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Abstract

We seek to predict the 6 degree-of-freedom (6DoF) pose of
a query photograph with respect to a large indoor 3D map.
The contributions of this work are three-fold. First, we
develop a new large-scale visual localization method tar-
geted for indoor environments. The method proceeds along
three steps: (i) efficient retrieval of candidate poses that en-
sures scalability to large-scale environments, (ii) pose es-
timation using dense matching rather than local features
to deal with textureless indoor scenes, and (iii) pose ver-
ification by virtual view synthesis to cope with significant
changes in viewpoint, scene layout, and occluders. Sec-
ond, we collect a new dataset with reference 6DoF poses
for large-scale indoor localization. Query photographs are
captured by mobile phones at a different time than the refer-
ence 3D map, thus presenting a realistic indoor localization
scenario. Third, we demonstrate that our method signifi-
cantly outperforms current state-of-the-art indoor localiza-
tion approaches on this new challenging data.

1. Introduction

Autonomous navigation inside buildings is a key ability of
robotic intelligent systems [24, 39]. Successful navigation
requires both to localize a robot and to determine a path to
its goal. One approach to solving the localization problem
is to build a 3D map of the building and then use a camera1

to estimate the current position and orientation of the robot
(Figure 1). Imagine also the benefit of an intelligent indoor
navigation system that helps you find your way, for exam-
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Supérieure, ENS/INRIA/CNRS UMR 8548, PSL Research University.
1While RGBD sensors could also be used indoors, they are often too

energy-consuming for mobile scenarios or have only a short-range to scan
close-by objects (faces). Thus, purely RGB-based localization approaches
are also relevant in indoor scenes. Obviously, indoor scenes are GPS-
denied environments.

Database of RGBD images

Query image

Large-scale 
indoor 3D maps

?

6DoF camera pose

Figure 1. Large-scale indoor visual localization. Given a
database of geometrically-registered RGBD images, we predict
the 6DoF camera pose of a query RGB image by retrieving can-
didate images, estimating candicate camera poses, and selecting
the best matching camera pose. To address inherent difficulties in
indoor visual localization, we introduce the “InLoc” approach that
performs a sequence of progressively stricter verification steps.

ple, at Chicago airport, Tokyo Metropolitan station or the
CVPR conference center. Besides intelligent systems, the
visual localization problem is also highly relevant for any
type of Mixed Reality application, including Augmented
Reality [16, 44, 72].

Due to the availability of datasets, e.g., obtained from
Flickr [38] or captured from autonomous vehicles [19, 43],
large-scale localization in urban environments has been an
active field of research [6, 9, 14, 15, 19, 20, 27, 29, 34, 38,
44, 53–57, 65–67, 75, 79, 80]. In contrast, indoor localiza-
tion [11, 12, 39, 58, 59, 64, 69, 74] has received less atten-
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tion in the last years. At the same time, indoor localiza-
tion is, in many ways, a harder problem than urban local-
ization: 1) Due to the short distance to the scene geometry,
even small changes in viewpoint lead to large changes in
image appearance. For the same reason, ocluders such as
humans or chairs often have a stronger impact compared to
urban scenes. Thus, indoor localization approaches have to
handle significantly larger changes in appearance between
a query and reference images. 2) Large parts of indoor
scenes are textureless and textured areas are typically rather
small. As a result, feature matches are often clustered in
small regions of the images, resulting in unstable pose es-
timates [29]. 3) To make matters worse, buildings are of-
ten highly symmetric with many repetitive elements, both
on large (similar corridors, rooms, etc.) and small (similar
chairs, tables, doors etc.) scale. While structural ambigui-
ties also cause problems in urban environments, they often
only occur in larger scenes [9, 54, 67]. 4) The appearance
of indoor scenes changes considerably over the course of
a day due to the complex illumination conditions (indirect
light through windows and active illumination from lamps).
5) Indoor scenes are often highly dynamic over time as fur-
niture and personal effects are moved through the environ-
ment. In contrast, the overall appearance of building fa-
cades does not change too much over time.

This paper addresses these difficulties inherent to indoor
visual localization by proposing a new localization method.
Our approach starts with an image retrieval step, using a
compact image representation [6] that scales to large scenes.
Given a shortlist of potentially relevant database images, we
apply two progressively more discriminative geometric ver-
ification steps: (i) We use dense matching of CNN descrip-
tors that capture spatial configurations of higher-level struc-
tures (rather than individual local features) to obtain the cor-
respondences required for camera pose estimation. (ii) We
then apply a novel pose verification step based on virtual
view synthesis that can accurately verify whether the query
image depicts the same place by dense pixel-level matching,
again not relying on sparse local features.

