dataset
by truncating the first and last layers and fine-tune it on a
small annotated dataset of images captured from our vehicle.

We consider all kinds of vehicles [S]] as potentially moving
objects. We labeled 2609 fisheye images and approximately
11200 different vehicles. The network is implemented in
TensorFlow [1] and optimized using the Adam optimizer
[19]. We take two training steps. At first, we only train
the first and last layer with a learning rate of 10e~* for
10 epochs, and then fine-tune all the layers with a learning
rate of 10e~° for 20 epochs.

C. TSDF-based Depth Map Fusion

The depth maps only maintain local geometric informa-
tion. To obtain a global 3D map, we need to fuse depth maps
captured at different points in time (and thus from different
camera poses) into a single 3D map. We use a standard
fusion technique. The camera poses can be obtained either
from visual-inertial odometry (VIO) or a GNSS/INS system.
The scene is represented via a set of voxels, where each



(a) (b)
Fig. 3: Illustrating the impact of depth map filtering: (a) Raw depth image; (b) Depth image after filtering based on best matching cost;
(c) Depth image after filtering based on the ratio between the first and second best costs; (d) Depth image after local continuity checking.

voxel stores a truncated signed distance function (TSDF)
value [6]. Thus, each voxel stores the signed distance to the
closest object surface (negative inside of objects, positive
outside of objects, zero on surfaces), truncated to a certain
maximum / minimum distance. We use the map fusion
pipeline from the InfiniTAM library [17} [18] which consists
of four stages. At first, new voxel blocks are allocated based
on the current depth map. Secondly, the list of voxel blocks
that are currently visible is updated. Subsequently, the new
3D information is fused into each of the visible voxel blocks.
At last, voxel blocks can be chosen to be swapped out from
the GPU to preserve memory. This last stage is important
when mapping a large area.

In contrast to Kihler et al. [17, [18], we take fisheye depth
images as inputs instead of pinhole depth images. As in
the plane-sweeping stereo stage [12], the unified projective
model for fisheye cameras [24] is used during the voxel block
allocation and integration to model our fisheye cameras.
More specifically, when a new depth map arrives, we iterate
through each pixel p with a valid depth value d in the fisheye
depth image, and compute its back-projected ray direction as
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r(p) =

where (x,y) is the normalized coordinates of p, and £ is the
mirror parameter of the fisheye camera [24]. We consider the
range from d—p to d+p along this ray for TSDF integration.
We compute the coordinates of voxel blocks along this line
segment and check whether these blocks have been allocated.
If necessary, we allocate new voxel blocks. After updating
the list of the currently visible voxel blocks, we do depth
integration. To this end, each voxel X maintains a running
average of the TSDF value D(X). Given the current camera
pose (Ryg,tq), we get the voxel location in the camera
coordinate system as X; = R4X + t4. Then, we project
X into the fisheye depth image using the unified projective
model [24], and get its associated depth information. If the
difference 1 between the new depth value and the associated
depth value is not smaller than —yu, the SDF value will be
updated as

D(X) <w(X)D(X) + min <1Z>> J(w(X)+1), 2)

where w(X) is a variable counting the number of previous
observations in the running average, which will be updated
and capped to a fixed maximum value.
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Fig. 4: The median value of the absolute errors (in meter) for each
frame using different image resolutions as input to plane-sweep
stereo. Our multi-scale strategy (“Multiple Resolutions™) performs
similar to using the original images (“Full Resolution™), and is
better than “Half Resolution”.

In our system, we maintain a local map with a size of
60m x 60m x 3m centered at the current vehicle position
for online mapping. We restrict ourselves to this area as
this local 3D map is sufficient enough for path planning
and obstacle detection and avoidance. In order to do this,
we only allocate new voxel blocks within this region and
swap old blocks that are no longer in this region. This
reduces the memory consumption and allows our method
to operate over a long period of time (as the map size is
independent of the trajectory length driven by the vehicle).
As a side benefit, it also helps to filter out a number of
noisy observations as we observe that the depth estimation
of the objects at long distances tends to be unreliable. To
handle noisy depth information from plane-sweeping stereo,
we only consider voxel blocks with at least 3 observations.
For visualization, we use the fast raycasting algorithm from
Kihler et al. [17, [18]].

