Networked Cameras Are the New Big Data Clusters

Junchen Jiang!, Yuhao Zhou!, Ganesh Ananthanarayanan?, Yuanchao Shu?, Andrew A. Chien!
'University of Chicago, 2Microsoft Research

ABSTRACT

The increasing complexity of deep learning and massive
deployment of cameras at the edge have drastically increased
the resource demand of edge data analytics. Compared to
traditional Internet web applications, such resource demand
(in computing, storage and networking) is not limited by
millions of human users, but rather the continuous activities
of billions of sensors. This paper presents the abstraction
of camera cluster as an attempt to address this challenge in
the context of video analytics. We envision a novel analytics
stack that orchestrates the computing resource of massive
networked cameras to enable efficient edge video analytics.
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1 INTRODUCTION

With dropping camera prices and increasing accuracy of
deep neural networks (DNNs), we see an explosive growth of
video-analytics applications [7, 16, 23, 53] and deployments
of large camera networks (with thousands of cameras) [4,
5, 15]. Meanwhile, the proliferation of on-camera compute
resource [1, 2, 8, 10, 11] has spurred the prospect of massive
video analytics at edge. To deliver these promises, however,
we must address the fundamental systems challenge: How to
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utilize the on-camera resource in a large camera fleet to run
video-analytics applications at scale?

Existing solutions are insufficient. When processing mul-
tiple camera streams [53], current systems (Figure 1(a)) ana-
lyze (and optimize the performance of) each video stream
individually, using only the local resource of the source cam-
era (and cloud/edge servers only for overflow) [25, 34, 43, 51].
As a result, the resource demand grows proportionally with
more cameras and more applications.

What’s missing, we believe, is not software/hardware re-
source, but an abstraction for a group of cameras to act as
a whole, like a compute cluster. This paper envisions trans-
forming a group of networked cameras to a camera cluster—
a compute cluster (Figure 1 (b)) with an analytics stack to
provide efficient resource sharing, uniform resource accessing,
and a unifying abstraction to perform video analytics appli-
cations on many camera feeds. The abstraction of camera
cluster would bring principles and benefits, both in perfor-
mance and programmability.

Performance benefits: The camera cluster abstraction of-
fers a systematic way to fully utilize the ever-growing on-
camera resource in large camera networks. It opens up new
opportunities for optimization. For example, since different
cameras’ workloads are naturally heterogeneous [39], a cam-
era cluster can spread the workload of one camera to other
cameras so that more applications can run with the same on-
camera compute resource. Moreover, since applications often
use model cascades (e.g., [42, 50]), not all models need to be
called for each frame. Thus, instead of loading/unloading
DNN models, which can be unwieldy, a camera cluster can
leave the models loaded on specific cameras and route the
“data” to these locations.

Programmability benefits: Recent years have seen both
innovations in low-level accelerators (e.g., [22, 52]), high-
level video analytics pipelines [25, 40-42, 50, 51, 55, 60, 61],
and applications (e.g., history [36] vs. live [60]), each suited
for different use cases. These trends are untenable. Today,
applications are compiled directly on low-level libraries [6,
9, 12, 13] that run on a single device (camera/server), so
adopting useful techniques across applications will involve
significant repetitions and reinventions. In contrast, with a
common programming abstraction, camera clusters could
simplify application development by allowing applications
and system-level optimization to evolve independently.

Recent work has shown early promise of camera clusters,
such as sharing information across nearby cameras [39, 61]
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Figure 1: Current video analytics solutions (left) analyze
each video stream independently, whereas a camera cluster
(right) treats all cameras’ resource and their video streams as
a compute cluster. * Note that camera cluster is architecturally
amenable to include the edge/cloud resource too.