Historically, the datasets used to evaluate indoor vi-
sual localization were restricted to small, often room-scale,
scenes. Driven by the interest in semantic scene under-
standing [10,23,78] and enabled by scalable reconstruction
techniques [28, 47, 48], large-scale indoor datasets cover-
ing multiple rooms or even whole buildings are becoming
available [10,17,23,64,74,76–78]. However, most of these
datasets focus on reconstruction [76,77] and semantic scene
understanding [10, 17, 23, 78] and are not suitable for local-
ization. To address this issue, we create a new dataset for
indoor localization that, in contrast to other existing indoor
localization datasets [10, 26, 64], has two important proper-
ties. First, the dataset is large-scale, capturing two univer-
sity buildings. Second, the query images are acquired using

a smartphone at a time months apart from the date of capture
of the reference 3D model. As a result, the query images
and the reference 3D model often contain large changes in
scene appearance due to the different layout of furniture,
occluders (people), and illumination, representing a realis-
tic and challenging indoor localization scenario.

Contributions. Our contributions are three-fold. First, we
develop a novel visual localization approach suitable for
large-scale indoor environments. The key novelty of our
approach lies in carefully introducing dense feature extrac-
tion and matching in a sequence of progressively stricter
verification steps. To the best of our knowledge, the present
work is the first to clearly demonstrate the benefit of dense
data association for indoor localization. Second, we create
a new dataset suitably designed for large-scale indoor local-
ization that contains large variation in appearance between
queries and the 3D database due to large viewpoint changes,
moving furniture, occluders or changing illumination. The
query images are taken at a different time from the refer-
ence database, using a handheld device, and at different mo-
ments of the day, to capture enough variability, bridging the
gap to realistic usage scenarios. The code and data are pub-
licly available on the project page [1]. Third, the proposed
method shows a solid improvement over existing state-of-
the-art results, showing an absolute improvement of 17–
20% in the percent of correctly localized queries within a
0.25 – 0.5 m error, which is of high importance for indoor
localization.

2. Related work
We next review previous work on visual localization.

Image retrieval based localization. Visual localization in
large-scale urban environments is often approached as an
image retrieval problem. The location of a given query
image is predicted by transferring the geotag of the most
similar image retrieved from a geotagged database [6, 9,
18, 35, 54, 66, 67]. This approach scales to entire cities
thanks to compact image descriptors and efficient index-
ing techniques [7, 8, 22, 31, 33, 49, 63, 70] and can be fur-
ther improved by spatial re-ranking [51], informative fea-
ture selection [21, 22] or feature weighting [27, 32, 54, 67].
Most of the above methods are based on image representa-
tions using sparsely sampled local invariant features. While
these representations have been very successful, outdoor
image-based localization has recently also been approached
using densely sampled local descriptors [66] or (densely
extracted) descriptors based on convolutional neural net-
works [6, 35, 40, 75]. However, the main shortcoming of all
the above methods is that they output only an approximate
location of the query, not an exact 6DoF pose.

Visual localization using 3D maps. Another approach is
to directly obtain 6DoF camera pose with respect to a pre-



built 3D map. The map is usually composed of a 3D point
cloud constructed via Structure-from-Motion (SfM) [2]
where each 3D point is associated with one or more local
feature descriptors. The query pose is then obtained by fea-
ture matching and solving a Perspective-n-Point problem
(PnP) [14,15,20,29,34,38,53,55]. Alternatively, pose esti-
mation can be formulated as a learning problem, where the
goal is to train a regressor from the input RGB(D) space to
camera pose parameters [11, 34, 59, 73]. While promising,
scaling these methods to large-scale datasets is still an open
challenge.

Indoor 3D maps. Indoor scene datasets [50, 52, 62, 68]
have been introduced for tasks such scene recognition, clas-
sification, and object retrieval. With the increased avail-
ability of laser range scanners and time-of-flight (ToF) sen-
sors, several datasets include depth data besides RGB im-
ages [5, 10, 23, 26, 36, 60, 78] and some of these datasets
also provide reference camera poses registered into the 3D
point cloud [10, 26, 78], though their focus is not on local-
ization. Datasets focused specifically on indoor localiza-
tion [59, 64, 69] have so far captured fairly small spaces
such as a single room (or a single floor at largest) and
have been constructed from densely-captured sequences of
RGBD images. More recent datasets [17,76] provide larger
scale (multi-floor) indoor 3D maps containing RGBD im-
ages registered to a global floor map. However, they are
designed for object retrieval, 3D reconstruction, or train-
ing deep-learning architectures. Most importantly, they do
not contain query images taken from viewpoints far from
database images, which are necessary for evaluating visual
localization.

To address the shortcomings of the above datasets for
large-scale indoor visual localization, we introduce a new
dataset that includes query images captured at a different
time from the database, taken from a wide range of view-
points, with a considerably larger 3D database distributed
across multiple floors of multiple buildings. Furthermore,
our dataset contains various difficult situations for visual
localization, e.g., textureless and highly symmetric office
scenes, repetitive tiles, and repetitive objects that confuse
the existing visual localization methods designed for out-
door scenes. The newly collected dataset is described next.

