DeepGBM: A Deep Learning Framework Distilled by GBDT for
Online Prediction Tasks

Guolin Ke Zhenhui Xu* Jia Zhang
Microsoft Research Peking University Microsoft Research
guolin.ke@microsoft.com zhenhui.xu@pku.edu.cn jia.zhang@microsoft.com

Jiang Bian
Microsoft Research
jiang.bian@microsoft.com

ABSTRACT

Online prediction has become one of the most essential tasks in
many real-world applications. Two main characteristics of typical
online prediction tasks include tabular input space and online data
generation. Specifically, tabular input space indicates the existence
of both sparse categorical features and dense numerical ones, while
online data generation implies continuous task-generated data with
potentially dynamic distribution. Consequently, effective learning
with tabular input space as well as fast adaption to online data gen-
eration become two vital challenges for obtaining the online pre-
diction model. Although Gradient Boosting Decision Tree (GBDT)
and Neural Network (NN) have been widely used in practice, ei-
ther of them yields their own weaknesses. Particularly, GBDT can
hardly be adapted to dynamic online data generation, and it tends
to be ineffective when facing sparse categorical features; NN, on
the other hand, is quite difficult to achieve satisfactory performance
when facing dense numerical features. In this paper, we propose a
new learning framework, DeepGBM, which integrates the advan-
tages of the both NN and GBDT by using two corresponding NN
components: (1) CatNN, focusing on handling sparse categorical
features. (2) GBDT2NN, focusing on dense numerical features with
distilled knowledge from GBDT. Powered by these two components,
DeepGBM can leverage both categorical and numerical features
while retaining the ability of efficient online update. Comprehen-
sive experiments on a variety of publicly available datasets have
demonstrated that DeepGBM can outperform other well-recognized
baselines in various online prediction tasks.

KEYWORDS

Neural Network; Gradient Boosting Decision Tree

ACM Reference Format:

Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. 2019. Deep-
GBM: A Deep Learning Framework Distilled by GBDT for Online Prediction
Tasks. In The 25th ACM SIGKDD Conference on Knowledge Discovery and

“Work primarily done while visiting Microsoft Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330858

Tie-Yan Liu
Microsoft Research
tie-yan.liu@microsoft.com

DeepGBM

GBDT2NN

il il
0@000® (000000

Sparse Categorical Features Dense Numerical Features

Figure 1: The framework of DeepGBM, which consists of two
components, CatNN and GBDT2NN, to handle the sparse cat-
egorical and dense numerical features, respectively.

Data Mining (KDD ’19), August 4-8, 2019, Anchorage, AK, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3292500.3330858

1 INTRODUCTION

Online prediction represents a certain type of tasks playing the
essential role in many real-world industrial applications, such as
click prediction [21, 22, 36, 51] in sponsored search, content ranking
[1, 6, 7] in Web search, content optimization [9, 10, 47] in recom-
mender systems, travel time estimation [31, 49] in transportation
planning, etc.

A typical online prediction task usually yields two specific char-
acteristics in terms of the tabular input space and the online data
generation. In particular, the tabular input space means that the
input features of an online prediction task can include both categor-
ical and numerical tabular features. For example, the feature space
of the click prediction task in sponsored search usually contains
categorical ones like the ad category as well as numerical ones like
the textual similarity between the query and the ad. In the mean-
time, the online data generation implies that the real data of those
tasks are generated in the online mode and the data distribution
could be dynamic in real time. For instance, the news recommender
system can generate a massive amount of data in real time, and
the ceaseless emerging news could give rise to dynamic feature
distribution at a different time.

Therefore, to pursue an effective learning-based model for the
online prediction tasks, it becomes a necessity to address two main
challenges: (1) how to learn an effective model with tabular input
space; and (2) how to adapt the model to the online data generation.
Currently, two types of machine learning models are widely used to

https://doi.org/10.1145/3292500.3330858
https://doi.org/10.1145/3292500.3330858

solve online prediction tasks, i.e., Gradient Boosting Decision Tree
(GBDT) and Neural Network (NN)!. Unfortunately, neither of them
can simultaneously address both of those two main challenges well.
In other words, either GBDT or NN yields its own pros and cons
when being used to solve the online prediction tasks.

On one side, GBDT’s main advantage lies in its capability in
handling dense numerical features effectively. Since it can itera-
tively pick the features with the largest statistical information gain
to build the trees [20, 45], GBDT can automatically choose and
combine the useful numerical features to fit the training targets
well 2. That is why GBDT has demonstrated its effectiveness in click
prediction [33], web search ranking [6], and other well-recognized
prediction tasks [8]. Meanwhile, GBDT has two main weaknesses
in online prediction tasks. First, as the learned trees in GBDT are
not differentiable, it is hard to update the GBDT model in the on-
line mode. Frequent retraining from scratch makes GBDT quite
inefficient in learning over online prediction tasks. This weakness,
moreover, prevents GBDT from learning over very large scale data,
since it is usually impractical to load a huge amount of data into
the memory for learning 3.

The second weakness of GBDT is its ineffectiveness in learn-
ing over sparse categorical features®. Particularly, after converting
categorical features into sparse and high-dimensional one-hot en-
codings, the statistical information gain will become very small on
sparse features, since the gain of imbalance partitions by sparse
features is almost the same as non-partition. As a result, GBDT
fails to use sparse features to grow trees effectively. Although there
are some other categorical encoding methods [41] that can directly
convert a categorical value into a dense numerical value, the raw
information will be hurt in these methods as the encode values of
different categories could be similar and thus we cannot distinguish
them. Categorical features also could be directly used in tree learn-
ing, by enumerating possible binary partitions [16]. However, this
method often over-fits to the training data when with sparse cate-
gorical features, since there is too little data in each category and
thus the statistical information is biased [29]. In short, while GBDT
can learn well over dense numerical features, the two weaknesses,
i.e,, the difficulty in adapting to online data generation and the
ineffectiveness in learning over sparse categorical features, cause
GBDT to fail in many online prediction tasks, especially those re-
quiring the model being online adapted and those containing many
sparse categorical features.

On the other side, NN’s advantages consist of its efficient learning
over large scale data in online tasks since the batch-mode back-
propagation algorithm as well as its capability in learning over
sparse categorical features by the well-recognized embedding struc-
ture [35, 38]. Some recent studies have revealed the success of
employing NN in those online prediction tasks, including click pre-
diction [22, 36, 51] and recommender systems [9, 10, 32, 38, 47].
Nevertheless, the main challenge of NN lies in its weakness in
learning over dense numerical tabular features. Although a Fully

1We use NN to refer all kinds of differentiable models, including Logistic Regression
and Factorization Machine [38] in this paper.

20ther decision tree based models, such as Random Forest, have the same advantages.
We focus on GBDT in this paper due to its popularity.