and merging queries [31, 37, 40, 44]. These techniques, how-
ever, have focused on individual cameras or the “edge-cloud”
hierarchy, rather than a group of networked cameras. More-
over, they are often tied to specific computer-vision tasks and
pipelines. For example, many pipelines save costs by down-
sizing videos or sampling important frames [41, 46, 58, 59],
but doing so precludes other query pipelines that need high-
fidelity frames [26, 51]. Finally, without a holistic view of
an analytics stack, they often address isolated issues and
cause new problems elsewhere. For instance, many video
pipelines invoke very expensive DNNs only for a small frac-
tion of frames (e.g., [42, 50]), but doing this also creates spiky
compute workloads, which makes resource sharing difficult.
The work most closely related to camera clusters is fem-
tocloud [32, 33], which shares with us the high-level idea
of organizing edge devices (e.g., smartphones) connected to
a wireless access point into a cluster. In particular, it runs
generic cloud jobs over edge devices by maximally utilizing
the devices’ resource. However, it focuses on jobs with pre-
dictable resource demands, while video-analytics workloads
can be highly dynamic and content-dependent [41, 42]. More-
over, video analytics have unique opportunities, e.g., videos
can be re-scaled to trade resource demand for accuracy.
Our goal in this paper, therefore, is to call up the commu-
nity to tackle the challenges of developing an analytics stack
for a camera cluster. We first make a case for the “camera
cluster” abstraction (§2,3) and discuss the main challenges of
building a camera-cluster analytics stack (§4).! We believe
that work on a camera cluster is not only relevant to video
analytics and its problems today, but can significantly impact
the future edge computing software stack. If successful, such
a common system substrate would facilitate a rich ecosystem
of video analytics applications.
1Given the wide range of issues involved in designing a whole camera
cluster, we focus on the perspectives of its necessity and architecture in

this paper, and leave further questions, including privacy/security, energy
consumption, and facult tolerance, to future work.

2 A CASE FOR CAMERA CLUSTER
2.1 Recent trends

Video analytics applications (e.g., traffic monitoring and in-
door security) are traditionally run on a single or small set
of video streams. Moreover, most applications rely on the
edge/cloud servers for heavy-lifting analytics (e.g., object
detection/classification, re-identification).

However, two recent trends may make this formulation
obsolete. First, networked cameras are being deployed en
masse [4, 5, 18, 21], creating an explosive growth of video
streams that require automatic analysis [7, 19]. Second, the
cameras are empowered with more on-board compute re-
source [2, 10, 11] and can run complex deep learning models
locally (which is often required for privacy compliance [48]).

Thus, the next-generation video analytics applications
need to extract real-time insights from many cameras [16, 23]
by harnessing the increasing on-camera resource. For exam-
ple, cross-camera identification tracking searches queried
identities in video feeds and then tracks them as they move
between cameras over time in a large area [53]. These appli-
cations can make real impact when deployed at scale; e.g.,
large cities have thousands of traffic cameras installed to
detect “close-calls” between cars, bikers, and pedestrians,
which helps preemptively deploy safety measures [17].

2.2 The “camera cluster” abstraction
As shown in Figure 1(a), traditional video applications ana-

lyze each camera stream independently using only the re-
source of the source camera and edge/cloud servers for over-
flow (and then combine the results if needed).

We envision an alternative approach — transforming a
group of networked cameras to a compute cluster, called
camera cluster, which manages the resource sharing and
video streams in a camera network with an unifying abstrac-
tion (Figure 1(b)). The camera cluster abstraction enables:

1. Efficient resource sharing between different applications
over an entire camera network.

2. Flexible data access to video streams and intermediate data.

3. Optimized scheduling for heterogeneous applications.

4. A common programming interface for increasingly diverse
video analytics pipelines.

Moreover, when videos must be analyzed “locally” by edge

devices [48], being able to fully utilize the on-camera re-

source becomes more necessary. Of course, a camera cluster

can also be combined with the edge/cloud resource, though

it is not our focus. In this paper, we start with networked

cameras operated by the same organization. We leave the

question of what cameras should be clustered to future work.

2.3 What’s new about camera cluster?
An analytics stack over distributed cameras (Figure 2) is the

key to unleashing the potential of camera clusters. It helps to
put the camera-cluster stack into the perspective of cloud big
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Figure 2: Today’s video analytics system vs. the proposed
analytics stack (in green) for camera clusters.

data clusters and edge clusters. Several factors differentiate
the camera cluster environment from both settings.

Live videos # Files: Most cloud frameworks (Spark, Mesos,
Yarn, Hadoop) are designed for batch jobs whose inputs are
stored in distributed storage. Video streams are different
in that the videos are neither partitioned (for data locality)
nor replicated (for fault tolerance and scalability). Moreover,
videos are amenable to compression (frame sampling, image
downsizing, etc), while general input data are not.