3. The InLoc dataset for visual localization

Our dataset is composed of a database of RGBD images ge-
ometrically registered to the floor maps augmented with a
separate set of RGB query images taken by hand-held de-
vices to make it suitable for the task of indoor localization
(Figure 2). The provided query images are annotated with
manually verified ground-truth 6DoF camera poses (refer-
ence poses) in the global coordinate system of the 3D map.

Database. The base indoor RGBD dataset [76] consists of

Number Image size [pixel] FoV [degree]
Query 356 4,032×3,024 65.57

Database 9,972 1,600×1,200 60

Table 1. Statistics of the InLoc dataset.

Figure 2. Example images from InLoc dataset. (Top) Database
images. (Bottom) Query images. The selected images show
the challenges encountered in indoor environments: even small
changes in viewpoint lead to large differences in appearance; large
textureless surfaces (e.g. walls); self-repetitive structures (e.g. cor-
ridors); significant variation throughout the day due to different
illumination sources (e.g., active vs. indirect illumination).

277 RGBD panoramic images obtained from scanning two
buildings at the Washington University in St. Louis with a
Faro 3D scanner. Each RGBD panorama has about 40M
3D points in color. The base images are divided into five
scenes: DUC1, DUC2, CSE3, CSE4, and CSE5, represent-
ing five floors of the mentioned buildings, and are geomet-
rically registered to a known floor plan [76]. The scenes are
scanned sparsely on purpose, to cover a larger area with a
small number of scans to reduce the required manual work,
as well as due to the long operating times of the high-end
scanner used. The area per scan varies between 23.5 and
185.8 m2. This inherently leads to critical view changes
between query and database images when compared with
other existing datasets [64, 69, 74]2.

For creating an image database suitable for indoor vi-
sual localization evaluation, a set of perspective images is
generated by following the best practices from outdoor vi-
sual localization [19, 66, 79]. We obtain 36 perspective
RGBD images from each panorama by extracting stan-
dard perspective views (60◦ FoV) with a sampling stride
of 30◦ in yaw and ±30◦ in pitch directions, resulting in
10K perspective images in total (Table 1). Our database
contains significant challenges, such as repetitive patterns
(stairs, pillars), frequently appearing building structures
(doors, windows), furniture changing position, people mov-
ing across the scene, and textureless and highly symmetric
areas (walls, floors, corridors, classrooms, open spaces).

Query images. We captured 356 photos using a smart-
phone camera (iPhone 7), distributed only across two floors,
DUC1 and DUC2. The other three floors in the database
are not represented in the query images, and play the role

2 For example, in the database of [64], the scans are distributed on one
single floor, and the area per each database image is less than 45 m2.



Figure 3. Examples of verified query poses. We evaluated the
quality of the reference camera poses both visually and quantita-
tively, as described in section 3. Red dots are the database 3D
points projected onto a query image using its estimated pose.

of confusers at search time, contributing to the building-
scale localization scenario. Note that these query photos
are taken at different times of the day, to capture the variety
of occluders and layouts (e.g., people, furniture) as well as
illumination changes.

Reference pose generation. For all query photos, we esti-
mate 6DoF reference camera poses w.r.t. the 3D map. Each
query camera reference pose is computed as follows:

(i) Selection of the visually most similar database images.
For each query, we manually select one panorama location
which is visually most similar to the query image using the
perspective images generated from the panorama.

(ii) Automatic matching of query images to selected
database images. We match the query and perspective im-
ages by using affine covariant features [45] and nearest-
neighbor search followed by Lowe’s ratio test [42].

(iii) Computing the query camera pose and visually veri-
fying the reprojection. All the panoramas (and perspec-
tive images) are already registered to the floor plan and
have pixel-wise depth information. Therefore, we compute
query pose via P3P-RANSAC [25], followed by bundle ad-
justment [3], using correspondences between query image
points and scene 3D points obtained by feature matching.
We evaluate the obtained poses visually by inspecting the
reprojection of edges detected in the corresponding RGB
panorama into the query image (see examples in figure 3).

(iv) Manual matching of difficult queries to selected
database images. Pose estimation from automatic matches
often gives inaccurate poses for difficult queries which are,
e.g., far from any database image. Hence, for queries with
significant misalignment in reprojected edges, we manually
annotate 5 to 20 correspondences between image pixels and
3D points and apply step (iii) on the manual matches.

(v) Quantitative and visual inspection. For all estimated
poses, we measure the median reprojection error, computed
as the distance of the reprojected 3D database point to the
nearest edge pixel detected in the query image, after remov-
ing correspondences with gross errors (with distance over
20 pixels) due to, e.g., occlusions. For query images that
have under 5 pixels median reprojection error, we manually

inspect the reprojected edges in the query image and finally
accept 329 reference poses out of the 356 query images.