3 Although we can use distributed learning [34] or in-disk learning [8] to learn from
more data, these solutions have overheads and thus are not efficient.

4Sparse categorical features refer to the categorical features with high cardinality.

Table 1: Comparison over different models.

NN GBDT GBDT+NN DeepGBM
Sparse Categorical Feature v X v v
Dense Numerical Feature X v v v
Online update & Large-scale data| v/ X X v

Connected Neural Network (FCNN) could be used for dense numer-
ical features directly, it usually leads to unsatisfactory performance,
because its fully connected model structure leads to very complex
optimization hyper-planes with a high risk of falling into local
optimums [15]. Thus, in many tasks with dense numerical tabu-
lar features, NN often cannot outperform GBDT [8]. To sum up,
despite NN can effectively handle sparse categorical features and
be adapted to online data generation efficiently, it is still difficult
to result in an effective model by learning over dense numerical
tabular features.

As summarized in Table 1, either NN or GBDT yields its own
pros and cons for obtaining the model for online prediction tasks.
Intuitively, it will be quite beneficial to explore how to combine
the advantages of both NN and GBDT together, to address the two
major challenges in online prediction tasks, i.e., tabular input space
and online data generation, simultaneously.

In this paper, we propose a new learning framework, DeepGBM,
which integrates NN and GBDT together, to obtain a more effec-
tive model for generic online prediction tasks. In particular, the
whole DeepGBM framework, as shown in Fig. 1, consists of two
major components: CatNN being an NN structure with the input
of categorical features and GBDT2NN being another NN structure
with the input of numerical features. To take advantage of GBDT’s
strength in learning over numerical features, GBDT2NN attempts
to distill the knowledge learned by GBDT into an NN modeling
process. Specifically, to boost the effectiveness of knowledge distil-
lation [24], GBDT2NN does not only transfer the output knowledge
of the pre-trained GBDT but also incorporates the knowledge of
both feature importance and data partition implied by tree struc-
tures from obtained trees. In this way, in the meantime achieving
the comparable performance with GBDT, GBDT2NN, with the NN
structure, can be easily updated by continuous emerging data when
facing the online data generation.

Powered by two NN based components, CatNN and GBDT2NN,
DeepGBM can indeed yield strong learning capacity over both cat-
egorical and numerical features while retaining the vital ability
of efficient online learning. To illustrate the effectiveness of the
proposed DeepGBM, we conduct extensive experiments on various
publicly available datasets with tabular data. Comprehensive exper-
imental results demonstrate that DeepGBM can outperform other
solutions in various prediction tasks.

In summary, the contributions of this paper are multi-fold:

e We propose DeepGBM to leverage both categorical and nu-
merical features while retaining the ability of efficient online
update, for all kinds of prediction tasks with tabular data, by
combining the advantages of GBDT and NN.

e We propose an effective solution to distill the learned knowl-
edge of a GBDT model into an NN model, by considering the se-
lected inputs, structures and outputs knowledge in the learned
tree of GBDT model.

o Extensive experiments show that DeepGBM is an off-the-shelf
model, which can be ready to use in all kinds of prediction
tasks and achieves state-of-the-art performance.

2 RELATED WORK

As aforementioned, both GBDT and NN have been widely used to
learn the models for online prediction tasks. Nonetheless, either of
them yields respective weaknesses when facing the tabular input
space and online data generation. In the following of this section,
we will briefly review the related work in addressing the respective
weaknesses of either GBDT or NN, followed by previous efforts
that explored to combine the advantages of GBDT and NN to build
a more effective model for online prediction tasks.

2.1 Applying GBDT for Online Prediction
Tasks

Applying GBDT for online prediction tasks yields two main weak-
nesses. First, the non-differentiable nature of trees makes it hard to
update the model in the online mode. Additionally, GBDT fails to
effectively leverage sparse categorical features to grow trees. There
are some related works that tried to address these problems.
Online Update in Trees. Some studies have tried to train tree-
based models from streaming data [4, 11, 18, 28], however, they are
specifically designed for the single tree model or multiple parallel
trees without dependency, like Random Forest [3], and are not
easy to apply to GBDT directly. Moreover, they can hardly perform
better than learning from all data at once. Two well-recognized
open-sourced tools for GBDT, i.e., XGBoost [8] and LightGBM
[29], also provide a simple solution for updating trees by online
generated data. In particular, they keep the tree structures fixed
and update the leaf outputs by the new data. However, this solution
can cause performance far below satisfaction. Further efforts Son
et al. [44] attempted to re-find the split points on tree nodes only
by the newly generated data. But, as such a solution abandons the
statistical information over historical data, the split points found
by the new data is biased and thus the performance is unstable.
Categorical Features in Trees. Since the extremely sparse and
high-dimensional features, representing high cardinality categories,
may cause very small statistical information gain from imbalance
partitions, GBDT cannot effectively use sparse features to grow
trees. Some other encoding methods [41] tried to convert a categor-
ical value into a dense numerical value such that they can be well
handled by decision trees. CatBoost [12] also used the similar nu-
merical encoding solution for categorical features. However, it will
cause information loss. Categorical features also could be directly
used in tree learning, by enumerating possible binary partitions
[16]. However, this method often over-fits to the training data when
with sparse categorical features, since there is too little data in each
category and thus the statistical information is biased [29].

There are some other works, such as DeepForest [52] and mGBDT
[14], that use trees as building blocks to build multi-layered trees.
However, they cannot be employed to address either the challenge
of online update or that of learning over the categorical feature. In
a word, while there were continuous efforts in applying GBDT to
online prediction tasks, most of them cannot effectively address the
critical challenges in terms of how to handle online data generation
and how to learn over categorical features.

2.2 Applying NN for Online Prediction Tasks
Applying NN for online prediction tasks yields one crucial chal-
lenge, i.e. NN cannot learn effectively over the dense numerical
features. Although there are many recent works that have employed
NN into prediction tasks, such as click prediction [22, 36, 51] and
recommender systems [9, 10, 32, 47], they all mainly focused on
the sparse categorical features, and far less attention has been put
on adopting NN over dense numerical features, which yet remains
quite challenging. Traditionally, Fully Connected Neural Network
(FCNN) is often used for dense numerical features. Nevertheless,
FCNN usually fails to reach satisfactory performance [15], because
its fully connected model structure leads to very complex optimiza-
tion hyper-planes with a high risk of falling into local optimums.
Even after employing the certain normalization [27] and regular-
ization [43] techniques, FCNN still cannot outperform GBDT in
many tasks with dense numerical features [8]. Another widely
used solution facing dense numerical features is discretization [13],
which can bucketize numerical features into categorical formats
and thus can be better handled by previous works on categorical
features. However, since the bucketized outputs will still connect
to fully connected layers, discretization actually cannot improve
the effectiveness in handling numerical features. And discretization
will increase the model complexity and may cause over-fitting due
to the increase of model parameters. To summarize, applying NN to
online prediction tasks still suffers from the incapability in learning
an effective model over dense numerical features.