Live video analytics # Streaming analytics: The cloud
frameworks for streaming analytics are unsuitable for live
video analytics. In mini-batch streaming (like Spark Stream-
ing), the supported minimum batch sizes are at least a few
seconds in practice, whereas many video analytics applica-
tions expect an output to be almost at a frame-level (i.e., 33ms
per frame for a 30fps video). Other streaming frameworks
(like Storm) handle continuous data streams, but those data
rates and their compute demands are far lesser than video
analytics workloads (complex DNNs on HD video streams).
Vision inference # Big data tasks: A camera cluster must
optimize for “model locality” (§3.1). However, most cloud
frameworks are optimized for data locality and in-memory
caches, all of which assume loading data, rather than loading
model and inference, is likely the performance bottleneck.
Camera cluster # Edge/cloud hierarchy: A camera clus-
ter is different from a hierarchy between the edge and cloud.
For instance, cross-camera load balancing (§3.1) is not con-
sidered in the edge/cloud hierarchy, because the application
will resort to the edge/cloud whenever it needs overflow
capacity. The task placement in edge/cloud hierarchy needs
to handle less resource dynamism, because the heavyweight
models can just be loaded in the cloud while the light models
are on the edge or camera. Finally, in an edge/cloud hierar-
chy, the network connectivity between cameras is not fully
used, since all traffic flows between individual cameras and
edge/cloud servers.

3 BENEFITS OF CAMERA CLUSTERS

Next we present several motivating scenarios where video
analytics applications could be improved by a camera cluster.
These scenarios are inspired by real applications and existing
video pipelines.

3.1 Benefit #1: Saving computing resource
Pipeline merging: Running multiple applications over a
shared infrastructure creates many opportunities to save
resource consumption by reusing intermediate data. Video
analytics is particularly amenable to such data sharing. For
instance, two applications analyzing the same video feeds
only need to perform video decoding operations or vision
feature-extraction once [37, 40]. In addition, history video
queries (e.g., “find the peak traffic hours over the last week”)
can be made very efficient by caching continuous live query
results (e.g., congestion monitoring) [36].

Model locality: Different applications sometimes use (or
customize) the same set of publicly available vision models.
This suggests one can share models, in addition to data, be-
tween applications that perform the same tasks. For instance,
instead of loading/unloading DNN models frequently, it is
better to leave the models loaded on specific cameras and
route the “data” to these locations. This can be effective for
three reasons. First, loading a large DNN model can be slower
than actual inference [38]; e.g., loading a ResNet50 model to
GPU takes about 10 seconds, which is 100X longer than us-
ing it to classify images (50 images per second) [14]. Second,
many video analytics pipelines are cascades (e.g., [25, 42, 50]),
so not all models need to be called for each frame. Finally,
same pre-loaded DNNs can batch process frames from mul-
tiple cameras together to further save computing cost.

3.2 Benefit #2: Resource pooling

Load balancing: With a camera cluster, one can process
each video stream using the original camera’s resource and
many other cameras’. This will be particularly useful, when
different camera feeds naturally exhibit heterogeneity in
their workloads (e.g., cameras tend not to have interesting in-
cidents simultaneously). Even if analyzing each video stream
has time-varying workloads, we can still support many ap-
plications and many video streams by offloading workload
spikes of one camera to many other cameras, without need-
ing to provision more resources per-camera.

Ability to run more complex models: By pooling together
the ever-growing resource on cameras (and the edge/cloud),
a camera cluster can run more complex and more accurate
models than today’s solutions. One possible implementation
is to split a video stream to frame groups and process them
in parallel by multiple cameras. This is particularly useful
for processing history videos, which is not limited by the
fixed frame arrival rate.



3.3 Benefit #3: Improving analytics quality

Sharing insights across cameras: As a camera cluster of-
fers direct access to the video streams of other cameras, one
can improve video analytics quality of one video stream by
leveraging insights from other video streams, even though
they are not directly queried [41]. For instance, to find the
best model for analyzing camera A, one can look at camera B
that has similar video characteristics (e.g., similar object class
distributions camera angles, or lighting conditions), and if
we know which model is accurate for B, that model would
probably produce high accuracy for A.

Online model update: Vision models are more accurate
when the test video streams are similar to the training data
(similar lighting or camera angle). Thus, some query pipelines
update the vision models with locally captured images via
transfer learning (e.g., [42, 50]). Today, they use cloud re-
source to update the models, but this can bring privacy com-
plications [48] and extra delays. A promising alternative is
to leverage all on-camera resource to update model, without
resorting to cloud.