4. Indoor visual localization with dense match-
ing and view synthesis

We propose a new method for large-scale indoor visual lo-
calization. We address the three main challenges of indoor
environments:

(1) Lack of sparse local features. Indoor environments
are full of large textureless areas, e.g., walls, ceilings, floors
and windows, where sparse feature extraction methods de-
tect very few features. To overcome this problem, we use
multi-scale dense CNN features for both image description
and feature matching. Our features are generic enough to be
pre-trained beforehand on (outdoor) scenes, avoiding costly
re-training, e.g., as in [11, 34, 73], of the localization ma-
chine for each particular environment.

(2) Large image changes. Indoor environments are clut-
tered with movable objects, e.g., furniture and people, and
3D structures, e.g., pillars add concave bays, causing se-
vere occlusions when viewed from a close distance. The
most similar images obtained by retrieval may therefore be
visually very different from a query image. To overcome
this problem, we rely on dense feature matches to collect as
much positive evidence as possible. We employ image de-
scriptors extracted from a convolutional neural network that
can match higher-level structures of the scene rather than
relying on matching individual local features. In detail, our
pose estimation step performs coarse-to-fine dense feature
matching, followed by geometric verification and estima-
tion of the camera pose using P3P-RANSAC.

(3) Self-similarity. Indoor environments are often very
self-similar, e.g., due to many symmetric and repetitive el-
ements on a large and small scale (corridors, rooms, tiles,
windows, chairs, doors, etc.). Existing matching strate-
gies count the positive evidence, i.e., how much of the im-
age (or how many inliers) have been matched, to decide
whether two images match. This is, however, problematic
as large textureless areas can be matched well, hence pro-
viding strong (incorrect) positive evidence. To overcome
this problem, we propose to count also the negative evi-
dence, i.e., what portion of the image does not match, to
decide whether two views are taken from the same location.
To achieve this, we perform explicit pose estimate verifi-
cation based on view synthesis. In detail, we compare the
query image with a virtual view of the 3D model rendered
from the estimated camera pose of the query. This novel
approach takes advantage of the high quality of the RGBD
image database and incorporates both the positive and nega-
tive evidence by counting matching and non-matching pix-
els across the entire query image. As shown by our exper-
iments, this approach is orthogonal to the choice of local



descriptors. The proposed verification by view synthesis is
consistently showing a significant improvement regardless
of the choice of features used for estimating the pose.

The pipeline of InLoc has the following three steps.
Given a query image, (1) we obtain a set of candidate im-
ages by finding the N best matching images from the ref-
erence image database registered to the map. (2) For these
N retrieved candidate images, we compute the query poses
using the associated 3D information that is stored together
with the database images. (3) Finally, we re-rank the com-
puted camera poses based on verification by view synthesis.
The three steps are detailed next.

4.1. Candidate pose retrieval

As demonstrated by existing work [6, 35, 66], aggregating
feature descriptors computed densely on a regular grid mit-
igates issues such as a lack of repeatability of local features
detected on textureless scenes, large-illumination changes,
and a lack of discriminability of image description, domi-
nated by features from repetitive structures (burstiness). As
already mentioned in section 1, these problems are also oc-
curring in large-scale indoor localization, which motivates
our choice of using an image descriptor based on dense fea-
ture aggregation. Both query and database images are de-
scribed by NetVLAD [6] (but other variants could also be
used), normalized L2 distances of the descriptors are com-
puted, and the poses of the N best matching images from
the database are chosen as candidate poses. In section 5, we
compare our approach with the state-of-the-art image de-
scriptors based on local feature detection and show benefits
of our approach for indoor localization.

4.2. Pose estimation using dense matching

A severe problem in indoor localization is that standard ge-
ometric verification based on local feature detection [51,54]
does not work on textureless or self-repetitive scenes, such
as corridors, where robots (and also humans) often get
lost. Motivated by the improvements in candidate pose
retrieval with dense feature aggregation (Section 4.1), we
use features densely extracted on a regular grid for verify-
ing and re-ranking the candidate images by feature match-
ing and pose estimation. A possible approach would be to
match DenseSIFT [41] followed by RANSAC-based ver-
ification. Instead of tailoring DenseSIFT description pa-
rameters (patch sizes, strides, scales) to match across im-
ages with significant viewpoint changes, we use an image
representation extracted by a convolutional neural network
(VGG-16 [61]) as a set of multi-scale features extracted on
a regular grid that describes more higher-level information
with a larger receptive field (patch size).

We first find geometrically consistent sets of correspon-
dences using the coarser conv5 layer containing high-level
information. Then we refine the correspondence by search-

ing for additional matches on the conv3 layer. Examples in
figure 4 demonstrate that our dense CNN matching (4th col-
umn) obtains better matches in indoor environments when
compared to matching standard local features (3rd column),
even for less-textured areas. Notice that dense-feature ex-
traction and description requires no additional computation
at query time as the intermediate convolutional layers are al-
ready computed when extracting the NetVLAD descriptors
as described in section 4.1. As will also be demonstrated in
section 5, memory requirements and computational speed
of feature matching can be addressed by binarizing the con-
volutional features without loss in matching performance.