2.3 Combining NN and GBDT

Due to the respective pros and cons of NN and GBDT, there have
been emerging efforts that proposed to combine their advantages.
In general, these efforts can be categorized into three classes:
Tree-like NN. As pointed by Ioannou et al. [26], tree-like NNs,
e.g. GoogLeNet [46], have decision ability like trees to some extent.
There are some other works [30, 40] that introduce decision ability
into NN. However, these works mainly focused on computer vision
tasks without attention to online prediction tasks with tabular input
space. Yang et al. [50] proposed the soft binning function to simu-
late decision trees in NN, which is, however, very inefficient as it
enumerates all possible decisions. Wang et al. [48] proposed NNRF,
which used tree-like NN and random feature selection to improve
the learning from tabular data. Nevertheless, NNRF simply uses
random feature combinations, without leveraging the statistical
information over training data like GBDT.

Convert Trees to NN. Another track of works tried to convert
the trained decision trees to NN [2, 5, 25, 39, 42]. However, these
works are inefficient as they use a redundant and usually very
sparse NN to represent a simple decision tree. When there are
many trees, such conversion solution has to construct a very wide
NN to represent them, which is unfortunately hard to be applied
to realistic scenarios. Furthermore, these methods use the complex
rules to convert a single tree and thus are not easily used in practice.
Combining NN and GBDT. There are some practical works that
directly used GBDT and NN together [23, 33, 53]. Facebook [23]
used the leaf index predictions as the input categorical features of
a Logistic Regression. Microsoft [33] used GBDT to fit the residual
errors of NN. However, as the online update problem in GBDT is
not resolved, these works cannot be efficiently used online. In fact,

Facebook also pointed up this problem in their paper [23], for the
GBDT model in their framework needs to be retrained every day
to achieve the good online performance.

As a summary, while there are increasing efforts that explored to
combine the advantages of GBDT and NN to build a more effective
model for online prediction tasks, most of them cannot totally
address the challenges related to tabular input space and online data
generation. In this paper, we propose a new learning framework,
DeepGBM, to better integrates NN and GBDT together.

3 DEEPGBM

In this section, we will elaborate on how the new proposed learning
framework, DeepGBM, integrates NN and GBDT together to obtain
a more effective model for generic online prediction tasks. Specifi-
cally, the whole DeepGBM framework, as shown in Fig. 1, consists
of two major components: CatNN being an NN structure with
the input of categorical features and GBDT2NN being another NN
structure distilled from GBDT with focusing on learning over dense
numerical features. We will describe the details of each component
in the following subsections.

3.1 CatNN for Sparse Categorical Features

To solve online prediction tasks, NN has been widely employed to
learn the prediction model over categorical features, such as Wide
& Deep [9], PNN [36], DeepFM [22] and xDeepFM [32]. Since the
target of CatNN is the same as these works, we can directly leverage
any of existing successful NN structures to play as the CatNN,
without reinventing the wheel. In particular, the same as previous
works, CatNN mainly relies on the embedding technology, which
can effectively convert the high dimensional sparse vectors into
dense ones. Besides, in this paper, we also leverage FM component
and Deep component from previous works [9, 22], to learn the
interactions over features. Please note CatNN is not limited by
these two components, since it can use any other NN components
with similar functions.

Embedding is the low-dimensional dense representation of a
high-dimensional sparse vector, and can denote as

Ey,(x;) = embedding_lookup(V;, x;), (1)
where x; is the value of i-th feature, V; stores all embeddings of the i-
th feature and can be learned by back-propagation, and Ev, (x;) will
return the corresponding embedding vector for x;. Based on that,
we can use FM component to learn linear (order-1) and pair-wise
(order-2) feature interactions, and denote as

d d
yrm(x) = wo + (w,x) + > > (Ey,(xi), By, (x))xix; , (2)
i=1 j=i+1
where d is the number of features, wy and w are the parameters

of linear part, and (-,) is the inner product operation. Then, Deep
component is used to learn the high-order feature interactions:

T
yDeep<x>:N([Em(xl)T,Evz(xz)T,...,Evd<xd>7] ;e), 3)

where N(x; 0) is a multi-layered NN model with input x and pa-
rameter 8. Combined with two components, the final output of
CatNN is

Ycar(x) = YFM(X) + YDeep(X) - ©

3.2 GBDT2NN for Dense Numerical Features

In this subsection, we will describe the details about how we dis-
till the learned trees in GBDT into an NN model. Firstly, we will
introduce how to distill a single tree into an NN. Then, we will
generalize the idea to the distillation from multiple trees in GBDT.

3.2.1 Single Tree Distillation. Most of the previous distillation
works only transfer model knowledge in terms of the learned func-
tion, in order to ensure the new model generates a similar output
compared to the transferred one.

However, since tree and NN are naturally different, beyond tra-
ditional model distillation, there is more knowledge in the tree
model could be distilled and transferred into NN. In particular, the
feature selection and importance in learned trees, as well as data
partition implied by learned tree structures, are indeed other types
of important knowledge in trees.

Tree-Selected Features. Compared to NN, a special characteristic
of the tree-based model is that it may not use all input features,
as its learning will greedily choose the useful features to fit the
training targets, based on the statistical information. Therefore, we
can transfer such knowledge in terms of tree-selected features to
improve the learning efficiency of the NN model, rather than using
all input features. In particular, we can merely use the tree-selected
features as the inputs of NN. Formally, we define I as the indices
of the used features in a tree t. Then we can only use x[I?] as the
input of NN.

Tree Structure. Essentially, the knowledge of tree structure of
a decision tree indicates how to partition data into many non-
overlapping regions (leaves), i.e., it clusters data into different
classes and the data in the same leaf belongs to the same class.
It is not easy to directly transfer such tree structure into NN, as
their structures are naturally different. Fortunately, as NN has been
proven powerful enough to approximate any functions [19], we
can use an NN model to approximate the function of the tree struc-
ture and achieve the structure knowledge distillation. Therefore,
as illustrated in Fig.2, we can use NN to fit the cluster results pro-
duced by the tree, to let NN approximate the structure function
of decision tree. Formally, we denote the structure function of a
tree ¢ as C’(x), which returns the output leaf index, i.e. the cluster
result produced by the tree, of sample x. Then, we can use an NN
model to approximate the structure function C?(-) and the learning
process can denote as

w3 (o)).

where n is the number of training samples, x? is the i-th training
sample, L’ is the one-hot representation of leaf index C* (x’) for
xi, It is the indices of used features in tree ¢, 0 is the parameter of
NN model N and can be updated by back-propagation, L is the
loss function for the multiclass problem like cross entropy. Thus,
after learning, we can get an NN model N'(- ; 0). Due to the strong
expressiveness ability of NN, the learned NN model should perfectly
approximate the structure function of decision tree.