3.4 Benefit #4: Hiding low-level intricacies

The camera cluster abstraction also hides the intricacies of
underlying hardware and simplifies video analytics applica-
tion development, allowing applications and implementation
to evolve independently. This is particularly needed, given
the growing diversity in hardware and software systems
(e.g., [25, 36, 40-42, 50, 55, 60, 61]), each suited for different
use cases. Ideally, application developers need a common
interface to access video streams and compute/network re-
source, without worrying about resource contention, band-
width sharing and fault tolerance, etc. Unfortunately, many
applications today are built independently and holistically
with no such common interface, leading to substantial rein-
ventions and repetitions when applying useful techniques
(e.g., [34, 37, 41, 58]) across different applications.

4 CAMERA CLUSTER ARCHITECTURE

While some of the aforementioned benefits have been stud-
ied in specific contexts (e.g., [37, 39-41, 44, 61]), there has
been few systematic effort to design a camera cluster to ex-
plore all benefits simultaneously. Here, we focus on three
functionalities essential to a camera cluster.

4.1 Resource sharing
A camera cluster will be shared by multiple applications,

each of which has many users. These applications can vary
in time scales (e.g., realtime vs historical), accuracy require-
ments, and resource demands (e.g., DNN-based object de-
tection needs orders of magnitude more computation than
object tracking). Meanwhile, there are more video analytics
users; e.g., a crossroad traffic camera might be used by three
uses: monitoring congestion, spotting traffic-light violation,
and identifying a specific car. Thus, a camera cluster needs

efficiently resource sharing (GPU cycles, memory, network)
between users of same application and between applications.
Today, applications are built independently, and users di-
rectly configure where the analytics should run and reserve
resource potentially for indefinitely period of time. The only
option for sharing resources between applications is at the
level of a single camera or server [28, 54]. This approach is
inefficient to achieve the performance benefits outlined in
§3. In contrast, a more efficient resource sharing mechanism
for camera clusters should address four challenges.
Heterogeneity-aware scheduling: A better scheduling al-
gorithm should explore the inherent heterogeneity between
the resource/accuracy tradeoffs of different applications. This
has led to substantial resource savings in edge/cloud servers
(e.g., [37]) but it remains unclear how to achieve similar
savings over a large cluster of distributed cameras that are
loosely connected and have heterogeneous resources.
Sharing network resource: Network connectivities between
cameras (e.g., WiFi or LTE) can be a limiting factor in a cam-
era cluster, and the network loads between cameras can
also be dynamic as we stream videos across cameras. So we
need to reduce the amount of communication (e.g., by ex-
ploring “video locality” [61]). The network resource must
also be shared properly among applications. Current solu-
tions [26, 46, 58] are insufficient as they assume the network
is used by only one video stream.
Workload volatility: Resource demand of video analytics
can be highly volatile. For instance, some video analytics
pipelines invoke expensive models only for a small number
of frames where interesting incidents occur (e.g., [25, 42,
50]). This creates sudden spikes in resource demand that are
hard to predict. In contrast, cloud scheduling algorithms (for
minimizing job completion time) rely on the tasks having
deterministic resource demands [29, 30].
Use of virtualization: Finally, we need to decouple which
camera feeds are being analyzed from where analytics hap-
pens. Containers (e.g., Docker) can be a promising approach
to this goal. Edge products like Azure Data Box Edge [3] al-
ready support containerized deployments. Aspects discussed
earlier like pipeline merging and load balancing will have
to be carefully designed to ensure an acceptable overhead
of shipping containers. Techniques that “pre-warm” the con-
tainers will be crucial towards dynamic spin-up of containers
in a camera cluster.

4.2 Data access and sharing
Efficient data sharing is also needed for the performance op-

timization described in §3. In particular, we need a common
data-accessing API to share three types of data.