As perspective images in our database have depth values,
and hence associated 3D points, the query camera pose can
be estimated by finding pixel-to-pixel correspondences be-
tween the query and the matching database image followed
by P3P-RANSAC [25].

4.3. Pose verification with view synthesis

We propose here to collect both positive and negative ev-
idence to determine what is and is not matched3. This
is achieved by harnessing the power of the high-quality
RGBD image database that provides a dense and accurate
3D structure of the indoor environment. This structure is
used to render a virtual view that shows how the scene
would look like from the estimated query pose. The ren-
dered image enables us to count, in a pixel-wise manner,
both positive and negative evidence by counting which re-
gions are and are not consistent between the query image
and the underlying 3D structure. To gain invariance to
illumination changes and small misalignments, we evalu-
ate image similarity by comparing local patch descriptors
(DenseRootSIFT [7, 41]) at corresponding pixel locations.
The final similarity is computed as the median of descriptor
distances across the entire image while ignoring areas with
missing 3D structure.

5. Experiments
We first describe the experimental setup for evaluating
visual localization performance using our dataset (Sec-
tion 5.1). The proposed method, termed “InLoc”, is com-
pared with state-of-the-art methods (Section 5.2) and we
show the benefits of each component in detail (Section 5.3).

5.1. Implementation details

In the candidate pose retrieval step, we retrieve 100 can-
didate database images using NetVLAD. We use the im-
plementation provided by the authors and the pre-trained
Pitts30K [6] VGG-16 [61] model to generate 4, 096-
dimensional NetVLAD descriptor vectors.

3The impact of negative evidence in feature aggregation is demon-
strated in [30].



8.39, 152.74◦ 0.43, 2.05◦ 0.27, 17.43◦ 0.20, 0.72◦ 7.97, 2.04◦ 0.13, 1.95◦

Disloc [9] NetVLAD [6] NetVLAD [6]+ NetVLAD [6]+ NetVLAD [6]+ InLoc: NetVLAD [6]+
SparsePE DensePE DensePE DensePE+DensePV

Figure 4. Qualitative comparison of different localization methods (columns). From top to bottom: query image, the best matching
database image, synthesized view at the estimated pose (without inter/extra-polation), error map between the query image and the syn-
thesized view, localization error (meters, degrees). Green dots are the inlier matches obtained by P3P-LO-RANSAC. Methods using the
proposed dense pose estimation (DensePE) and dense pose verification (DensePV) are shown in bold. The query images in the 2nd, 4th and
6th column are well localized within 1.0 meters and 5.0 degrees whereas localization results in the 1st, 3rd and 5th column are incorrect.

In the second pose estimation step, we obtain tentative
correspondences by matching densely extracted convolu-
tional features in a coarse-to-fine manner: we first find mu-
tually nearest matches among the conv5 features and then
find matches in the finer conv3 features restricted by the
coarse conv5 correspondences. The tentative matches are
geometrically verified by estimating up to two homogra-
phies using RANSAC [25]. We re-rank the 100 candidates
using the number of RANSAC inliers and keep the top-10
database images. For each of the 10 images, the 6DoF query
pose is computed by P3P-LO-RANSAC [37] (referred to as
DensePE), assuming a known focal length, e.g., from EXIF
data, using the inlier matches and depth (i.e. the 3D struc-
ture) associated to each database image.

In the final pose verification step, we generate synthe-
sized views by rendering colored 3D points while taking
care of self-occlusions. For computing the scores that
measure the similarities of the query image and the im-
age rendered from the estimated pose, we use the Dens-
eSIFT extractor and its RootSIFT descriptor [7, 41] from
VLFeat [71]4. Finally, we localize the query image by the

4When computing the descriptors, the blank pixels induced by missing
3D points are filled by linear inter(/extra)-polation using the values of non-
blank pixels on the boundary.

best pose among its top-10 candidates.

Evaluation metrics. We evaluate the localization accuracy
as the consistency of the estimated poses with our refer-
ence poses. We measure positional and angular differences
in meters and degrees between the estimated poses and the
manually verified reference poses.

5.2. Comparison with the state-of-the-art methods

Direct 2D-3D matching [53, 55]. We first compare with
a variation5 of a state-of-the-art 3D structure-based image
localization approach [53]. We compute affine covariant
RootSIFT features for all the database images and associate
them with 3D coordinates via the known scene geometry.
Features extracted from a query image are then matched to
the database 3D descriptors [46]. We select at most five
database images receiving the largest numbers of matches
and use all these matches together for pose estimation. Sim-
ilar to [53], we did not apply Lowe’s ratio test [42] as it low-
ered the performance. The 6DoF query pose is finally com-
puted by P3P-LO-RANSAC [37]. As shown in table 2, In-

5Due to the sparse sampling of viewpoints in our indoor dataset, we
cannot establish feature tracks between database images. This prevents us
from applying algorithms relying on co-visibility [20, 38, 53, 55, 80].