Tree Outputs. Since the mapping from tree inputs to tree struc-
tures is learned in the previous step, to distill tree outputs, we only
need to know the mapping from tree structures to tree outputs. As
there is a corresponding leaf value for a leaf index, this mapping

Tree NN

Structure
Distillation

Leaf
Index
} Leaf Output {

Figure 2: Tree structure distillation by leaf index. NN will
approximate the tree structure by fitting its leaf index.

is actually not needed to learn. In particular, we denote the leaf
values of tree t as ¢ and q:f represents the leaf value of i-th leaf.
Then we can map L’ to the tree output by p? = L x q°.

Combined with the above methods for single tree distillation,
the output of NN distilled from tree can denote as

y'(x0) = N (x[I']; 6) x q" . (6)

3.22 Multiple Tree Distillation. Since there are multiple trees
in GBDT, we should generalize the distillation solution for the
multiple trees. A straight-forward solution is using #NN = #tree
NN models, each of them distilled from one tree. However, this
solution is very inefficient due to the high dimension of structure
distillation targets, which is O(|L| x#NN)). To improve the efficiency,
we propose Leaf Embedding Distillation and Tree Grouping to reduce
|L| and #NN respectively.
Leaf Embedding Distillation. As illustrated in Fig.3, we adopt
embedding technology to reduce the dimension of structure distil-
lation targets L while retraining the information in this step. More
specifically, since there are bijection relations between leaf indices
and leaf values, we use the leaf values to learn the embedding.
Formally, the learning process of embedding can denote as
. 1
min —
w,wp, ! N

o (wTHLE o)+ wo p). ™)
i=1

where Hb! = H(Lb' ; ") is an one-layered fully connected net-
work with parameter @ that converts the one-hot leaf index L%
to the dense embedding H% %, p’! is the predict leaf value of sample
xi, L// is the same loss function as used in tree learning, w and wy
are the parameters for mapping embedding to leaf values. After
that, instead of sparse high dimensional one-hot representation L,
we can use the dense embedding as the targets to approximate the
function of tree structure. This new learning process can denote as

1% it 4i
m;n;;L(N(x [I°]; 0),H) (8)
where L is the regression loss like L2 loss for fitting dense embed-

ding. Since the dimension of H .1 should be much smaller than L,
Leaf Embedding Distillation will be more efficient in the multiple

Tree

Structure
Distillation

Leaf
Embedding
} Leaf Output {

Figure 3: Tree structure distillation by leaf embedding. The
leaf index is first transformed to leaf embedding. Then NN
will approximate tree structure by fitting the leaf embed-
ding. Since the dimension of leaf embedding can be signifi-
cantly smaller than the leaf index, this distillation method
will be much more efficient.

tree distillation. Furthermore, it will use much fewer NN parameters
and thus is more efficient.

Tree Grouping. To reduce the #N' N, we can group the trees and use
an NN model to distill from a group of trees. Subsequently, there are
two problems for grouping: (1) how to group the trees and (2) how to
distill from a group of trees. Firstly, for the grouping strategies, there
are many solutions. For example, the equally randomly grouping,
equally sequentially grouping, grouping based on importance or
similarity, etc. In this paper, we use the equally randomly grouping.
Formally, assuming there are m trees and we want to divide them
into k groups, there are s = [m/k] trees in each group and the
trees in j-th group are T}, which contains random s trees from
GBDT. Secondly, to distill from multiple trees, we can extend the
Leaf Embedding Distillation for multiple trees. Formally, given a
group of trees T, we can extend the Eqn.(7) to learn leaf embedding
from multiple trees

min 130 (wTw(||teT(L“>;w“f)+wO, Zp“’), ©)
i=1

w, wp, 0T 1 o

where ||(-) is the concatenate operation, GTi=H (||t€T(Lt’i) ;wT)
is an one-layered fully connected network that convert the multi-
hot vectors, which is the concatenate of multiple one-hot leaf index
vectors, to a dense embedding GT! for the trees in T. After that, we
can use the new embedding as the distillation target of NN model,
and the learning process of it can denote as

£ <l SN 07))

where IT is the used features in tree group T. When the number of
trees in T is large, IT may contains many features and thus hurt
the feature selection ability. Therefore, as an alternate, we can only
use top features in T according to feature importance. To sum up,
combined with above methods, the final output of the NN distilled

from a tree group T is
yr(x) = wl X N (x[]IT] ;eT) +wo . (11)

And the output of a GBDT model, which contains k tree groups, is

k

YGBDT2NN (X) = Z yr; () - (12)
j=1

In summary, owing to Leaf Embedding Distillation and Tree
Grouping, GBDT2NN can efficiently distill many trees of GBDT
into a compact NN model. Furthermore, besides tree outputs, the
feature selection and structure knowledge in trees are effectively
distilled into the NN model as well.

3.3 Training for DeepGBM

We will describe how to train the DeepGBM in this subsection,
including how to train it end-to-end offline and how to efficiently
update it online.

3.3.1 End-to-End Offline Training. To train DeepGBM, we first
need to use offline data to train a GBDT model and then use Eqn.(9)
to get the leaf embedding for the trees in GBDT. After that, we
can train DeepGBM end-to-end. Formally, we denote the output of
DeepGBM as

9(x) = 0 (w1 X YGBDT2NN(X) + w2 X ycar(x)) , (13)

where w1 and wy are the trainable parameters used for combining
GBDT2NN and CatNN, o is the output transformation, such as
sigmoid for binary classification. Then, we can use the following
loss function for the end-to-end training

k
Lopfrine = aL @Gx), y)+p Y LY, (14)

Jj=1

where y is the training target of sample x, L" is the loss function for
corresponding tasks such as cross-entropy for classification tasks,
LT is the embedding loss for tree group T and defined in Eqn.(10),
k is the number of tree groups, o and f are hyper-parameters given
in advance and used for controlling the strength of end-to-end loss
and embedding loss, respectively.

3.3.2 Online Update. As the GBDT model is trained offline, us-
ing it for embedding learning in the online update will hurt the
online real-time performance. Thus, we do not include the LT in
the online update, and the loss for the online update can denote as

Lontine = L G(x),), (15)

which only uses the end-to-end loss. Thus, when using DeepGBM
online, we only need the new data to update the model by L,,7ines
without involving GBDT and retraining from scratch. In short,
DeepGBM will be very efficient for online tasks. Furthermore, it is
also very effective since it can well handle both the dense numerical
features and sparse categorical features.

Table 2: Details of the datasets used in experiments. All these
datasets are publicly available. #Sample is the number of
data samples, #Num is the number of numerical features,
and #Cat is the number of categorical features.