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

We evaluate our real-time dense mapping pipeline on the
self-driving testing platform described in [15]. Specifically
speaking, we use five near-infrared (NIR) cameras mounted
on top of the car and pointing to the front of the vehicle.
These cameras output 1024 x 544 gray scale images at 25
frames per second, and are hardware-time-synchronized with
the GNSS/INS system. There are also 3D LiDAR sensors
mounted on top of the vehicle, and the fused point cloud
data from these LiDAR sensors is used to evaluate the
performance of our method. The camera poses computed
from the GNSS/INS system are used in our experiments.

In the vehicle, there are two PCs, each of which comes
with an Intel i7 2.4 GHz CPU and a NVIDIA GTX 1080
GPU. In addition, we use a laptop with an Intel i7 2.8 GHz
CPU and a NVIDIA Quadro M5000M GPU. The depth map



(a) Reference image

(e) Ground truth depth map

(b) Depth map from half resolution

(f) Error map for half resolution

30

(c) Depth map from multi-scale strategy

(g) Error map for multi-scale strategy

Fig. 5: Visualizing depth maps and their errors for one frame from the One North sequence. The jet colormap is used for the depth map
visualization with a range of [0,30m)], and the spring colormap is used for the error map visualization with a range of [0, 3m)].

estimation and dynamic object detection are each run on
one PC, and the TSDF-based depth fusion is run on the
laptop. The average running times per frame for these three
components are about 60 ms, 40ms, and 20ms. As they are
running in parallel, the frame rate of the whole pipeline
is 15 Hz which is higher than most of the current LiDAR
sensors. The current bottleneck is the depth map estimation
stage. Parameter tuning, e.g., using fewer sweeping planes
or smaller image resolutions, can potentially accelerate this
stage, potentially at the cost of the depth map quality. Yet, our
experience shows that our current frame rate is high enough
for real-time mapping with a speed of up to 40km/h.

Our experiments are conducted in two different environ-
ments: South Buona Vista and One North. The South Buona
Vista sequence mainly follows a road passing through a forest
and has a length of 3km. The One North sequence follows
roads in an urban area and has a length of Skm.

B. Evaluation of the Depth Estimation Stage

In order to qualitatively evaluate our depth maps, we fuse
the 3D point cloud data from 2 LiDARs over a certain
distance. We then project these points into the reference
fisheye view to obtain a depth image which we use as ground
truth. As moving objects adversely impact the ground truth
depth image built from accumulation over time, we manu-
ally selected one sequence from each environment without
moving objects for the evaluation. We compute the absolute
difference between the estimated depth and the ground-truth
depth, and calculate the mean and median values of the
absolute differences in each frame for comparison.

In the first experiment, we evaluate the performance of our
multi-scale strategy without filtering steps. We compute the
depth maps using full-resolution and downsampled images,
and using our multi-scale approach. Fig. @] shows the median
value of the absolute error of the depth maps and Fig. [j]
shows the error map for a selected frame. As can be seen
from Fig.[4] using our proposed multi-scale strategy produces
significantly better depth maps compared to simply using
low-resolution images. The improvement mainly happens in
image areas with large depth values as shown in Fig. [3]
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Such image areas are mostly located in the center of the
image. By using the full image resolution only in this
image area, our approach nearly achieves the same quality as
when using the full resolution for the complete image. The
averaging running times of depth estimation without filtering
for full resolution, down-sampled resolution and multi-scale
approach are 50ms, 16ms and 36ms respectively, and our
multi-scale approach reduces the running time by about 28%
compared to processing original full-resolution images.