Direct2D-3D Disloc [9] NetVLAD InLoc
[53] +SparsePE +SparsePE (Ours)

0.25m 11.9 20.1 21.3 38.9
0.50m 15.8 29.5 30.7 56.5
1.00m 22.5 41.0 42.6 69.9

Table 2. Comparison with the state-of-the-art localization
methods on the InLoc dataset. We show the rate (%) of cor-
rectly localized queries within a given distance (m) threshold and
within a 10◦ angular error threshold.

Loc outperforms direct 2D-3D matching by a large margin
(40.7% at the localization accuracy of 0.5m). We believe
that this is because our large-scale indoor dataset involves
many distractors and large viewpoint changes that present a
major challenge for 3D structure-based methods.
Disloc [9] + sparse pose estimation (SparsePE) [51]. We
next compare with the state-of-the-art image retrieval-based
localization method. Disloc represents images using bag-
of-visual-words with Hamming-Embedding [31] while also
taking local descriptor space density into account. We use
a publicly available implementation [54] of Disloc with a
200K vocabulary trained on affine covariant features [45],
described by RootSIFT [7], extracted from the database
images of our indoor dataset. The top-100 candidate im-
ages shortlisted by Disloc are re-ranked by spatial veri-
fication [51] using (sparse) affine covariant features [45].
The ratio test [42] was not applied here as it was remov-
ing too many features that need to be retained in the in-
door scenario. Using the inliers, the 6DoF query pose is
computed with P3P-LO-RANSAC [37]. To make a fair
comparison, we use exactly the same features and P3P-LO-
RANSAC for pose estimation as the direct 2D-3D match-
ing method described above. As shown in table 2, Dis-
loc [9]+SparsePE [51] results in a 13.7% performance gain
compared to Direct 2D-3D matching [55]. This can be at-
tributed to the image retrieval step that discounts burst of
repetitive features. However, the results are still signifi-
cantly worse compared to our InLoc approach.
NetVLAD [6] + sparse pose estimation (SparsePE) [51].
We also evaluate a variation of the above image retrieval-
based localization method. Here the candidate shortlist is
obtained by NetVLAD [6], which is then re-ranked using
SparsePE [51], followed by pose estimation using P3P-
LO-RANSAC [37]. This is a strong baseline building
on the state-of-the-art place recognition results obtained
by [6]. Interestingly, as shown in table 2, there is no sig-
nificant difference between NetVLAD+SparsePE and Dis-
Loc+SparsePE, which is in line with results reported in
outdoor settings [57]. Yet, NetVLAD outperforms Dis-
Loc (5.8% at the localization accuracy of 0.5m) before re-
ranking via SparsePE (c.f . figure 5) in this indoor setting
(see also figure 4). Overall, both methods, even though they
represent the state-of-the-art in outdoor localization, still
perform significantly worse than our proposed approach

based on dense feature matching and view synthesis.

5.3. Evaluation of each component

Next, we demonstrate the benefits of the individual compo-
nents of our approach.

Benefits of pose estimation using dense matching. Us-
ing the NetVLAD retrieval as the base retrieval method
(Figure 5 (a)), our pose estimation with dense match-
ing (NetVLAD [6]+DensePE (blue line)) constantly im-
proves the localization rate by about 15% when com-
pared to the state-of-the-art sparse local feature matching
(NetVLAD [6]+SparsePE (green line)). This result sup-
ports our conclusion that dense feature matching and ver-
ification is superior to sparse feature matching for often
weakly textured indoor scenes. This effect is also clearly
demonstrated in qualitative results in figure 4 (cf. columns
3 and 4).

Benefits of pose verification with view synthesis. We ap-
ply our pose verification step (DensePV) to the top–10 pose
estimates obtained by different spatial re-reranking meth-
ods. Results are shown in figure 5 and demonstrate sig-
nificant and consistent improvements obtained by our pose
verification approach (compare “-•-” to “—” in figure 5).
Improvements are most pronounced for the position accu-
racy within 1.5 meters (13% or more).

Binarized representation. A binary representation (in-
stead of floats) of features in the intermediate CNN layers
significantly reduces memory requirements. We use fea-
ture binarization that follows the standard Hamming em-
bedding approach [31] but without dimensionality reduc-
tion. Matching is then performed by computing Hamming
distances. This simple binarization scheme results in a neg-
ligible performance loss (less than 1% at 0.5 meters) com-
pared to the original descriptors, which is in line with results
reported for object recognition [4]. At the same time, bina-
rization reduces the memory requirements by a factor of 32,
compressing 428GB of original descriptors to just 13.4GB.