Name #Sample #Num #Cat Task
Flight 7.79M 5 7 Classification
Criteo 45.8M 13 26 Classification
Malware 8.92M 12 69 Classification
AutoML-1 4.69M 51 23 Classification
AutoML-2 0.82M 17 7 Classification
AutoML-3 0.78M 17 54 Classification
Zillow 90.3K 31 27 Regression

4 EXPERIMENT

In this section, we will conduct thorough evaluations on Deep-
GBM?” over a couple of public tabular datasets and compares its
performance with several widely used baseline models. Particularly,
we will start with details about experimental setup, including data
description, compared models and some specific experiments set-
tings. After that, we will analyze the performance of DeepGBM in
both offline and online settings to demonstrate its effectiveness and
advantage over baseline models.

4.1 Experimental Setup

Datasets: To illustrate the effective of DeepGBM, we conduct ex-
periments on a couple of public datasets, as listed in Table 2. In
particular, Flight® is an airline dataset and used to predict the flights
are delayed or not. Criteo’, Malware® and Zillow® are the datasets
from Kaggle competitions. AutoML-1, AutoML-2 and AutoML-3 are
datasets from “AutoML for Lifelong Machine Learning” Challenge
in NeurIPS 2018°. More details about these datasets can be found
in Appendix A.1. As these datasets are from real-world tasks, they
contain both categorical and numerical features. Furthermore, as
time-stamp is available in most of these datasets, we can use them
to simulate the online scenarios.

Compared Models: In our experiments, we will compare Deep-
GBM with the following baseline models:

e GBDT [17], which is a widely used tree-based learning algo-
rithm for modeling tabular data. We use LightGBM [29] for its
high efficiency.

e LR, which is Logistic Regression, a generalized linear model.

e FM [38], which contains a linear model and a FM component.

o Wide&Deep [9], which combines a shallow linear model with
deep neural network.

e DeepFM [22], which improves Wide&Deep by adding an addi-
tional FM component.

e PNN [36], which uses pair-wise product layer to capture the
pair-wise interactions over categorical features.

SWe released the source code at: https://github.com/motefly/DeepGBM
®http://stat-computing.org/dataexpo/2009/
"https://www.kaggle.com/c/criteo-display-ad-challenge/data
8https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/zillow-prize-1
Ohttps://www.4paradigm.com/competition/nips2018

https://github.com/motefly/DeepGBM
http://stat-computing.org/dataexpo/2009/
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://www.kaggle.com/c/malware-classification
https://www.kaggle.com/c/zillow-prize-1
https://www.4paradigm.com/competition/nips2018

Table 3: Offline performance comparison. AUC (higher is better) is used for binary classification tasks, and MSE (lower is
better) is used for regression tasks. All experiments are run 5 times with different random seeds, and the mean =+ std results

are shown in this table. The top-2 results are marked bold.

Model Binary Classification Regression
Flight Criteo Malware AutoML-1 AutoML-2 AutoML-3 Zillow

LR 0.7234 £5e-4 0.7839 £7e-5 0.7048 £1le-4 0.7278 £2e-3 0.6524 £2e-3 0.7366 +£2e-3 0.02268 +1e-4
M 0.7381 +3e-4 0.7875 x1le-4 0.7147 *3e-4 0.7310 £1e-3 0.6546 £2e-3 0.7425 x1e-3 0.02315+2e-4
Wide&Deep 0.7353 £3e-3 0.7962 £3e-4 0.7339 £7e-4 0.7409 £1e-3 0.6615 £1e-3 0.7503 £2e-3 0.02304 +3e-4
DeepFM 0.7469 £2e-3 0.7932 £1le-4 0.7307 £4e-4 0.7400 £1e-3 0.6577 £2e-3 0.7482 £2e-3 0.02346 +2e-4
PNN 0.7356 +2e-3 0.7946 +8e-4 0.7232 x6e-4 0.7350 £1e-3 0.6604 £2e-3 0.7418 £1e-3 | 0.02207 £2e-5
GBDT 0.7605 +1e-3 0.7982 x5e-5 0.7374 £2e-4 0.7525 +2e-4 0.6844 £le-3 0.7644 £9e-4 | 0.02193 £2e-5
DeepGBM (D1) | 0.7668 £5e-4 0.8038 +3e-4 0.7390 £9e-5 0.7538 £2e-4 0.6865 +4e-4 0.7663 +3e-4 | 0.02204 +5e-5
DeepGBM (D2) | 0.7816 +5e-4 0.8006 +3e-4 0.7426 +5e-5 0.7557 +2e-4 0.6873 +3e-4 0.7655 +2e-4 | 0.02190 +2e-5
DeepGBM 0.7943 +2e-3 0.8039 +3e-4 0.7434 +2e-4 0.7564 +£1e-4 0.6877 £8e-4 0.7664 +5e-4 | 0.02183 +3e-5

Besides, to further analyze the performance of DeepGBM, we use
additional two degenerated versions of DeepGBM in experiments:
e DeepGBM (D1), which uses GBDT directly in DeepGBM, rather
than GBDT2NN. As GBDT cannot be online updated, we can
use this model to check the improvement brought by DeepGBM

in online scenarios.

o DeepGBM (D2), which only uses GBDT2NN in DeepGBM, with-
out CatNN. This model is to examine the standalone perfor-
mance of GBDT2NN.

Experiments Settings: To improve the baseline performance, we
introduce some basic feature engineering in the experiments. Specif-
ically, for the models which cannot handle numerical features well,
such as LR, FM, Wide&Deep, DeepFM and PNN, we discrete the
numerical features into categorical ones. Meanwhile, for the models
which cannot handle categorical feature well, such as GBDT and
the models based on it, we convert the categorical features into
numerical ones, by label-encoding [12] and binary-encoding [41].
Based on this basic feature engineering, all models can use the infor-
mation from both categorical and numerical features, such that the
comparisons are more reliable. Moreover, all experiments are run
five times with different random seeds to ensure a fair comparison.
For the purpose of reproducibility, all the details of experiments
settings including hyper-parameter settings will be described in
Appendix A and the released codes.

4.2 Offline Performance

We first evaluate the offline performance for the proposed Deep-
GBM 1in this subsection. To simulate the real-world scenarios, we
partition each benchmark dataset into the training set and test set
according to the time-stamyp, i.e., the older data samples (about 90%)
are used for the training and the newer samples (about 10%) are
used for the test. More details are available in Appendix A.