We also evaluate the performance of the different filters.
As can be seen in Fig.[3] the best cost filter mainly helps with
filtering out unreliable estimates in textureless areas, e.g.,
the sky and building facade, thus greatly reducing the error.
The uniqueness ratio filter further helps to remove unreliable
estimates in the areas with repetitive patterns, e.g., the road.
The local consistency filter mainly discards inconsistent
estimates. In contrast to the other filters, applying the local
consistency filter leads to a smaller improvement. From
Fig. [} we can see that the median and mean values of
the errors are finally decreased by more than 40% and 60%
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Fig. 7: Performance with different camera configurations. “3 Cam-
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Fig. 8: Local map for a certain frame. The green points are the
accumulated LiDAR data.

with these filters. This will greatly improve the TSDF-based
fusion result.

At last, we evaluate the performance with different num-
bers of cameras as shown in Fig. [7] Though the configura-
tions with 3 cameras save about 17% of run time, they have
higher errors than that with 5 cameras, which indicates that
more cameras should be adopted for better depth estimation.

C. Evaluation of the 3D Mapping Stage

To evaluate the quality of the 3D maps built by our
approach, we compare maps built using our depth maps with
maps constructed using the ground truth depth maps. We use
accuracy and completeness as our evaluation criteria [32]].

Given two sets of point clouds S and S’, for each point p
in S, we define d,(S,S’) as the distance of p to its closest
point p’ in S’. Let the 3D point sets computed from ground-
truth depth maps and computed depth maps be Sy; and S,
respectively, then the accuracy can be defined as the ratio of
the points in S, with d,(S., Sg:) < t1 out of all points in
S.. Similarly, the completeness is defined as the ratio of the
points in Sy with d,,(Sge, Sc) < t2 out of all points in Sg;. t1
and ¢, are the tolerance parameters. We experimented with
the same frames used in Section [V-B] and the results are
shown in Fig. [9] We can see that for both datasets, more than
85% of the reconstructed points have an error of less than
0.1m. We find the performance in terms of accuracy to be
good considering that we use a voxel size of 0.05m. In terms
of completeness, South Buona Vista has better performance
than One North. This is because the environment of One
North is more complex with more occlusions than South
Buona Vista, and thus, more unreliable depth information
is filtered. However, we can see that even for One North, the
completeness is more than 80% with a threshold of 0.25m.
Fig. 9| also shows the result without removing voxels that do
not have a sufficient number of observations. We can see that
this improves the completeness at the expense of accuracy.
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Fig. 9: Evaluation of the mapping results with and without (raw)
unreliable voxels removal.

Fig. 10: Example of reconstructed 3D points (left) without and
(right) with moving object detection for South Buona Vista.

Fig. [§] shows the computed 3D point clouds and accumu-
lated LiDAR data. We can see that the recovered 3D map is
well aligned with the LiDAR data. The figure also shows that
the incompleteness mainly occurs in areas far away from the
current vehicle position. This is consistent with our analysis
of depth estimation.

D. Evaluation of object detection

Fig. [T0] shows the mapping result for a certain frame
without and with the moving object detection. We can
see that even though we prune unreliable voxels using the
observation weights, there is still a trail of points caused by
a moving object in the map. With moving object detection,
the moving vehicle is completely filtered out in the map.
We find that the object bounding box does not impact the
mapping results, although the bounding box is not as tight as
an object mask and may cause some background information
to be filtered out. With temporal integration, the missing parts
of the map and around the moving vehicle can be recovered.

V. CONCLUSIONS

In this paper, we have proposed a real-time dense mapping
method for self-driving vehicles purely based on fisheye
cameras. In order to achieve both depth map accuracy
and run-time efficiency, we proposed a novel multi-scale
depth map estimation strategy. To filter out the noisy depth
estimation in featureless areas, we evaluated the impact
of several depth filters. In order to handle moving objects
during TSDF fusion, we adopted a fast one-stage neural
network for object detection and fine-tuned it on our labeled
fisheye images. To make the whole system scalable to large
scenes, we used a swapping strategy based on 3D location
information. The experimental results demonstrate that our
whole pipeline can achieve good accuracy and reasonable
completeness compared to LiDAR data while running in real-
time on the vehicle. We plan to study the effect of integrating
higher-level scene understanding into the depth estimation
and evaluate with different weather conditions in the future.
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