Comparison with learning based localization methods.
We have attempted a comparison with DSAC [11], which is
a state-of-the-art pose estimator for indoor scenes. Despite
our best efforts, training DSAC on our indoor dataset failed
to converge. We believe this is because the RGBD scans
in our database are sparsely distributed [76] and each scan
has only a small overlap with neighboring scans. Training
on such a dataset is challenging for methods designed for
densely captured RGBD sequences [26]. We believe this
would also be the case for PoseNet [34], another method for
CNN-based pose regression. We do provide the comparison
with DSAC and PoseNet on much smaller datasets next.
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Figure 5. Impact of different components. The graphs show impact of dense matching (DensePE) and dense pose verification (DensePV)
on pose estimation quality for (a) the pose candidates retrieved by NetVLAD and (b) state-of-the-art baselines. Plots show the fraction of
correctly localized queries (y-axis) within a certain distance (x-axis) whose rotation error is at most 10◦.

Disloc [9] NetVLAD [6] NetVLAD [6] InLoc
+SparsePE +SparsePE +DensePE (Ours)

90 bldgs. 0.42, 4.58◦ 0.44, 4.70◦ 0.23, 2.53◦ 0.17, 2.15◦
Table 3. Comparison on Matterport3D [17]. Numbers show the
median positional (m) and angular (degrees) errors.

PoseNet ActiveSearch DSAC NetVLAD [6] NetVLAD [6]
Scene [34] [55] [11, 13] +SparsePE [51] +DensePE
Chess 13, 4.48◦ 4, 1.96◦ 2, 1.2◦ 4, 1.83 3, 1.05◦
Fire 27, 11.3◦ 3, 1.53◦ 4, 1.5◦ 4, 1.55 3, 1.07◦

Heads 17, 13.0◦ 2, 1.45◦ 3, 2.7◦ 2, 1.65 2, 1.16◦
Office 19, 5.55◦ 9, 3.61◦ 4, 1.6◦ 5, 1.49 3, 1.05◦

Pumpkin 26, 4.75◦ 8, 3.10◦ 5, 2.0◦ 7, 1.87 5, 1.55◦
Red kit. 23, 5.35◦ 7, 3.37◦ 5, 2.0◦ 5, 1.61 4, 1.31◦
Stairs 35, 12.4◦ 3, 2.22◦ 117, 33.1◦ 12, 3.41 9, 2.47◦

Table 4. Evaluation on the 7 Scenes dataset [26, 59]. Numbers
show the median positional (cm) and angular errors (degrees).

5.4. Evaluation on other datasets

We also evaluate InLoc on two existing indoor datasets [17,
59] to confirm the relevance of our results. The Matter-
port3D [17] dataset consists of RGBD scans of 90 build-
ings. Each RGBD scan contains 18 images that capture the
scene around the scan position with known camera poses.
We created a test set by randomly choosing 10% of the scan
positions and selected their horizontal views. This resulted
in 58,074 database images and a query set of 6,726 images.
Results are shown in table 3. Our approach (InLoc) out-
performs the baselines, which is in line with results on the
InLoc dataset. We also tested PoseNet [34] and DSAC [11]
on a single (the largest) building. The test set is created in
the same manner as above and contains 1,884 database im-
ages and 210 query images. Even in this much easier case,
DSAC fails to converge. PoseNet produces large localiza-
tion errors (24.8 meters and 80.0 degrees) in comparison
with InLoc (0.26 meters and 2.78 degrees).

We also report results on the 7 Scenes dataset [26, 59]
which is, while relatively small, a standard benchmark for

indoor localization. The 7 Scenes dataset [59] consists of
geometrically-registered video frames representing seven
scenes, together with associated depth images and cam-
era poses. Table 4 shows localization results for our ap-
proach (NetVLAD+DensePE) compared with state-of-the-
art methods [11, 34, 55]. Note that our approach performs
comparably to these methods on this relatively small and
densely captured data, while it does not need any scene spe-
cific training (which is needed by [11, 34]).

6. Conclusion
We have presented InLoc – a new approach for large-scale
indoor visual localization that estimates the 6DoF camera
pose of a query image with respect to a large indoor 3D
map. To overcome the difficulties of indoor camera pose
estimation, we have developed new pose estimation and
verification methods that use dense feature extraction and
matching in a sequence of progressively stricter verification
steps. The localization performance is evaluated on a new
large indoor dataset with realistic and challenging query
images captured by mobile phones. Our results demon-
strate significant improvements compared to state-of-the-
art localization methods. To encourage further progress on
high-accuracy large-scale indoor localization, we make our
dataset publicly available [1].
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Appendix
This appendix first provides additional examples of query
images and their reference poses in our InLoc dataset (sec-
tion A). We also present additional qualitative results, il-
lustrating situations in which the proposed InLoc method
succeeds while the investigated baseline methods fail (sec-
tion B).