The overall comparison results could be found in Table 3. From
the table, we have following observations:

e GBDT can outperform other NN baselines, which explicitly
shows the advantage of GBDT on the tabular data. Therefore,
distilling GBDT knowledge will definitely benefit DeepGBM.

e GBDT2NN (DeepGBM (D2)) can further improve GBDT, which
indicates that GBDT2NN can effectively distill the trained GBDT
model into NN. Furthermore, it implies that the distilled NN
model can be further improved and even outperform GBDT.

o Combining GBDT and NN can further improve the performance.
The hybrid models, including DeepGBM (D1) and DeepGBM,
can all reach better performance than single model baselines,
which indicates that using two components to handle categorical
features and numerical features respectively can benefit perfor-
mance for online prediction tasks.

o DeepGBM outperforms all baselines on all datasets. In particular,
DeepGBM can boost the accuracy over the best baseline GBDT
by 0.3% to 4.4%. as well as the best of NN baselines by 1% to 6.3%.

To investigate the convergence of DeepGBM, Fig. 4 demonstrates

the performance in terms of AUC on the test data by the model

trained with increasing epochs. From these figures, we can find
that DeepGBM also converges much faster than other models.

4.3 Online Performance

To evaluate the online performance of DeepGBM, we use Flight,
Criteo and AutoML-1 datasets as the online benchmark. To simu-
late the online scenarios, we refer to the setting of the “AutoML
for Lifelong Machine Learning” Challenge in NeurIPS 2018 [37].
Specifically, we partition each dataset into multiple consecutive
batches along with the time. We will train the model for each batch
from the oldest to latest in sequence. And, at i-th batch, it only
allows to use the samples in that batch to train or update the model;
after that, the (i + 1)-th batch is used for the evaluation. More details
are available in Appendix A.

Note that, as the data distribution may change along with differ-
ent batches during the online simulation, we would like to examine
if the online learned models can perform better than their offline
versions, i.e., the models without the online update. Thus, we also
check the performance of offline DeepGBM as another baseline to
compare with the online learned DeepGBM.

All the comparison results are summarized in Fig 5, and we have
following observations:

e GBDT cannot perform well in the online scenarios as expected.
Although GBDT yields good result in the first batch (offline
stage), it declines obviously in the later (online) batches.

o The online performance of GBDT2NN is good. In particular,
GBDT2NN (DeepGBM (D2)) can significantly outperform GBDT.
Furthermore, DeepGBM outperforms DeepGBM (D1), which uses
GBDT instead of GBDT2NN, by a non-trivial gain. It indicates
that the distilled NN model by GBDT could be further improved
and effectively used in the online scenarios.

0.804

0.79
0.78 0.74
0.77 0.799
076 S /S T
P A 0.73
0.75 0.794 P
0.74 e e s e
P =t
0.73 T
0.789 0.72 |
0.72 ——DeepGBM DeepGBM(D1) 7—DeepGBM DeepGBM(D1) 11 1 ——DeepGBM DeepGBM(D1)
0.71 DeepGBM(D2) DeepFM ". DeepGBM(D2) DeepFM ’ "I' DeepGBM(D2) DeepFM
070 - — - Wide&Deep - - PNN 0.784 ,l — - Wide&Deep - - PNN 071 ! — - Wide&Deep - - PNN
2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 2 5 8 11 14 17 20 23 26 29 32 35 2 5 8 11 14 17 20 23 26 29 32 35 38
(a) Flight (b) Criteo (c) Malware
0.76 0.77
0.69 _
0.68
0.75 0.76
0.67 / /
/ 1
0.66 / e MA S R PR TR S | S
0.74 . Pig 0.75 -
{ R |/
06s | |/
, k e
013 | oss |/ M 074 1l ~
/ ,/ ——DeepGBM DeepGBM(D1) | /' ——DeepGBM DeepGBM(D1) 'i 0 DeepGBM DeepGBM(D1)
I, DeepGBM(D2) DeepFM 0.63 ||/~ DeepGBMD) DeepFM) DeepGBM(D2) DeepFM
072 {1 — - Wide&Deep - - PNN 0.62 { I— - Wide&Deep - - PNN 073 '_l ! — - Wide&Deep - - PNN
2 4 6 8 10 12 14 16 18 20 1 3 5 7 9 1 13 15 17 19 2 5 8 11 14 17 20 23 26 29 32 35 38

(d) AutoML-1

(e) AutoML-2

Figure 4: Epoch-AUC curves over test data, in the offline classification experiments.

(f) AutoML-3
We can find that DeepGBM converges

much faster than other baselines. Moreover, the convergence points of DeepGBM are also much better.

0.83 0.81
0.81 .
0.79 / - i
080 7 e —
0.77 T
0.75
0.73 0.79
0.71
0.69
0.78
0.67 ——DeepGBM DeepGBM(D1) DeepGBM(D2) ——DeepGBM DeepGBM(D1) DeepGBM(D2) 0.69 ——DeepGBM DeepGBM(D1) DeepGBM(D2)
0.65 GBDT —=—DeepFM ~o—Wide&Deep GBDT —=—DeepFM —o—Wide&Deep GBDT —=—DeepFM —o—Wide&Deep
0.63 ——PNN - - -DeepGBM(Off) 077 ——PNN - - -DeepGBM(Off) 0.68 ——PNN - - -DeepGBM(Off)
Batchl Batch2 Batch3 Batch4 Batch5 Batchl Batch2 Batch3 Batch4 Batch5 Batchl Batch2 Batch3 Batch4
(a) Flight (b) Criteo (c) AutoML-1

Figure 5: Online performance comparison. For the models that cannot be online updated, we did not update them during the
online simulation. All experiments are run 5 times with different random seeds, and the mean results (AUC) are used.

e DeepGBM outperforms all other baselines, including its offline
version (the dotted lines). It explicitly proves the proposed Deep-
GBM indeed yields strong learning capacity over both categorical
and numerical tabular features while retaining the vital ability
of efficient online learning.

In short, all above experimental results demonstrate that DeepGBM

can significantly outperform all kinds of baselines in both offline

and online scenarios.

5 CONCLUSION

To address the challenges of tabular input space, which indicates the
existence of both sparse categorical features and dense numerical
ones, and online data generation, which implies continuous task-
generated data with potentially dynamic distribution, in online

prediction tasks, we propose a new learning framework, DeepGBM,
which integrates NN and GBDT together. Specifically, DeepGBM
consists of two major components: CatNN being an NN structure
with the input of sparse categorical features and GBDT2NN being
another NN structure with the input of dense numerical features. To
further take advantage of GBDT’s strength in learning over dense
numerical features, GBDT2NN attempts to distill the knowledge
learned by GBDT into an NN modeling process. Powered by these
two NN based components, DeepGBM can indeed yield the strong
learning capacity over both categorical and numerical tabular fea-
tures while retaining the vital ability of efficient online learning.
Comprehensive experimental results demonstrate that DeepGBM
can outperform other solutions in various prediction tasks, in both
offline and online scenarios.

ACKNOWLEDGEMENT

We thank Hui Xue (Microsoft) for the discussion about the idea and
the comments on an earlier version of the manuscript.

REFERENCES

(1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]
[20]

[21]

[22

[23]

Eugene Agichtein, Eric Brill, and Susan Dumais. 2006. Improving web search rank-
ing by incorporating user behavior information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 19-26.