Video data: The API should support both streamed videos
(read with low latency and in high resolution, but no need to
be saved for a long time) and archived videos (read in batch



and typically in compressed formats). It should also express
key video properties (video color space, frame rate, quantiza-
tion parameters, etc) that can heavily influence video analyt-
ics performance [60]. It should also allow access to any video
streams that meet a given criteria (e.g., video streams that
have non-overlapping views [39], or video streams where
a given identity is detected [53]). Unfortunately, today’s in-
terface — accessing videos by directly specifying the video
source — is inefficient to meet these goals. Moreover, cam-
era network operators today often store archived data in
cloud [36], which forces users to rewrite programs to switch
between live video analytics and history video analytics.
Intermediate data: For different applications to share their
intermediate data, the data-accessing API should express not
only the original video stream, but the vision models that
generate the data as well. Suppose one application wants
to count the number of buses on a street, and the other
application wants to monitor the speed of buses on the street.
Naturally, they can share the detected “bus” instances. But
for such sharing to be transparent (i.e., same output with or
without sharing), we must ensure the “bus” instances are
found by the same “bus-detection” model. One option is to
have the storage system remember how to recompute each
intermediate data, in much the same way that a MapReduce
system knows how to re-run a map task if it loses its output.
Model reference: Finally, to enable “model locality” (load
a DNN model to GPU memory once and route data to it), we
must allow different applications to access the same vision
models and routines. One idea is to create a unique finger-
print for each model, so a preloaded model can be reused by
another model if it provides the same fingerprint. However,
this means any bit-level change can result in different finger-
prints, which can be too stringent, since even training the
same DNN architecture on the same dataset can yield slightly
different models. An alternative is to imbue vision-related
semantics in the API, such as in [45].

4.3 Programming frameworks and interface
As mentioned in §3.4, camera clusters provide an abstrac-

tion that separate applications from hardware intricacies. To
realize this benefit, we need a programming framework to
support and optimize an increasing number of diverse ana-
lytics pipelines, from monolithic models [41, 60] to various
model cascades [40, 42, 50], and other complex structures
(e.g., [25, 46]). We envision that a camera cluster exposes a
declarative interface with symbolic APIs to allow program-
mers to define an analytics pipelines as static data flow (sim-
ilar to the popular deep learning frameworks [20, 24]). This
can greatly facilitate performance optimization.

Moreover, many pipelines also need to adapt their config-
urations or vision models (§3.3) to cope with the dynamic
video content (e.g., [25, 41, 46, 50, 58, 60]). These pipelines can

benefit from a real-time profiling API, where the intermediate
data can be used to profile the performance of different con-
figurations (or counterfactually evaluate possible changes)
and then apply the changes to the pipelines [41].

Finally, many video analytics applications use complex
pipeline of multiple models to analyze a video stream. Like
other machine learning applications, these models can have
errors (both false positives and false negatives), so many
applications often involve human inspection or developers
may need to debug which model causes some error (e.g.,
object being missing or necessary features not extracted).

5 RELATED WORK

Applications over camera networks: Analyzing real-time
video feeds from a large camera network is a popular topic
in vision and edge computing communities. A wide range of
applications, multi-camera tracking, multi-camera activity
monitoring, and object reidentification, are being studied
and optimized with novel vision algorithms (see [53] for a
comprehensive review). These promises are gaining momen-
tum in real world too with well-funded initiatives taking root
(e.g., [17]). This work sheds light on the need for and the
challenges of a system stack to support these applications.
Video analytics pipelines: There is an increasing num-
ber of video-analytics pipelines that optimize for high ac-
curacy and low resource consumption [25, 34, 36, 37, 40—
42, 46, 50, 51, 58, 60, 61]. These pipelines, however, are inde-
pendently built on low-level executors running on a single
camera/server, and mostly for processing a single camera
stream. So the applications have to handle all the intrica-
cies of hardware, communication, fault tolerance, etc. In
contrast, a camera-cluster analytics stack will hide these in-
tricacies from applications while enabling efficient resource
sharing and data sharing between applications for better
performance.

Edge data analytics systems: There have been several at-
tempts at providing system abstractions of edge compute
resource (see [47] for a review). Some are general-purpose
solutions (e.g., [32, 33] seek to build a generic cloud service at
edge) or focus on edge servers (e.g., [54]), so they are not suit-
able to explore the opportunities unique to camera-cluster
and video analytics. Some more recent work has examined
separate issues in edge video analytics in isolation (e.g., video
data storage [49, 56], model management [27, 38], and sensor
network [21]), but they lack an integrative effort towards a
holistic analytics stack, as big data framework in cloud.
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