A. Additional examples of query images and
reference poses in the InLoc dataset

Figure A shows the 3D maps (grey dots), the 329 refer-
ence poses of the query images (blue dots), and the 129
database scan positions (red circles) in our InLoc dataset.
The query images are distributed across two floors (DUC1
and DUC2) that cover an area of ≈ 100,000 ft2 (9,290 m2)
each [76], and are taken from significantly distant positions
from database scans.

Figure B illustrates the verification process for the refer-
ence poses. We show example query images on the 1st and
3rd row. The edges extracted on the best matching database
image were reprojected on the query image (2nd and 4th
row) to verify the quality of the reference poses. The manu-
ally and visually verified reference poses, in total 329, have
at most 5 pixels median re-projection error, out of which,
101 reference poses have median re-projection error below
1 pixel.

B. Qualitative results
In what follows, we will consider the query image correctly
localized, if the error for the estimated pose is within 1 me-
ter and 5◦ with respect to the reference pose.

We first consider situations in which InLoc success-
fully localizes the query images, while the state-of-the-
art NetVLAD+SparsePE fails. Figure C shows qualitative
examples of the results obtained by NetVLAD+SparsePE
(a,c,e) versus our InLoc (b,d,f). As shown in (a) and (c),
sparse features are often detected on highly repetitive struc-
tures e.g., fonts (text), textured surfaces (fabric pattern on
the sofa). As shown in (a) for the baseline, matching fea-
tures found on such objects can result in matches with
unrelated parts of the scene, leading to incorrect camera
pose estimates. The fact that sparse features are predomi-
nantly found in few textured regions leads to problems in
the largely untextured indoor scenes. This is shown in (e),
where matches are found only in a small part of the query
image, which leads to an unstable configuration for camera
pose estimation. This, in turn, leads to more stable pose es-
timates in (b), (d), and (f). Our pose verification, DensePV
(section 4.3), allows us to identify incorrect poses, result-
ing from features found on repetitive structures, since most
parts of the image rendered from a false pose are not con-
sistent with the query image. Thus, InLoc is better suited

to handle highly repetitive indoor scenes with rich feature
correspondences.

The next set of qualitative results demonstrates the ben-
efits of dense pose verification. For this, figure D com-
pares results obtained by InLoc (b,d,f) with results obtained
by baseline NetVLAD+DensePE (a,c,e). In this case,
the baseline NetVLAD+DensePE uses our dense matching
(DensePE) but selects the best pose based only on the num-
ber of inlier matches and not using our pose verification by
virtual view synthesis (DensePV). For scenes dominated by
symmetries and repetitive structures (a,c) or largely texture-
less regions (a, e), there can be a large amount of geomet-
rically consistent matches even for unrelated database im-
ages. This still holds true even if matches are obtained
by dense features and geometrically verified. Our dense
pose verification strategy using synthesized images (b,d,f)
effectively provides “negative” evidence in such situations.
The error maps (bottom row) clearly show that it detects
(in)consistent areas between the query and its synthesized
image.
Limitations. Our pose verification (section 4.3) evaluates
the estimated camera pose by dense pixel-level matching
between the query image and the synthesized view. This
verification is robust up to a certain level of scene changes,
e.g., illumination changes and some amount of misalign-
ment, but cannot deal with extreme changes in the scene
such as very large occlusions or when the view is dominated
by moving objects.

Figure E shows typical failure cases of InLoc, due to our
pose verification not being able to identify the correct pose
in highly dynamic scenes. In both cases, the query images
capture many moving objects, e.g., people (a) or chairs (b),
and highly dynamic scenes, e.g., opened/closed shutters (a)
or pictures on the wall/removed (b). These moving objects
cover a large part of the image.

Those are the remaining open-issues that can be po-
tentially addressed by adopting further semantic informa-
tion [5, 35].

References
[1] Project webpage. http://www.ok.sc.e.titech.

ac.jp/INLOC/.
[2] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Comm.
ACM, 54(10):105–112, 2011.

[3] S. Agarwal, K. Mierle, and Others. Ceres solver. http:
//ceres-solver.org.

[4] P. Agrawal, R. B. Girshick, and J. Malik. Analyzing the per-
formance of multilayer neural networks for object recogni-
tion. In Proc. ECCV, 2014.

[5] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena.
Contextually guided semantic labeling and search for three-
dimensional point clouds. Intl. J. of Robotics Research,
32(1):19–34, 2013.

http://www.ok.sc.e.titech.ac.jp/INLOC/
http://www.ok.sc.e.titech.ac.jp/INLOC/
http://ceres-solver.org
http://ceres-solver.org


10m

(a) DUC1 (first floor)

10m

(b) DUC2 (second floor)
Figure A. Query reference positions in the InLoc dataset. The 329 reference poses of query images (blue dots) are plotted on the 3D
maps (grey dots) that are generated by panoramic 3D scans at 277 distinct positions (red circles).
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