Arunava Banerjee. 1997. Initializing neural networks using decision trees. Com-
putational learning theory and natural learning systems 4 (1997), 3-15.

Inigo Barandiaran. 1998. The random subspace method for constructing decision
forests. IEEE transactions on pattern analysis and machine intelligence 20, 8 (1998).
Yael Ben-Haim and Elad Tom-Tov. 2010. A streaming parallel decision tree
algorithm. Journal of Machine Learning Research 11, Feb (2010), 849-872.
Gérard Biau, Erwan Scornet, and Johannes Welbl. 2016. Neural random forests.
Sankhya A (2016), 1-40.

Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. ACM, 129-136.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785-794.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7-10.

Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. ACM, 191-198.

Pedro Domingos and Geoff Hulten. 2000. Mining high-speed data streams. In
Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 71-80.

Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. 2018. CatBoost: gra-
dient boosting with categorical features support. arXiv preprint arXiv:1810.11363
(2018).

James Dougherty, Ron Kohavi, and Mehran Sahami. 1995. Supervised and unsu-
pervised discretization of continuous features. In Machine Learning Proceedings
1995. Elsevier, 194-202.

Ji Feng, Yang Yu, and Zhi-Hua Zhou. 2018. Multi-Layered Gradient Boosting
Decision Trees. arXiv preprint arXiv:1806.00007 (2018).

Manuel Fernandez-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
2014. Do we need hundreds of classifiers to solve real world classification
problems? The Journal of Machine Learning Research 15, 1 (2014), 3133-3181.
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The elements of
statistical learning. Vol. 1. Springer series in statistics New York, NY, USA:.
Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189-1232.

Mohamed Medhat Gaber, Arkady Zaslavsky, and Shonali Krishnaswamy. 2005.
Mining data streams: a review. ACM Sigmod Record 34, 2 (2005), 18-26.

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

Krzysztof Grabczewski and Norbert Jankowski. 2005. Feature selection with
decision tree criterion. In null. IEEE, 212-217.

Thore Graepel, Joaquin Quinonero Candela, Thomas Borchert, and Ralf Herbrich.
2010. Web-scale bayesian click-through rate prediction for sponsored search
advertising in microsoft’s bing search engine. Omnipress.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
Deepfm: a factorization-machine based neural network for ctr prediction. arXiv
preprint arXiv:1703.04247 (2017).

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1-9.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

K. D. Humbird, J. L. Peterson, and R. G. McClarren. 2017. Deep neural network
initialization with decision trees. ArXiv e-prints (July 2017). arXiv:1707.00784
Yani Ioannou, Duncan Robertson, Darko Zikic, Peter Kontschieder, Jamie Shotton,
Matthew Brown, and Antonio Criminisi. 2016. Decision forests, convolutional
networks and the models in-between. arXiv preprint arXiv:1603.01250 (2016).
Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[28

[29

[30

[31

[33

(34

[35

&
2

(37]

[38

[39

[40

N
=

[42

[43

[44

[45]

[46

[47]

(48]

[49]

[50

[51

(52

(53]

Ruoming Jin and Gagan Agrawal. 2003. Efficient decision tree construction on
streaming data. In Proceedings of the ninth ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 571-576.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A highly efficient gradient boosting
decision tree. In Advances in Neural Information Processing Systems. 3146-3154.
Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo.
2015. Deep neural decision forests. In Proceedings of the IEEE international
conference on computer vision. 1467-1475.

Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
Multi-task representation learning for travel time estimation. In International
Conference on Knowledge Discovery and Data Mining,(KDD).

Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. arXiv preprint arXiv:1803.05170 (2018).
Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun.
2017. Model ensemble for click prediction in bing search ads. In Proceedings of
the 26th International Conference on World Wide Web Companion. International
World Wide Web Conferences Steering Committee, 689-698.

Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, and
Tie-Yan Liu. 2016. A communication-efficient parallel algorithm for decision tree.
In Advances in Neural Information Processing Systems. 1279-1287.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based neural networks for user response prediction. In Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 1149-1154.

Yao Quanming, Wang Mengshuo, Jair Escalante Hugo, Guyon Isabelle, Hu Yi-Qi,
Li Yu-Feng, Tu Wei-Wei, Yang Qiang, and Yu Yang. 2018. Taking human out of
learning applications: A survey on automated machine learning. arXiv preprint
arXiv:1810.13306 (2018).

Steffen Rendle. 2010. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on. IEEE, 995-1000.

David L Richmond, Dagmar Kainmueller, Michael Y Yang, Eugene W Myers, and
Carsten Rother. 2015. Relating cascaded random forests to deep convolutional
neural networks for semantic segmentation. arXiv preprint arXiv:1507.07583
(2015).

Samuel Rota Bulo and Peter Kontschieder. 2014. Neural decision forests for
semantic image labelling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 81-88.

Scikit-learn. 2018. categorical_encoding. https://github.com/scikit-learn-contrib/
categorical-encoding.

Ishwar Krishnan Sethi. 1990. Entropy nets: from decision trees to neural networks.
Proc. IEEE 78, 10 (1990), 1605-1613.

Ira Shavitt and Eran Segal. 2018. Regularization Learning Networks: Deep Learn-
ing for Tabular Datasets. In Advances in Neural Information Processing Systems.
1386-1396.

Jeany Son, Ilchae Jung, Kayoung Park, and Bohyung Han. 2015. Tracking-by-
segmentation with online gradient boosting decision tree. In Proceedings of the
IEEE International Conference on Computer Vision. 3056—3064.

V Sugumaran, V Muralidharan, and KI Ramachandran. 2007. Feature selection
using decision tree and classification through proximal support vector machine
for fault diagnostics of roller bearing. Mechanical systems and signal processing
21, 2 (2007), 930-942.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1-9.

Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning
for recommender systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1235-1244.

Suhang Wang, Charu Aggarwal, and Huan Liu. 2017. Using a random forest to
inspire a neural network and improving on it. In Proceedings of the 2017 SIAM
International Conference on Data Mining. SIAM, 1-9.

Zheng Wang, Kun Fu, and Jieping Ye. 2018. Learning to estimate the travel time.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 858-866.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. 2018. Deep
Neural Decision Trees. arXiv preprint arXiv:1806.06988 (2018).

Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-field
categorical data. In European conference on information retrieval. Springer, 45-57.
Zhi-Hua Zhou and Ji Feng. 2017. Deep forest: Towards an alternative to deep
neural networks. arXiv preprint arXiv:1702.08835 (2017).

Jie Zhu, Ying Shan, JC Mao, Dong Yu, Holakou Rahmanian, and Yi Zhang. 2017.
Deep embedding forest: Forest-based serving with deep embedding features.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 1703-1711.

http://arxiv.org/abs/1707.00784
https://github.com/scikit-learn-contrib/categorical-encoding
https://github.com/scikit-learn-contrib/categorical-encoding

Appendix A REPRODUCIBILITY DETAILS

For the reproducibility, we released the source code at: https://
github.com/motefly/DeepGBM. Furthermore, we use this supple-
mentary material to provide some important details about datasets
and model settings.

A.1 Dataset Details
Following are the details of the used datasets in the experiments:

o Flight, which is used as a binary classification dataset. In par-

ticular, the classification target is whether a flight is delayed

(more than 15 minutes) or not.

Criteo, which is a click prediction dataset and widely used

in the experiments of many previous works.

e Malware, which is a binary classification dataset from Kaggle

competitions.

AutoML, which are the binary classification datasets from

“AutoML for Lifelong Machine Learning” Challenge in NeurIPS

2018. There are total 5 datasets, and we use “A”, “B”, “D”

datasets from them in this paper. Although there are 10

batches in each dataset, the last 5 batches are not publicly

available. Thus, we only can use the first 5 batches in the

experiments.

o Zillow, which is a regression dataset from Kaggle competi-
tions.

There are some ordinal features, such as “day of week”, in these
datasets. We treat these ordinal features as both categorical features
and numerical features in the experiments.

The details of data partitions in the offline experiments are listed
in Table 4.

Table 4: Data partition for offline experiments.

Name Training Test

Flight all samples in 2007 | random 0.5M samples in 2008
Criteo first 90% last 10%

Malware |first 90% last 10%

AutoML-1 | first 90% last 10%

AutoML-2 | first 90% last 10%

AutoML-3 | first 90% last 10%

Zillow first 90% last 10%

The details of batch partitions in the online experiments are
listed in Table 5.

Table 5: Data partition for Online experiments.

Dataset Flight Criteo AutoML-1
#Batch 6 6 5

Batch 1 | Year 2007 | first 50%

Batch 2 | Jan 2008 | 50% - 60% | Original 5 batches from
Batch 3 | Feb 2008 | 60% - 70% | data itself, for the data is
Batch 4 | Mar 2008 | 70% - 80% | provided by batch
Batch 5 | Apr 2008 | 80% - 90% | fashion.

Batch 6 | May 2008 | last 10%

In the online simulation, the first batch is used for the offline
pre-train. Then at the later batches, we can only use the data in that
batch to update the model. And the data at (i + 1)-th batch is used
to evaluate the model from i-th batch. For the models that cannot
be online updated, such as GBDT, we will not update them during
the simulation, and the model from the first batch will be used in
the evaluation for all batches.

A.2 Model Details

For GBDT based model, our implementation is based on Light GBM.
For the NN based model, our implementation is based on pytorch.
All the implementation codes are available at https://github.com/
motefly/DeepGBM.

As the distributions of the used datasets in experiments are
different with each other, we use the different hyper-parameters for
different datasets. We first list the common hyper-parameters for
GBDT and NN based models in Table 6. And these hyper-parameters
are shared in all models.

The model-specific hyper-parameters are shown in Table 7.

e Deep Part Structure. The deep part structures of DeepFM
and Wide&Deep are the same, which are shown in the table.
We refer to their open-sourced versions!>1%-13 for these
structure settings. We also tried the wider or deeper hidden
layers for the deep part, but it caused over-fitting and poor
test results.

e PNN. Consulting the settings and results in PNN paper [36],

we use three hidden layers, one layer more than DeepFM

and Wide&Deep, in PNN. And this indeed is better than two
two hidden layers.

GBDT2NN. The number of tree groups for different datasets

are listed in the table. The dimension of leaf embedding for

a tree group is set to 20 on all datasets. The structure of

the distilled NN model is a fully connected networks with

“100-100-100-50" hidden layers. Besides, we adopt the feature

selection in each tree group. More specifically, we first sort

the features according to the information gain, and the top

k of them are selected as the inputs of distilled NN model.

The number k is shown in the table.

DeepGBM. The trainable weights w; and w; are initialized

to 1.0 and 0.0, respectively. The hyper-parameters of CatNN

are the same as DeepFM. For the offline training, we adopt a

exponential decay strategy for § in Eqn.(14), to let the loss

focuses more on embedding fitting at the beginning. More
specifically, f (initialed to 1.0) is decayed exponentially by

a factor at a certain frequency (along with epochs), and «

is set to (1 — f) in our experiments. The decay factors and

frequencies are listed in the table.

Uhttps://github.com/ChenglongChen/tensorflow-DeepFM
2https://github.com/nzc/dnn_ctr
Bhttps://github.com/shenweichen/DeepCTR

https://github.com/motefly/DeepGBM
https://github.com/motefly/DeepGBM
https://github.com/motefly/DeepGBM
https://github.com/motefly/DeepGBM
https://github.com/ChenglongChen/tensorflow-DeepFM
 https://github.com/nzc/dnn_ctr
https://github.com/shenweichen/DeepCTR

Table 6: Shared hyper-parameters for GBDT and NN based models.

Models Parameters Flight Criteo Malware AutoML-1 AutoML-2 AutoML-3 Zillow

Number of trees 200 200 200 100 100 100 100

GBDT based models | Learning rate 0.15 0.15 0.15 0.1 0.1 0.1 0.15
Max number of leaves 128 128 128 64 64 64 64
Training batch size 512 4096 1024 512 128 128 128
Learning rate le-3

NN based models Optimizer Adar W

Offline epoch 45 35 40 20 20 40 40
Online update epoch 1

Table 7: More hyper-parameters. For the NN structures listed in this table, we only report the hidden layers of them.

Models Parameters Flight Criteo Malware AutoML-1 AutoML-2 AutoML-3 Zillow
#Tree Groups 20 20 20 5 10 10 10
BDT2
G NN #Top Features 128 128 128 128 64 64 64
DeepFM, Wide&Deep | Deep part structure 32-32 32-32 64-64 16-16 16-16 16-16 32-32
PNN Structure 32-32-32 32-32-32 64-64-64 16-16-16 16-16-16 16-16-16 32-32-32
f decay frequency 2 3 2 2 2 2 10
DeepGBM
eep B decay factor 0.7 0.9 0.9 0.7 0.7 0.7 0.7

	Abstract
	1 Introduction
	2 Related Work
	2.1 Applying GBDT for Online Prediction Tasks
	2.2 Applying NN for Online Prediction Tasks
	2.3 Combining NN and GBDT

	3 DeepGBM
	3.1 CatNN for Sparse Categorical Features
	3.2 GBDT2NN for Dense Numerical Features
	3.3 Training for DeepGBM

	4 Experiment
	4.1 Experimental Setup
	4.2 Offline Performance
	4.3 Online Performance

	5 Conclusion
	References
	A Reproducibility Details
	A.1 Dataset Details
	A.2 Model Details

